摘 要:【目的】通過對毛竹Phyllostachys edulis在20% PEG 6000干旱脅迫下不同時段(0、6、12、24、48 h)的幼苗進(jìn)行高通量轉(zhuǎn)錄組測序,研究了在干旱脅迫應(yīng)答中調(diào)控細(xì)胞壁形成的差異miRNAs,篩選出與細(xì)胞壁形成相關(guān)的差異miRNAs及其靶基因,旨在為竹子在細(xì)胞壁方面的適應(yīng)性進(jìn)化提供重要的理論依據(jù),同時也為竹子的分子育種提供潛在的候選基因資源?!痉椒ā坎捎蒙镄畔W(xué)的方法對干旱處理的毛竹葉片進(jìn)行差異分析,并通過實時熒光定量技術(shù)和雙熒光素酶試驗驗證其表達(dá)模式及靶向作用?!窘Y(jié)果】在15個樣品中發(fā)現(xiàn)了408個miRNAs,包括51個已知的miRNA、357個新預(yù)測的miRNA和7 105個預(yù)測的靶基因。在干旱脅迫下,共有52個差異表達(dá)的miRNAs,挖掘到3個差異表達(dá)miRNAs:novel_miR116、novel_miR276和novel_miR2,對應(yīng)靶基因在京都基因組百科全書(KEGG)上富集到與細(xì)胞壁形成密切相關(guān)的通路上;PH02Gene11396編碼類固醇5-α-還原酶(Det2),PH02Gene36673、PH02Gene36674、PH02Gene21400編碼阿魏酸-5-羥基化酶(F5H);PH02Gene50651編碼生長素反應(yīng)蛋白(AUX/IAA);目標(biāo)miRNA的整體表達(dá)量隨著干旱脅迫程度的加深而降低,靶基因的表達(dá)量則隨著干旱脅迫程度的加深而升高;目標(biāo)miRNA與靶基因混合后的雙熒光酶活性顯著低于miRNA空載體與靶基因混合的酶活性,同一煙草葉片上右側(cè)注射miRNA -mRNA的熒光強度明顯低于左側(cè)注射miRNA空載體-mRNA的熒光強度?!窘Y(jié)論】本研究篩選出了3個目標(biāo)miRNA和4個靶基因,揭示了以下的負(fù)調(diào)控靶向關(guān)系:novel_miR116與PH02Gene11396、novel_miR276與PH02Gene36673/PH02Gene36674、novel_ miR2與PH02Gene50651。這些目標(biāo)miRNAs可能通過調(diào)控油菜素內(nèi)酯、木質(zhì)素單體和生長素反應(yīng)蛋白的表達(dá),從而影響細(xì)胞壁的形成。
關(guān)鍵詞:毛竹;miRNA;細(xì)胞壁形成;干旱脅迫;靶基因
中圖分類號:S792.39;S722.3 文獻(xiàn)標(biāo)志碼:A 文章編號:1673-923X(2025)02-0153-12
基金項目:國家重點研發(fā)計劃(2021YFD2200504_4)。
Identification and differential analysis of miRNAs associated with cell wall formation in Phyllostachys edulis under drought stress
GAO Yuanmeng1,2, LIN Xiaofang1,2, YANG Yang1,2, LI Ying1,2, LI Xueping1,2
(1.International Center for Bamboo and Rattan, Beijing 100102, China; 2.Key Laboratory of National Forestry and Grassland Administration/Beijing for Bamboo and Rattan Science and Technology, Beijing 100102, China)
Abstract:【Objective】Through high-throughput transcriptome sequencing of seedlings of Phyllostachys edulis under 20% PEG 6000 drought stress at different time periods (0, 6, 12, 24, 48 h), we investigated the differential miRNAs that regulate the cell wall formation in response to the drought stress, and screened for the differential miRNAs and their target genes. This study aims to provide an important theoretical basis for the adaptive evolution of bamboo in terms of cell wall, as well as potential candidate gene resources for molecular breeding of bamboo.【Method】Differential analysis of drought-treated moso bamboo leaves was carried out by bioinformatics, and the expression patterns and targeting roles were verified by real-time fluorescence quantification and dual-luciferase assay.【Result】408 miRNAs were identified in 15 samples, including 51 known miRNAs, 357 newly predicted miRNAs and 7 105 predicted target genes. A total of 52 differentially expressed miRNAs were found under drought stress, and three differentially expressed miRNAs were unearthed: novel_miR116, novel_miR276 and novel_miR2, corresponding to target genes enriched on the Kyoto Encyclopedia of the Genome(KEGG) to pathways closely related to cell wall formation; PH02Gene11396 encodes steroid 5-α-reductase (Det2), PH02Gene36673, PH02Gene36674, and PH02Gene21400 encode ferulic acid-5-hydroxylase (F5H); and PH02Gene50651 encodes growth hormoneresponsive protein (AUX/IAA); the overall expression of the target miRNA decreased with the deepening of drought stress, while the expression of the target gene increased with the deepening of drought stress; the dual luciferase activity of the target miRNA mixed with the target gene was significantly lower than that of the miRNA empty vector mixed with the target gene, and the fluorescence intensity of the right injected miRNA-mRNA was significantly lower than the fluorescence intensity of the left injected miRNA empty vectormRNA on the same tobacco leaf.【Conclusion】Three target miRNAs and four target genes were screened in this study, revealing the following negative regulatory targeting relationships: novel_miR116 with PH02Gene11396, novel_miR276 with PH02Gene36673/ PH02Gene36674, novel_miR2 with PH02Gene50651. these target miRNAs may affect cell wall formation by regulating the expression of oleoresin lactones, lignin monomers, and growth hormone response proteins.
Keywords: Phyllostachys edulis; miRNA; cell wall formation; drought stress; target gene
毛竹Phyllostachys edulis是我國種植面積最大、利用價值最高的竹種,作為禾本科Poaceae剛竹屬Phyllostachys的單軸散生型常綠喬木狀竹類植物,其生長速度快、產(chǎn)量高、可再生能力強,是木材的絕佳替代品[1-3]。竹材的性質(zhì)與細(xì)胞壁結(jié)構(gòu)和組成密切相關(guān),其機械強度由細(xì)胞壁的纖維素含量和微纖絲角度決定,影響抗拉和抗壓能力[4]。彈性模量則由纖維素、半纖維素和木質(zhì)素的比例決定,影響材料的彈性和變形能力[5-6]。細(xì)胞壁的密度和木質(zhì)素含量決定了竹材的硬度,而木質(zhì)素和多糖類物質(zhì)的交聯(lián)情況影響其韌性[7]。竹材的耐久性則依賴于細(xì)胞壁的化學(xué)組成,特別是木質(zhì)素和抽提物的含量[8-9]。這些細(xì)胞壁特性共同決定了竹材在各種應(yīng)用中的表現(xiàn)和耐用性。
在面對非生物脅迫時,植物會產(chǎn)生一系列的應(yīng)答反應(yīng),其中非常重要的一點是細(xì)胞壁特性會發(fā)生很大的改變[10-11]。有研究表明,在面對干旱脅迫時,構(gòu)成細(xì)胞壁成分的木質(zhì)素、纖維素、多糖等物質(zhì)的含量會發(fā)生相應(yīng)變化[12-15],導(dǎo)致為毛竹提供機械支持的細(xì)胞壁會發(fā)生一定程度的硬化[16]。此外,還有許多細(xì)胞壁酶參與了植物對水分脅迫的應(yīng)答反應(yīng)[17-18]。
MicroRNA(miRNA)在細(xì)胞壁生物合成過程中發(fā)揮著重要的調(diào)控作用[19-20]。一系列研究表明,在擬南芥Arabidopsis thaliana、楊樹Populus L.等樹種中,miRNA均可通過調(diào)控轉(zhuǎn)錄因子從而介導(dǎo)細(xì)胞壁的生物合成,如MYB[21]、NAC[22]、TCP[23]等。在毛竹中,近年來在miRNA調(diào)控細(xì)胞壁形成方面也取得了顯著進(jìn)展。研究表明,miRNA可以調(diào)控參與細(xì)胞壁合成的關(guān)鍵基因,如次生細(xì)胞壁生物合成中的轉(zhuǎn)錄因子基因[24]。特定的miRNA,如miR166,被發(fā)現(xiàn)調(diào)控維管組織分化[25]。此外,多組學(xué)研究揭示了miRNA通過調(diào)控C3H和MYB家族轉(zhuǎn)錄因子間接影響細(xì)胞壁成分合成基因的表達(dá),增強細(xì)胞壁厚度和機械強度,同樣也構(gòu)建出miRNA-轉(zhuǎn)錄因子的木質(zhì)化調(diào)控網(wǎng)絡(luò)[26]。但對毛竹中miRNA調(diào)控細(xì)胞壁形成的研究仍處于起步階段,如何在外界環(huán)境不利的條件下,通過調(diào)控細(xì)胞壁生物合成從而提高環(huán)境適應(yīng)性還少有研究。進(jìn)一步的深入研究將有助于揭示更多的分子機制,并推動竹子在分子育種和抗逆性改良中的應(yīng)用。
本研究以梯度干旱處理后的毛竹為材料,通過高通量測序分析所有樣品中的miRNA表征,重點關(guān)注參與細(xì)胞壁形成調(diào)控的差異表達(dá)的miRNAs,并對靶基因進(jìn)行功能注釋。基于生物信息學(xué)預(yù)測,從miRNA靶基因的功能通路與細(xì)胞壁合成的高相關(guān)性,以及miRNA自身的高表達(dá)量2個維度出發(fā),篩選出3個可能在細(xì)胞壁形成過程中發(fā)揮關(guān)鍵調(diào)控作用的miRNAs。通過實時定量PCR(RT-qPCR)和雙熒光素酶驗證miRNA的表達(dá)模式及與預(yù)測靶基因的靶向作用,以期挖掘在竹子細(xì)胞壁形成過程中可能發(fā)揮調(diào)控作用的miRNAs,為改善竹子材性和增強其逆境抗性提供理論依據(jù)和候選基因。
1 材料與方法
1.1 植物材料、生長環(huán)境和處理
毛竹種子采集于廣西壯族自治區(qū),種植在含有腐殖質(zhì)土∶蛭石(7∶3)的塑料盆中,培養(yǎng)條件為25 ℃光照16 h/18 ℃黑暗8 h。
在毛竹幼苗生長至3個月大時,利用20%的聚乙二醇6000(PEG 6000)模擬干旱處理。在澆灌后的0、6、12、24以及48 h的時間點,選取相同位置的葉片作為樣品。在采集樣品的過程中,每組3株毛竹幼苗的葉片被合并作為一個試驗樣品。樣品采集后,立即將其置于液氮中快速冷凍,以保持樣品完好無損。完成冷凍的葉片樣品隨后被存放在-80 ℃的低溫冰箱中,以便后續(xù)試驗分析。
每個樣品3次生物學(xué)重復(fù):0 h干旱處理(P11、P12、P13),6 h干旱處理(P21、P22、P23),12 h干旱處理(P31、P32、P33),24 h干旱處理(P41、P42、P43),48 h干旱處理(P51、P52、P53)。
1.2 總RNA提取、small RNA文庫構(gòu)建和miRNA表達(dá)量分析
使用總RNA快速提取試劑盒(TR205,北京簡石生物技術(shù)有限公司),根據(jù)生產(chǎn)廠家的說明書分離總RNA。使用NanoDrop 8000(Thermo Fisher Scientific, Bothell, WA, 美國)測定RNA濃度。
為了鑒定miRNAs并將其與干旱脅迫下毛竹細(xì)胞壁形成相關(guān)聯(lián),在干旱處理0 h(P1)、6 h(P2)、12 h(P3)、24 h(P4)、48 h(P5)后采集毛竹葉片樣品,并構(gòu)建cDNA文庫,文庫構(gòu)建嚴(yán)格按照NEB Next Ultra small RNA Sample Library Prep Kit for Illumina試劑盒的說明進(jìn)行。對合格的文庫進(jìn)行高通量測序,測序平臺為Illumina novaseq6000,測序讀長為single-end 50 nt(SE50)。對各樣本中miRNA進(jìn)行表達(dá)量的統(tǒng)計,并用TPM算法對表達(dá)量進(jìn)行歸一化處理[27]。
本研究的原始序列數(shù)據(jù)已上傳至中國國家生物信息中心/中國科學(xué)院北京基因組研究所(GSA:CRA015504)的國家基因組學(xué)數(shù)據(jù)中心(Nucleic Acids Res 2022)的基因組序列檔案(Genomics,Proteomics Bioinformatics 2021)中,可在https:// ngdc.cncb.ac.cn/gsa公開訪問。
1.3 已知miRNA的鑒定與未知miRNA預(yù)測
將比對到參考基因組的reads與miRBase(v22)數(shù)據(jù)庫中的已知miRNA的成熟序列及其上游2 nt與下游5 nt的范圍進(jìn)行比對,最多允許一個錯配,這樣鑒定到的reads被認(rèn)為是已知miRNA。miRNA轉(zhuǎn)錄起始位點多位于基因間隔區(qū)、內(nèi)含子以及編碼序列的反向互補序列上,其前體具有標(biāo)志性的發(fā)夾結(jié)構(gòu),成熟體的形成是由Dicer/DCL酶的剪切實現(xiàn)的。
針對miRNA的生物特征,對于未鑒定到已知miRNA的序列,利用miRDeep2[28]軟件,結(jié)合比對到基因組上的位置信息得到可能的前體序列,基于miRNA產(chǎn)生特點mature、star、loop及前體結(jié)構(gòu)能量信息采用貝葉斯模型打分,最終實現(xiàn)新 miRNA預(yù)測[29]。
1.4 差異表達(dá)miRNAs的鑒定及靶基因預(yù)測
檢測差異表達(dá)miRNAs時,采用EdgeR軟件進(jìn)行樣品組間的差異表達(dá)分析[30],獲得2個生物學(xué)條件之間的差異表達(dá)miRNAs集,使用|log2(FC)|≥1.00、P≤0.05作為篩選標(biāo)準(zhǔn)。差異倍數(shù)(Fold change,F(xiàn)C)表示兩樣品(組)間表達(dá)量的比值。原有假設(shè)得到的顯著性P值(P-value)可以表示為表達(dá)無差異的概率。
根據(jù)已知miRNA和新預(yù)測的miRNA與對應(yīng)物種的基因序列信息,使用TargetFinder軟件進(jìn)行靶基因預(yù)測[31]。
1.5 差異表達(dá)miRNAs的靶基因功能富集分析
使用BLAST軟件將預(yù)測靶基因序列與GO[32]、KEGG[33]數(shù)據(jù)庫進(jìn)行比對,獲得靶基因的注釋信息。利用富集因子(Enrichment factor)分析通路的富集程度,并利用Fisher精確檢驗方法計算富集顯著性。
1.6 miRNA-mRNA調(diào)控網(wǎng)絡(luò)可視化
為了進(jìn)一步探索miRNA的功能,通過Cytoscape(v3.7.2)生成了miRNA-mRNA調(diào)控網(wǎng)絡(luò)圖[34]。
1.7 目標(biāo)miRNA與靶基因RT-qPCR驗證
根據(jù)miRNA的成熟體序列,借助miRNA Design V1.01軟件上設(shè)計反轉(zhuǎn)錄莖環(huán)引物、正向引物、反向通用引物;按照miRNA 1st Strand cDNA Synthesis Kit (by stem-loop)(Vazyme, MQ101)進(jìn)行反轉(zhuǎn)錄操作,將U6作為miRNA內(nèi)參基因[35],按照miRNA Universal SYBR qPCR Master Mix(Vazyme MR101)進(jìn)行實時熒光定量分析。
利用Primer Premier 5設(shè)計靶基因RT-qPCR引物,并驗證引物的特異性;選用NTB為靶基因內(nèi)參基因[36],按照2×SYBR qPCR MasterMix(中科瑞泰,RTQ3101)進(jìn)行定量分析,并使用2-ΔΔCt方法計算miRNA和靶基因的相對表達(dá)量[36]。
1.8 雙熒光素酶報告驗證目標(biāo)miRNA同mRNA的靶向作用
利用RNAhybrid軟件,預(yù)測novel_miR276、novel_miR116、novel_miR2在其靶基因上的結(jié)合位點,然后分別將包含靶位點在內(nèi)的前后100 bp左右的序列和miRNA的前體序列構(gòu)建至pGreenⅡ0800-miRNA、pGreenⅡ-62-SK載體。使用雙熒光素酶報告試劑盒(Vazyme, DL101)和酶標(biāo)儀測定螢火蟲熒光素酶(Firefly luciferase)報告基因與海腎熒光素酶(Renilla luciferase)報告基因活性,最終計算酶活在對照組與試驗組的變化,并在熒光成像儀中拍攝注射的煙草葉片。
2 結(jié)果與分析
2.1 毛竹的測序分析與miRNA表征統(tǒng)計
干旱處理0 h(P1)、6 h(P2)、12 h(P3)、24 h(P4)、48 h(P5)后采集毛竹葉片,其小RNA(Small RNA)測序共得到188.58 Mb Clean reads,每個樣品的Clean data平均值達(dá)12.57 Mb,Q30在95.67%~97.21%。各樣品中共獲得408個miRNAs,其中已知51個miRNA,新預(yù)測357個miRNA。
各個樣品的3個重復(fù)間的相關(guān)性相對較大,梯度干旱處理時間相差越大,相關(guān)性越小,如P1與P5的相關(guān)系數(shù)整體小于P4與P5的相關(guān)系數(shù)(圖1A);每組處理3個重復(fù)間的樣品miRNA表達(dá)量中位數(shù)基本一致,數(shù)據(jù)分布較集中,波動性?。▓D1B);各個樣品間的miRNA表達(dá)量密度曲線趨于重合,其表達(dá)模式基本一致(圖1C);每個處理3個重復(fù)樣品間的miRNA長度均集中在21 nt和24 nt,其余長度分布較少(圖1D)。
成熟miRNA長度主要集中在20~24 nt,已知的miRNA長度大多集中在21 nt,新預(yù)測的miRNA大多集中在24 nt(圖2A)。在識別和切割前體miRNA時,5′端首位堿基對U具有很強的偏向性。通過分析miRNA的堿基偏好性,獲得典型的miRNA堿基比例。已知miRNA的堿基中U、G、 C所占比例較高,新預(yù)測的miRNA堿基中U、A、G的占比較高;長度在20~23 nt的miRNA在5′端的首位堿基均對U有極強的偏好性,長度在24 nt的已知miRNA在5′端的首位堿基對G有較強的偏好性,但同等長度新預(yù)測的miRNA則對A有較強的偏好性(圖2B、C)。
2.2 毛竹響應(yīng)干旱脅迫的差異表達(dá)miRNAs分析
與對照組(P1-0 h)相比,處理組(P2-6 h、P3-12 h、P4-24 h和P5-48 h)共檢測到52個差異表達(dá)miRNAs。在52個差異表達(dá)miRNAs中,4組比較中不存在共同的差異miRNA,在P1與P3、P4、P5組比較中存在9個共同的差異miRNA,在P1與P2、P3、P4組的比較中存在2個共同的差異miRNA(圖3A)。相比較來說,每組處理的下調(diào)miRNA數(shù)量均多于上調(diào)miRNA數(shù)量,下調(diào)模式的差異miRNA數(shù)量總體超過上調(diào)差異miRNA數(shù)量24個(圖3B)。
根據(jù)GO富集分析結(jié)果(圖4A),靶基因參與生物過程(Biological Process, BP)、細(xì)胞成分(Cellular component, CC)和分子功能(Molecular function, MF)3類。在生物過程類別中,大多數(shù)靶基因富集于細(xì)胞過程(GO:0009987)、代謝過程(GO:0008152)、單個有機體過程(GO:0044699)、生物調(diào)控(GO:0065007)和刺激響應(yīng)(GO:0050896)。在細(xì)胞成分類別中,大多數(shù)靶基因富集在細(xì)胞(GO:0005623)、細(xì)胞部分(GO:0044464)、細(xì)胞器(GO:0043226)和膜部分(GO:0044425)。此外,在分子功能類別中,大多數(shù)靶基因富集在結(jié)合(GO:0005488)、催化活性(GO:0003824)、轉(zhuǎn)座子活性(GO:0005215)和核酸結(jié)合轉(zhuǎn)錄因子活性(GO:0001071)。
對于KEGG富集分析(圖4B),所有差異表達(dá)miRNAs靶基因最密切相關(guān)的代謝途徑是丙氨酸、天門冬氨酸和谷氨酸代謝(ko00250)、囊泡運輸中的SNARE相互作用(ko04130)、類固醇的生物合成(ko00905)、硫代謝(ko00920)和植物晝夜節(jié)律(ko04712)。
2.3 基于miRNA-mRNA網(wǎng)絡(luò)的差異表達(dá)miRNAs篩選
深入分析miRNA的靶基因KEGG富集通路發(fā)現(xiàn),油菜素內(nèi)酯生物合成(ko00905)、植物激素信號轉(zhuǎn)導(dǎo)(ko00940)和苯丙酮的生物合成(ko04075)富集到大量基因且存在與細(xì)胞壁生物合成密切相關(guān)的靶基因。在油菜素內(nèi)酯生物合成通路中PH02Gene11396編碼類固醇5-α-還原酶(Det2);在植物激素信號轉(zhuǎn)導(dǎo)通路中,PH02Gene36673、PH02Gene36674、PH02Gene21400編碼阿魏酸-5-羥基化酶(F5H);在苯丙酮的生物合成通路中PH02Gene50651編碼生長素反應(yīng)蛋白(AUX/IAA)。
根據(jù)miRNA與mRNA之間的潛在關(guān)系,結(jié)合GO和KEGG功能注釋,初步篩選出在細(xì)胞壁生物合成中發(fā)揮作用的3個miRNA,即novel_ miR116、novel_miR276和novel_miR2進(jìn)行后續(xù)研究,通過繪制miRNA-mRNA網(wǎng)絡(luò)關(guān)系圖,最終選擇novel_miR276-PH02Gene36674/PH02Gene36673/ PH02Gene21400、novel_miR116-PH02Gene11396和novel_miR2-PH02Gene50651(圖5)進(jìn)行后續(xù)驗證。具體靶位點序列見表1。
2.4 目標(biāo)miRNAs及靶基因的RT-qPCR驗證
將上述3個差異表達(dá)miRNAs進(jìn)行表達(dá)分析,結(jié)果表明,novel_miR116在干旱脅迫的條件下,總體表達(dá)量與對照組相比是下降的,總體趨勢是先上升后下降(圖6A),與RNA-seq測序的結(jié)果一致。在P2、P3、P4處理中,miRNA的表達(dá)趨勢是上升的,其靶基因的表達(dá)量是下降的(圖6B),表明了其負(fù)調(diào)控作用;novel_miR276在干旱脅迫的條件下,總體表達(dá)量與對照組相比是下降的,除P2處理外,整體趨勢是先上升后下降(圖6C)。因其對應(yīng)多個靶基因,總體趨勢并不完全相符(圖6D~F)。novel_miR2在干旱脅迫的條件下,總體表達(dá)量與對照組相比是下降的,整體趨勢是先上升后下降,對應(yīng)靶基因在干旱脅迫條件下,總體表達(dá)量與對照組相比下降明顯(圖6G~H)。因此,在不同的干旱脅迫階段,miRNA與其靶基因存在不同程度的負(fù)調(diào)控作用。
2.5 雙熒光素酶試驗揭示miRNAs特異性結(jié)合靶基因
與對照組(EV+靶基因)相比,試驗組的酶活性均顯著降低(圖7A~D)。在熒光成像儀下,同一葉片上左側(cè)注射空載體(EV+靶基因)的熒光強度均明顯高于右側(cè)注射(miRNA-mRNA)的熒光強度(圖7E~H),進(jìn)一步證實了novle_miR116、novel_miR276、novel_miR2及其預(yù)測靶基因的靶向調(diào)控作用,這3個miRNA(novel_ miR116、novel_miR276、novel_miR2)分別與4個目標(biāo)基因(PH02Gene11396、PH02Gene36673、PH02Gene36674、PH02Gene50651)特異性結(jié)合。
3 討論與結(jié)論
3.1 討 論
干旱是影響植物生長、發(fā)育和作物生產(chǎn)力的最普遍的環(huán)境壓力,miRNA的轉(zhuǎn)錄后調(diào)控是植物應(yīng)對干旱脅迫的重要機制[37]。許多干旱誘導(dǎo)的miRNA已經(jīng)被發(fā)現(xiàn)在植物中通過影響生長發(fā)育、滲透脅迫耐受性、抗氧化防御、植物激素介導(dǎo)的信號傳導(dǎo)和延遲衰老的調(diào)節(jié)基因來增加對干旱脅迫的耐受性[38-39]。干旱期miRNAs的主要靶標(biāo)是編碼轉(zhuǎn)錄因子基因,參與植物激素信號生長素和ABA信號通路[40-42],本研究篩選到的novel_miR2同樣位于生長素信號通路中。
miRNA雖然不能編碼蛋白質(zhì),但是具有調(diào)控靶基因的作用,當(dāng)受到逆境脅迫時,miRNA可通過結(jié)合靶基因mRNA來抑制其表達(dá)從而保護(hù)自身和相關(guān)信號通路[43]。miRNA對基因表達(dá)的調(diào)控方式主要有3種,即miRNA介導(dǎo)切割靶基因、抑制翻譯和轉(zhuǎn)錄沉默[44-46]。一般miRNA主要通過剪切降解靶基因或者抑制其翻譯達(dá)到調(diào)控的目的[47],miRNA與靶基因之間的調(diào)控關(guān)系是植物基因表達(dá)復(fù)雜調(diào)控網(wǎng)絡(luò)中的一個重要組成部分。這種調(diào)控機制是極其復(fù)雜的,這種多對多的關(guān)系使得miRNA調(diào)控網(wǎng)絡(luò)具有高度的復(fù)雜性和動態(tài)性。miRNA的表達(dá)模式在不同的組織和發(fā)育階段是特異性的,miRNA不僅調(diào)控mRNA的穩(wěn)定性和翻譯效率,還可能影響其他調(diào)控分子(如轉(zhuǎn)錄因子、長非編碼RNA等)的活性,形成多層次的調(diào)控網(wǎng)絡(luò)。miRNA的生物合成和成熟過程涉及多個步驟,包括轉(zhuǎn)錄、剪切、出核和成熟等,這些過程中的任何變化都可能影響miRNA的最終功能。miRNA過表達(dá)的情況下,靶基因表達(dá)受抑制,但可能會激活鄰近基因的表達(dá)[48-49],這可能也是不易得到與預(yù)期結(jié)果相符miRNA的原因之一。前人研究發(fā)現(xiàn),除了極少數(shù)的miRNAs能夠正調(diào)控靶基因外[50],絕大多數(shù)的miRNAs對靶基因的調(diào)控均為負(fù)調(diào)控[51]。
在本研究中,novel_miR116-PH02Gene11396、novel_miR276-PH02Gene36673/PH02Gene36674、novel_miR2-PH02Gen50651均為負(fù)調(diào)控。Det2基因在擬南芥、亞麻Linum usitatissimum、楊樹等植物中均被發(fā)現(xiàn)參與細(xì)胞壁調(diào)控[52-53];F5H基因是細(xì)胞壁主要成分之一木質(zhì)素的重要合成單體;生長素響應(yīng)因子在參與細(xì)胞壁調(diào)控中的作用在竹子中已被證實,因此本研究推測novel_miR116、novel_miR276、novel_miR2可能通過影響油菜素內(nèi)酯、木質(zhì)素單體和生長素響應(yīng)因子表達(dá),從而起到調(diào)控細(xì)胞壁形成的作用。
細(xì)胞壁的形成調(diào)控機理復(fù)雜,涉及基因眾多,細(xì)胞壁各成分含量、沉積方向、結(jié)晶度、聚合度的改變均能夠影響細(xì)胞壁的理化特性。本研究盡管通過RT-qPCR和雙熒光素酶試驗驗證了目標(biāo)miRNA與其靶基因的關(guān)系,但對這些miRNA在細(xì)胞壁形成中的具體功能和機制仍缺乏深入研究。進(jìn)一步的功能驗證試驗是必要的,后續(xù)將進(jìn)一步利用基因敲除或過表達(dá)等功能驗證方法研究miRNA的調(diào)控功能,從而完善細(xì)胞壁形成的調(diào)控網(wǎng)絡(luò)。
3.2 結(jié) 論
本研究從干旱脅迫下的15個毛竹樣品中鑒定出408個長度集中在20~24 nt的miRNAs,其中共52個差異表達(dá)miRNAs,基于生物信息學(xué)預(yù)測,從miRNA靶基因的功能通路與細(xì)胞壁合成的高相關(guān)性,以及miRNA自身的高表達(dá)量2個維度出發(fā),篩選出3個可能在細(xì)胞壁形成過程中發(fā)揮關(guān)鍵調(diào)控作用的miRNAs。分別是novel_miR116、novel_miR276、novel_miR2,RT-qPCR和雙熒光素酶試驗分析揭示了以下的負(fù)調(diào)控靶向關(guān)系:novel_miR116與PH02Gene11396、novel_miR276與PH02Gene36673/PH02Gene36674、novel_miR2與PH02Gene50651。這些目標(biāo)miRNAs可能通過調(diào)控油菜素內(nèi)酯、木質(zhì)素單體和生長素反應(yīng)蛋白的表達(dá),從而影響細(xì)胞壁的形成。
參考文獻(xiàn):
[1] 李雯,卞方圓,郭帆,等.毛竹林生態(tài)系統(tǒng)可持續(xù)經(jīng)營研究進(jìn)展[J].竹子學(xué)報,2019,38(4):15-20. LI W, BIAN F Y, GUO F, et al. Research progress on sustainable management of Phyllostachys edulis ecosystem[J]. Journal of Bamboo Research,2019,38(4):15-20.
[2] 謝秉樓,季碧勇,王安可,等.浙江省“十三五”期間毛竹林碳儲量年度變化特征研究[J].竹子學(xué)報,2023,42(3):63-69. XIE B L, JI B Y, WANG A K, et al. Study on the annual variation characteristics of carbon storage of Phyllostachys edulis forests during the “13th five-year plan” period in Zhejiang Province[J].Journal of Bamboo Research,2023,42(3):63-69.
[3] 葉翰舟,傅金和,程海濤,等.以竹代塑加工技術(shù)與產(chǎn)品現(xiàn)狀及其市場發(fā)展?jié)摿J].林業(yè)科學(xué),2024,60(1):129-141. YE H Z, FU J H, CHENG H T, et al. The current status and market development potential of processing technology and products using bamboo as a substitute for plastic[J]. Scientia Silvae Sinicae,2024,60(1):129-141.
[4] ZHANG B, GUO Y H, LIU X E, et al. Mechanical properties of the fiber cell wall in Bambusa pervariabilis bamboo and analyses of their influencing factors[J]. BioResourc es,2020,15(3):5316-5327.
[5] WANG H K, TIAN G L, LI W J, et al. Sensitivity of bamboo fiber longitudinal tensile properties to moisture content variation under the fiber saturation point[J]. Journal of Wood Science,2015,61(3): 262-269.
[6] JAVADIAN A, SMITH I F C, SAEIDI N, et al. Mechanical properties of bamboo through measurement of culm physical properties for composite fabrication of structural concrete reinforcement[J]. Frontiers in Materials, 2019,6:432054.
[7] LIU B, TANG L N, CHEN Q, et al. Lignin distribution on cell wall micro-morphological regions of fibre in developmental Phyllostachys pubescens culms[J]. Polymers,2022,14(2):312.
[8] RUSCH F, WASTOWSKI A D, DE LIRA T S, et al. Description of the component properties of species of bamboo: a review[J]. Biomass Conversion and Biorefinery,2023,13(3):2487-2495.
[9] XIAO X, LIANG X Y, PENG H Z, et al. Multi-scale evaluation of the effect of thermal modification on chemical components, dimensional stability, and anti-mildew properties of Moso Bamboo[J]. Polymers,2022,14(21):4677.
[10] JONES-RHOADES M W, BARTEL D P, BARTEL B. MicroRNAs and their regulatory roles in plants[J]. Annual Review of Plant Biology,2006,57(1):19-53.
[11] 汪明滔,劉建偉,趙春釗.植物調(diào)控鹽脅迫下細(xì)胞壁完整性的分子機制[J].生物技術(shù)通報,2023,39(11):18-27. WANG M T, LIU J W, ZHAO C Z. Molecular mechanisms of cell wall integrity in plants under salt stress[J]. Biotechnology Bulletin,2023,39(11):18-27.
[12] ZHU J K. Abiotic stress signaling and responses in plants[J]. Cell,2016,67(2):313-324.
[13] HUANG J H, LIN X J, ZHANG L Y, et al. MicroRNA sequencing revealed Citrus adaptation to long-term boron toxicity through modulation of root development by miR319 and miR171[J]. International Journal of Molecular Sciences,2019,20(6):1-16.
[14] LI Z, XU X R, YANG K B, et al. Multifaceted analyses reveal carbohydrate metabolism mainly affecting the quality of postharvest bamboo shoots[J]. Frontiers in Plant Science,2022,13:1-14.
[15] 于點,郭衛(wèi)冷,丁煬,等.肌醇代謝在植物響應(yīng)非生物脅迫中的作用[J].植物遺傳資源學(xué)報,2024,25(2):162-170. YU D, GUO W L, DING Y, et al. The role of myo-inositol metabolism in plants response to abiotic stress[J]. Journal of Plant Genetic Resources,2024,25(2):162-170.
[16] WANG Y L, GUI C J, WU J Y, et al. Spatio-temporal modification of lignin biosynthesis in plants: a promising strategy for lignocellulose improvement and lignin valorization[J]. Frontiers in Bioengineering and Biotechnology,2022,10:1-19.
[17] BACON M A, THOMPSON D S, DAVIES W J. Can cell wall peroxidase activity explain the leaf growth response of Lolium temulentum L. during drought?[J]. Journal of Experimental Botany,1997,48(12):2075-2085.
[18] AMAYA I, BOTELLA M A, CALLE M, et al. Improved germination under osmotic stress of tobacco plants overexpressing a cell wall peroxidase[J]. Febs Letters,1999,457(1):80-84.
[19] HACKENBERG M, GUSTAFSON P, LANGRIDGE P, et al. Differential expression of microRNAs and other small RNAs in barley between water and drought conditions[J]. Plant Biotechnology Journal,2015,13(1):2-13.
[20] ASAKURA H, TANAKA M, TAMURA T, et al. Genes related to cell wall metabolisms are targeted by miRNAs in immature tomato fruits under drought stress[J]. Bioscience Biotechnology and Biochemistry,2023,87(3):290-302.
[21] QIANG Z Q, SUN H H, GE F H, et al. The transcription factor ZmMYB69 represses lignin biosynthesis by activating ZmMYB31/42 expression in maize[J]. Plant Physiology,2022,189(4): 1916-1919.
[22] YAN L, XU C H, KANG Y L, et al. The heterologous expression in Arabidopsis thaliana of sorghum transcription factor SbbHLH1 downregulates lignin synthesis[J]. Journal of Experimental Botany,2013,64(10):3021-3032.
[23] SUN X D, WANG C D, XIANG N, et al. Activation of secondary cell wall biosynthesis by miR319-targeted TCP4 transcription factor[J]. Plant Biotechnology Journal,2017,15(10):1284-1294.
[24] YANG K B, LI L C, LOU Y F, et al. A regulatory network driving shoot lignification in rapidly growing bamboo[J]. Plant Physiology,2021,187(2):900-916.
[25] ZHANG Q S, CHEETAMUN R, DHUGGA K S, et al. Spatial gradients in cell wall composition and transcriptional profiles along elongating maize internodes[J]. BMC Plant Biology, 2014,14(27):1-19.
[26] LI Y, ZHANG D Q, ZHANG S Q, et al. Transcriptome and miRNAome analysis reveals components regulating tissue differentiation of bamboo shoots[J]. Plant Physiology,2022,188(4): 2182-2198.
[27] LI B, RUOTTI V, STEWART R M, et al. RNA-Seq gene expression estimation with read mapping uncertainty[J]. Bioinformatics, 2010,26(4):493-500.
[28] FRIEDL?NDER M R, MACKOWIAK S D, LI N, et al. MiRDeep2 accurately identifies known and hundreds of novel microRNA genes in seven animal clades[J]. Nucleic Acids Research, 2012,40(1):37-52.
[29] ZHANG Z, JIANG L, WANG J J, et al. MTide: an integrated tool for the identification of miRNA-target interaction in plants[J]. Bioinformatics,2015, 31(2):290-291.
[30] ROBINSON M D, MCCARTHY D J, SMYTH G K. EdgeR: a bioconductor package for differential expression analysis of digital gene expression data[J]. Bioinformatics,2010,26(1): 139-140.
[31] ALLEN E, XIE Z X, GUSTAFSON A M, et al. MicroRNAdirected phasing during trans-acting siRNA biogenesis in plants[J]. Cell,2005,121(2):207-221.
[32] ASHBURNER M, BALL C A, BLAKE J A, et al. Gene ontology: tool for the unification of biology[J]. Nature Genetics, 2000,25(1):25-29.
[33] KANEHISA M. The KEGG resource for deciphering the genome[J]. Nucleic Acids Research,2004,32(1):277-280.
[34] SHANNON P, MARKIEL A, OZIER O, et al. Cytoscape: a software environment for integrated models of biomolecular interaction networks[J]. Genome Research,2003,13(11):2498-2504.
[35] DING Y F, CHEN Z, ZHU C. Microarray-based analysis of cadmium-responsive microRNAs in rice (Oryza sativa)[J]. Journal of Experimental Botany, 2011,62(10):3563-3573.
[36] FAN C J, MA J M, GUO Q R, et al. Selection of reference genes for quantitative real-time PCR in bamboo (Phyllostachys edulis)[J]. PLoS One,2013,8(2):1-8.
[37] LIVAK K J, SCHMITTGEN T D. Analysis of relative gene expression data using real-time quantitative PCR and the 2-ΔΔCt method[J]. Methods,2001,25(4):402-408.
[38] LATA C R, JATAN R. Role of microRNAs in abiotic and biotic stress resistance in plants[J]. Proceedings of the Indian Academy of Sciences,2019,85(3):553-567.
[39] BOUZROUD S, GOUIAA S, HU N, et al. Auxin response factors (ARFs) are potential mediators of auxin action in tomato response to biotic and abiotic stress (Solanum lycopersicum)[J]. PLoS One,2018,13(2):e0193517.
[40] SINGH A, JAIN D, PANDEY J, et al. Deciphering the role of miRNA in reprogramming plant responses to drought stress[J]. Critical Reviews in Biotechnology,2023,43(4):613-627.
[41] LIU H H, TIAN X, LI Y J, et al. Microarray-based analysis of stress-regulated microRNAs in Arabidopsis thaliana[J]. RNA, 2008,14(5):836-843.
[42] BUDAK H, AKPINAR B A. Plant miRNAs: biogenesis, organization and origins[J]. Functional Integrative Genomics, 2015,15(5):523-531.
[43] LI S B, XIE Z Z, HU C G, et al. A review of auxin response factors (ARFs) in plants[J]. Frontiers in Plant Science,2016,7(47): 1-7.
[44] 郝大海,龔明.miRNA作用機制研究進(jìn)展[J].基因組學(xué)與應(yīng)用生物學(xué),2020,39(8):3647-3657. HAO D H, GONG M. The progress of miRNA action mechanism[J]. Genomics and Applied Biology,2020,39(8): 3647-3657.
[45] BAO N, LYE K W, BARTON M K. MicroRNA binding sites in Arabidopsis class III HD-ZIP mRNAs are required for methylation of the template chromosome[J]. Developmental Cell, 2004,7(5):653-662.
[46] SCHWAB R, PALATNIK J F, RIESTER M, et al. Specific effects of microRNAs on the plant transcriptome[J]. Developmental Cell, 2005,8(4):517-527.
[47] CHEN C Y, ZHENG D H, XIA Z F, et al. Ago-TNRC6 triggers microRNA-mediated decay by promoting two deadenylation steps[J]. Nature Structural Molecular Biology,2009,16(11): 1160-1166.
[48] XIAO M, LI J, LI W, et al. MicroRNAs activate gene transcription epigenetically as an enhancer trigger[J]. RNA Biology, 2017,14(10):1326-1334.
[49] 朱高浦.棗分子育種研究進(jìn)展[J].中南林業(yè)科技大學(xué)學(xué)報, 2023,43(10):1-10. ZHU G P. Advance in molecular breeding of Chinese jujube[J]. Journal of Central South University of Forestry Technology, 2023,43(10):1-10.
[50] LAI E C, TOMANCAK P, WILLIAMS R W, et al. Computational identification of Drosophila microRNA genes[J]. Genome Biology,2003,4(7):1-20.
[51] VASUDEVAN S, TONG Y C, STEITZ J A. Switching from repression to activation: microRNAs can up-regulate translation[J]. Science,207,318(5858):1931-1934.
[52] YUAN T T, ZHU C L, LI G Z, et al. An integrated regulatory network of mRNAs, microRNAs, and lncRNAs involved in nitrogen metabolism of moso bamboo[J]. Frontiers in Genetics,2022,13: 1-17.
[53] LU S F, LI Q Z, WEI H R, et al. Ptr-miR397a is a negative regulator of laccase genes affecting lignin content in Populus trichocarpa[J]. Proceedings of the National Academy of Sciences of the USA,2013,110(26):10848-10853.
[本文編校:吳 彬]