摘要:萎凋是茶葉品質形成的重要加工工序。萎凋期間茶鮮葉受到失水、溫度、光照及機械損傷等多種環(huán)境脅迫,導致其發(fā)生復雜的生理生化變化,最終影響茶葉品質的形成。綜述了茶葉萎凋過程中不同環(huán)境脅迫對茶葉主要品質(滋味與香氣)形成的影響,重點分析了不同環(huán)境脅迫如何調(diào)控茶鮮葉內(nèi)化合物的合成與代謝,探討了其影響茶鮮葉內(nèi)細胞物理結構變化、酶促和非酶促化學反應內(nèi)在作用機制,旨在為提高茶葉品質提供理論指導。
關鍵詞:萎凋;脅迫;茶葉品質
中圖分類號:S571.1;TS272" " " " " " "文獻標識碼:A" " " " " " 文章編號:1000-369X(2025)01-0001-14
Research Progress on the Impact of Environmental Stresses on Tea Quality during the Withering Process
YAN Duo1, YU Penghui2*, GONG Yushun1,3*
1. Key Lab of Education Ministry of Hunan Agricultural University for Tea Science, Changsha 410128, China;
2. Tea Research Institute, Hunan Academy of Agricultural Sciences, Changsha 410125, China;
3. National Research Center of Engineering and Technology for Utilization of Botanical Functional Ingredients, Changsha 410128, China
Abstract: Withering is an important process for tea quality formation. Fresh tea leaves are subjected to a variety of environmental stresses such as water loss, temperature, light and mechanical damage during withering. Under these stresses, complex physiological and biochemical changes in leaves, which ultimately contribute to the formation of tea quality. This paper reviewed the effects of different environmental stresses on the formation of tea taste and aroma during the withering process. It mainly analyzed how different environmental stresses regulate the synthesis and metabolism of compounds in fresh tea leaves, and further explored their effects on the changes in cellular physical structure, enzymatic, and non-enzymatic chemical reactions in fresh tea leaves. This review provided theoretical supports for improving tea quality.
Keywords: withering, stress, tea quality
茶是全球廣受青睞的飲品。根據(jù)加工工藝不同,茶葉可分為綠茶、黃茶、白茶、烏龍茶、紅茶和黑茶六大類[1]。萎凋(攤放)是指在茶葉加工初期通過自然或人工方法降低鮮葉水分含量的過程[2],是多種茶類加工中的重要步驟之一。綠茶在殺青之前短時間的攤放工序將茶葉水分散失至70%左右,葉片逐漸變軟,可減少青草氣,增加茶香[3-5]。萎凋是烏龍茶品質形成的第一道工序,鮮葉萎凋至含水量70%左右時所制茶葉品質最優(yōu),香氣最佳[6]。在紅茶加工過程中,萎凋后的茶葉含水量降低到56%~62%,質地柔軟,葉面積縮小[7]。此外,萎凋也是塑造白茶獨特色澤、香氣和滋味的關鍵步驟[8]。
在萎凋(攤放)過程中,茶鮮葉雖脫離了茶樹,但葉片中細胞的生理生化反應仍在進行。在這一階段茶鮮葉會持續(xù)失水,導致其遭受強烈的失水脅迫。除了失水外,溫度、光照以及機械損傷等其他脅迫因素也會對葉片產(chǎn)生影響。這些脅迫不僅會使葉片物理特性發(fā)生變化[9],還會觸發(fā)一系列復雜的生化反應,包括代謝物的合成和轉化,最終為茶葉色、香、味的形成提供物質基礎[10]。
本文總結了萎凋(攤放)過程中不同環(huán)境脅迫下茶葉的物理特性和生理生化反應變化,并分析了其對茶葉品質形成的影響,為茶葉品質成分調(diào)控提供理論指導(圖1)。
1 失水脅迫對茶葉品質的影響
茶鮮葉為響應失水環(huán)境,發(fā)生了一系列物理變化。剛采摘的茶鮮葉由于含水量較高(約75%),細胞呈飽水狀態(tài),芽葉鮮活膨硬。隨著失水量持續(xù)增加,葉色逐漸變暗,葉片緩慢卷曲變軟,表面粗糙度增加[9]。在萎凋(攤放)初期,為了提高呼吸速率,氣孔逐漸增大,隨著持續(xù)失水,氣孔開始縮小,以減緩水分進一步散失[11]。白茶在萎凋前期(0~20 h),細胞結構完整,葉綠體形態(tài)正常;萎凋后期(20 h
后)葉綠體開始逐漸腫脹崩解,細胞膜和液泡破損[12];隨著萎凋失水程度繼續(xù)加重,葉片細胞壁開始破裂,細胞膜和液泡受損嚴重[13]。這些物理結構變化進一步促進了茶葉內(nèi)含物質的轉化和形成。在失水脅迫下,茶葉中內(nèi)源激素和氨基酸、可溶性糖、黃酮苷等非揮發(fā)性化合物發(fā)生轉化或含量發(fā)生變化,影響茶葉滋味品質的形成。失水脅迫通過增加脫落酸(Abscisic acid,ABA)合成代謝基因的組蛋白乙?;档徒M蛋白H3賴氨酸-9-二甲基化(H3K9me2)和DNA甲基化水平來促進ABA積累[14-15]。ABA不僅能抵抗失水脅迫,還能通過轉錄因子CsWRKY40直接或間接參與L-茶氨酸水解,使L-茶氨酸含量降低,影響茶葉的滋味[16]。在茶葉的萎凋(攤放)過程中,蛋白質的水解被認為是氨基酸含量升高的主要原因[17]。失水脅迫上調(diào)了參與蛋白質水解和氨基酸生物合成相關酶(γ-谷氨酰轉肽酶、谷氨酸脫羧酶等)的基因表達,導致游離氨基酸總量增加,茶湯滋味更鮮爽[18-19]。茶葉中大約含有26種游離氨基酸,可分為甜味氨基酸(丙氨酸、甘氨酸、絲氨酸等)、苦味氨基酸(苯丙氨酸、組氨酸、異亮氨酸等)和鮮味氨基酸(茶氨酸、天冬氨酸和谷氨酸等)[20]。有報道稱,鮮味氨基酸在整個萎凋過程中保持較高含量,甜味和苦味氨基酸在萎凋中后期表現(xiàn)出累積效應,鮮味和甜味氨基酸含量在萎凋過程中高于苦味氨基酸含量[9]。失水脅迫上調(diào)了α-淀粉酶和β-淀粉酶基因的轉錄水平,促進淀粉降解,導致可溶性糖含量增加,提高了白茶的甜味[21]。
黃酮苷類物質對滋味品質有著重要影響,是茶湯澀味的主要貢獻物質之一[22]。失水脅迫促進黃酮苷的降解,降低了白茶的苦澀味。同時,其降解產(chǎn)物山柰酚和槲皮素含量升高是對失水脅迫的一種響應[22-23]。失水脅迫導致茶葉中編碼花青素還原酶等參與黃酮類生物合成相關酶的差異表達基因和編碼苯丙氨酸解氨酶(Phenylalanine ammonia-lyase,PAL)等參與苯丙烷類生物合成的上游差異表達基因顯著下調(diào),促使黃酮類化合物含量降低,降低了茶湯的苦澀感[24]。在持續(xù)失水過程中,編碼肉桂酸4-羥化酶、查爾酮合酶和類黃酮3'-羥化酶等參與兒茶素生物合成的基因轉錄水平也被顯著抑制,而編碼多酚氧化酶(Polyphenol oxidase,PPO)、過氧化物酶(Peroxidase,POD)和谷胱甘肽過氧化物酶等參與兒茶素氧化作用的基因轉錄水平顯著升高,導致兒茶素含量降低,茶黃素含量增加[21]。
失水脅迫通過增強水解酶和合成酶活性來提高茶葉香氣化合物含量。茶葉中特征香氣化合物主要源自揮發(fā)性萜烯類(Volatile terpenes,VTs)、揮發(fā)性苯丙烷類/苯環(huán)類(Volatile phenylpropanoids/benzenoids,VPBs)、揮發(fā)性脂肪酸衍生物和類胡蘿卜素揮發(fā)性衍生物[25-26]。除了游離態(tài)外,這些香氣化合物多以糖苷結合態(tài)形式存在。糖苷結合揮發(fā)性化合物(Glycosidically bound volatiles,GBVs)可被β-櫻草糖苷酶和3種β-葡萄糖苷酶(CsGH1BG1、CsGH3BG1、CsGH5BG1)水解以釋放茶葉香氣[27]。這幾種酶的亞細胞定位存在區(qū)別,β-櫻草糖苷酶和CsGH5BG1位于細胞壁,而CsGH1BG1和CsGH3BG1分別位于細胞質和液泡[27]。隨著失水脅迫程度的加深,細胞液濃度升高,定位在細胞質和液泡中的糖苷酶活性升高,并且液泡和細胞膜的破損增加了糖苷酶與底物GBVs的接觸,導致水解反應增強。由于茶葉萎凋(攤放)前期失水脅迫并不會破壞細胞壁結構,定位在細胞壁中的糖苷酶對香氣的貢獻較少[25,19]。甲羥戊酸(Mevalonicacid,MVA)和甲基赤蘚醇磷酸(2-C-methyl-D-erythritol-4-phosphate,MEP)代謝途徑是兩條主要合成VTs的途徑,分別在細胞質和質體中合成異戊烯基焦磷酸和3,3-二甲基丙烯基焦磷酸,這兩種物質是合成VTs的前體物質[28]。失水脅迫顯著上調(diào)了MVA和MEP代謝途徑中大多數(shù)差異表達基因,促進VTs及其前體物質的積累,從而提高了茶葉香氣[24]。失水脅迫還誘導類胡蘿卜素裂解雙加氧酶表達,促進具有復雜花香和木質香的β-紫羅蘭酮積累[29]。
失水脅迫是茶葉萎凋(攤放)過程中經(jīng)歷的主要脅迫,失水導致細胞液濃度升高,細胞內(nèi)酶活力增強,細胞結構逐漸遭到損傷和破壞,增加酶與底物的接觸,加快代謝活動,最終引起茶葉滋味、香氣物質的轉變,降低苦澀味和青氣,提升茶葉品質。一般來說,萎凋時間越長,失水脅迫程度越重,茶葉滋味和香氣品質越高,但也受不同茶類和茶葉嫩度等影響因素而存在差異。
2 溫度脅迫對茶葉品質的影響
2.1 高溫脅迫
高溫脅迫主要通過影響氧化酶、水解酶等酶活性來影響可溶性糖、兒茶素和茶黃素等非揮發(fā)性化合物的產(chǎn)生,從而對茶葉滋味品質造成影響。在高溫脅迫下,葉片蒸騰作用顯著增強,導致萎凋葉的失水速率加快,細胞呼吸作用加劇,葉溫迅速升高,柔軟性呈先升后降的趨勢,且亮度變差[30]。高溫脅迫會迅速激活與呼吸作用和蛋白水解相關的酶活性,導致可溶性糖和水溶性蛋白質的含量降低[31]。隨著萎凋溫度的升高,成品茶中生物堿(尤其是咖啡堿)含量呈升高趨勢,導致茶湯滋味苦澀[32]。已有研究表明,PPO在25~45 ℃時保持較高活性,28 ℃左右萎凋葉的POD活性最高[31,33]。但當溫度過高時,PPO和POD的活性部位會被鈍化,結構發(fā)生變性,酶活性降低,導致茶黃素和茶紅素的形成減少[31]。同時,當高溫脅迫超過細胞承受程度時,鮮葉會出現(xiàn)“死青”現(xiàn)象,亮度和柔軟性降低,影響茶葉質量。鄧仕彬等[34]研究發(fā)現(xiàn),與傳統(tǒng)25 ℃室內(nèi)自然萎凋相比,熱風萎凋處理后紅茶的水浸出物、茶多酚、游離氨基酸和沒食子酸含量有所增加,但整體感官品質低于自然萎凋。潘玉華等[35]研究表明,由于加溫萎凋加速了生化反應的進程,導致茶多酚降解較少,引起茶湯苦澀味加重。而短時熱風萎凋處理可以降低茶多酚的含量,增加茶紅素、茶黃素和茶褐素含量[36]。高遠等[37]采用熱風萎凋、吹冷、靜置回潮循環(huán)兩次的方式,制得的祁門紅茶色澤烏較潤,滋味甜醇,香氣呈甜香較高并帶花果香。
在高溫脅迫下,茶葉中橙花叔醇、芳樟醇等揮發(fā)性化合物含量發(fā)生改變,形成了茶葉不同的香氣特征。萎凋溫度為30 ℃時,茶葉中DXS、DXR、HDS等MEP途徑的上游關鍵基因相對表達量升高,導致VTs合成增加,橙花叔醇、芳樟醇和香葉醇含量較高,對烏龍茶香氣產(chǎn)生積極影響[38]。在28~30 ℃下萎凋的白茶能產(chǎn)生較多二氫-5-戊基-2(3H)-呋喃酮和2-戊基-呋喃,賦予白茶濃郁的奶香味[39]。張湘琳等[32]研究表明,相較于25 ℃室內(nèi)自然萎凋,采用45 ℃熱風鼓風1.5 h,隨后翻動并靜置30 min,如此反復翻動直至萎凋適度,可以顯著增加芳樟醇的含量,產(chǎn)生更多具有花果香的香氣成分。然而,在65 ℃熱風萎凋處理后,紅茶中的醇類、吡咯類等芳香物質含量減少。在夏季高溫條件下進行日光萎凋的茶葉會發(fā)生焦化,導致葉片脆化的部分無法進行正常的化學反應,會使制成的紅茶香氣較雜且?guī)в芯G茶味[40]。此外,高溫脅迫下熱休克蛋白(Heat shock protein,HSP)高表達會抑制茶葉香氣物質合成基因的表達[41],導致成品茶香氣欠高。
隨著萎凋環(huán)境溫度的升高,葉溫隨之升高,葉片含水率下降,酶活性增強,加快了化合物的反應速率,引起茶葉中氨基酸、兒茶素、芳樟醇等化合物的含量改變,進而影響茶葉滋味和香氣品質的形成[34,42]。然而,當高溫脅迫超過一定閾值時會導致酶的失活,使得兒茶素等成分過度積累,導致滋味較苦澀,同時影響香氣前體物質的轉化,降低茶葉的香氣品質。因此,合理控制萎凋的溫度對于提升茶葉的風味至關重要。
2.2 低溫脅迫
在低溫脅迫下,葉片中多種酶活性被抑制,茶多酚、氨基酸等物質含量發(fā)生變化,影響茶葉的滋味品質。適度的低溫脅迫可以延緩葉片失水,同時減緩茶葉內(nèi)含物質的氧化等[43-44]。低溫攤放通過抑制PPO活性來減緩多酚氧化,從而提升綠茶風味[44]。此外,低溫條件下茶葉中鎂離子螯合酶、葉綠素酶等葉綠素代謝途徑中關鍵酶活性以及相關基因表達被抑制,延緩了葉綠素的降解,從而有效減緩采后茶葉綠色度的下降[45]。在萎凋前期進行適當?shù)蜏孛{迫處理能增加可溶性糖含量,提高白茶滋味醇厚度和甜味[46]。相較于傳統(tǒng)室內(nèi)自然萎凋,低溫加黃光或低溫加二氧化碳處理能延長萎凋期間蛋白質的水解時間,促進蛋白質氨基酸的積累[44]。吳亮宇等[47]通過低溫萎凋并保持做青過程中的密閉環(huán)境,減少了EGCG的酶促氧化,制得一種EGCG高保留率的烏龍茶。
低溫脅迫通過調(diào)控香氣合成代謝途徑來提高茶葉的香氣品質。低溫脅迫在延長酶促反應時間的同時生成許多與香氣有關的前體物質,促進萜類物質的生物合成、α-亞麻酸的代謝以及脂肪酸的降解,從而可獲得比傳統(tǒng)萎凋香氣更佳的紅茶[48]。低溫脅迫可以提高PAL活性,增強苯丙氨酸代謝途徑進程,促使苯甲醛、苯乙醛等呈花香的物質含量增加[49]。虞昕磊[50]研究發(fā)現(xiàn),低溫攤放能延長采后茶鮮葉萎凋時間,促進芳樟醇、法尼烯、苯乙醇等揮發(fā)性物質的合成,對綠茶香氣產(chǎn)生積極影響。
茶葉萎凋(攤放)過程中低溫脅迫能調(diào)控酶活性,延長細胞內(nèi)反應時間,并影響次生代謝物的積累。氨基酸、可溶性糖和苯甲醛等化合物的增加不僅在鮮葉細胞抵御低溫脅迫方面發(fā)揮著重要作用,還能促使茶葉鮮爽甘甜滋味和花果香的形成[46]。
3 光脅迫對茶葉品質的影響
在茶葉萎凋(攤放)過程中,光照作為一種能源物質和信號分子,在鮮葉物理反應、生物代謝和化學變化等方面起著至關重要的作用。光質、光強及光照時間引起的光脅迫通過增加細胞膜透性,調(diào)控β-葡萄糖苷酶、脂肪氧合酶(Lipoxygenase,LOX)等酶的活性來影響糖苷類水解、脂肪酸的氧化降解和芳香物質的釋放,促進茶葉的滋味和香氣形成[51-53]。同時,光脅迫能在一定程度上提高葉溫,引起高溫脅迫的產(chǎn)生,加快萎凋進程。已有研究表明,在茶葉萎凋(攤放)期間應用光脅迫,可有效提升茶葉品質[54-56]。
3.1 自然光源脅迫
自然光源(日光)脅迫通過調(diào)控茶鮮葉中兒茶素、茶黃素、氨基酸等非揮發(fā)性物質的轉化和合成,從而影響茶葉滋味品質的形成。日光中含有多種波長的光,包括紫外線、可見光和紅外線3種主要類型[57]。茶葉中的光合色素主要包括葉綠素和類胡蘿卜素[58]。葉綠素可吸收光能并將其轉化為化學能,促進植物將CO2轉變成糖類物質,而多酚類是糖類分解轉化的次級代謝產(chǎn)物。作為多酚類的重要組成部分,茶樹中兒茶素在光照強度增加時其含量顯著提高[59]。兒茶素代謝與茶氨酸代謝相互作用與制約。在萎凋過程中,鮮葉中茶氨酸在強光下易分解,促進其向兒茶素轉化,導致茶湯滋味苦澀[60]。而在日光萎凋過程中積累的高濃度兒茶素為發(fā)酵過程中茶黃素的積累提供了底物,經(jīng)過日光脅迫所制紅茶中茶黃素和茶紅素的含量顯著提高,紅茶的色澤和滋味得到改善[61-62]。但日光脅迫下的光和熱可以促進氨基酸的轉化,導致萎凋葉中氨基酸含量較少[63]。此外,在日光脅迫下,丙酮酸、淀粉、蔗糖以及色氨酸等代謝途徑的基因表達增強,促進茶葉中核苷酸及其衍生物、有機酸和脂質的合成與積累,進而增強茶葉醇厚的滋味[64]。周玲等[65]在白茶制作過程中進行適當日光萎凋,所制白茶的可溶性糖含量顯著高于傳統(tǒng)方法制作的白茶,且咖啡堿含量低,具有茶湯杏黃明亮、滋味甜醇的特征。
在日光脅迫下,脂肪酸、類胡蘿卜素等香氣前體物質的降解以及LOX等香氣相關酶的激活促進了茶葉香氣物質的形成。日光脅迫下萎凋葉的葉綠體類囊體片層分散,淀粉粒增大,脂質球增多。這些現(xiàn)象有利于淀粉水解和脂肪酸降解,為MEP和MVA代謝途徑提供前體物質,從而促進萜類化合物的合成[66]。類胡蘿卜素是植物光合作用中的輔助色素,日光脅迫有利于其降解產(chǎn)物β-紫羅蘭酮、β-紫羅蘭酮環(huán)氧化物、2,2,6-三甲基環(huán)己酮等芳香物質的產(chǎn)生,從而促進白茶中花果香的形成[67]。日光脅迫也有利于苯丙氨酸和法尼基焦磷酸(Farnesyl pyrophosphate,F(xiàn)PP)/牻牛兒基焦磷酸(Geranyl pyrophosphate,GPP)降解形成芳樟醇等萜類物質,從而促進紅茶花香的形成[68]。萜類化合物含量的上升不僅與MEP通路中DXS、HDS、CMK等相關基因的上調(diào)表達有關[66,69],也可能與激活了茉莉酸信號轉導途徑的JAR-COI1-JAZ-MYC2級聯(lián)調(diào)控模式有關[70]。香葉醇、β-大馬士酮等VTs的合成在日光脅迫下得到增強,使得茶葉的花香特征明顯[40]。日光萎凋還通過激活LOX、異戊烯基焦磷酸異構酶等關鍵酶促進FADVs和VTs的合成[67]。
光脅迫中的光照強度和光照時間是影響茶葉品質的重要因素。室內(nèi)萎凋的茶鮮葉可能會因光照不足導致己醛增加,使茶葉具有較強的青氣[71]。一般來說,紅茶在日光脅迫下萎凋最佳時間為30~60 min,烏龍茶最佳日光萎凋時間為15~30 min。也有研究表明,短期日光照射會通過上調(diào)HSP的表達水平來激活茶葉內(nèi)質網(wǎng)蛋白質加工,而其上調(diào)會抑制LOX、DXS、DXR等與香氣相關代謝途徑關鍵基因的表達[41,72]。
日光脅迫對茶葉中的揮發(fā)性化合物代謝途徑,尤其是VTs的合成具有重要作用。光脅迫可能會引發(fā)植物細胞內(nèi)活性氧(Reactive oxygen species,ROS)的增加,從而對植物的光合作用產(chǎn)生影響,導致植物體內(nèi)產(chǎn)生VTs作為抗氧化劑來減輕光氧化應激損傷[73]。光照的持續(xù)時間和強度對茶葉中化合物的影響是多方面的,光照時間過長或光強過強不利于茶葉滋味物質的積累,還會引起揮發(fā)性化合物的分解或轉化,適度的光照時間和強度可對茶葉滋味和香氣品質有積極貢獻。精確調(diào)控萎凋(攤放)過程中的日光脅迫程度,可以對茶葉的品質產(chǎn)生積極影響。
3.2 人工光源脅迫
在實際生產(chǎn)中,由于天氣條件的限制,日光萎凋條件往往難以保證。因此,研究者們探索了使用LED燈等人工光源進行萎凋處理。茶葉萎凋過程涉及的人工光源主要包括紫外光、紅光、黃光、藍光和綠光等光質,不同光質提供能量的作用不同,對茶葉品質的影響也不一致[59]。
茶鮮葉中的色素包括葉綠素、胡蘿卜素、葉黃素和花青素等[74]。由于不同色素的吸收光譜存在區(qū)別,光質對茶樹葉片中蛋白質、茶多酚等物質的代謝也有不同影響[59]。葉綠素和類胡蘿卜素最大的吸收峰位于紅橙光區(qū)(580~760 nm),其次是藍紫光區(qū)(390~480 nm)[75]。藍光有利于光合色素尤其是葉綠素的合成,紅光促進光合色素和淀粉的積累[76-77]。這兩個波長的光可以促進植物光合作用,從而增加可溶性糖的含量[78-79]。此外,氨基酸和茶多酚類物質在不同波段的光源吸收能力也有區(qū)別[75]。陳壽松等[78]研究發(fā)現(xiàn),藍光處理促進了萎凋葉氨基酸的積累。倪德江等[80]研究發(fā)現(xiàn),茶鮮葉在萎凋槽先進行黃光照射,后進行紅光照射,能夠促進葉片萜烯醇類的生物合成以及糖苷酶解,使制作的夏秋季紅茶滋味更甜醇。黃光處理可以增加茶葉中水浸出物的含量,促進蛋白質水解,引起游離氨基酸中亮氨酸、異亮氨酸和γ-氨基丁酸水平升高,從而提升白茶的鮮味[81]。黃光處理后的綠茶湯色、滋味和香氣感官品質相較于其他光質最優(yōu)[82]。而綠光萎凋不僅不能增加氨基酸含量,還破壞了茶葉的香氣和滋味,導致茶葉具有濃郁的青味和澀味[75]。紫外光穿透力較強,可以使萎凋葉細胞膜破裂,導致POD和PPO活性升高,增強了與底物(兒茶素)的接觸,產(chǎn)生更高水平的氧化產(chǎn)物(茶黃素和茶紅素)[83]。
在人工光源脅迫下,不同光質產(chǎn)生的揮發(fā)性化合物可能會有區(qū)別,導致茶葉具有不同的香氣特征。研究表明,藍光萎凋可以顯著增強糖苷水解、氨基酸脫氨、類胡蘿卜素氧化,從而促進2-甲基丁醛、苯乙醛和水楊酸甲酯等具有花果香揮發(fā)性化合物的積累[84]。黃光萎凋不僅可以上調(diào)β-葡萄糖苷酶基因(CsBG1、CsBG2)和β-櫻草糖苷酶基因(CsBP)的相對表達量[85],還能顯著增加芳樟醇及其氧化物、苯甲醇和反式-β-金合歡烯等花香特征成分含量[86]。紅光雖然可以提高β-葡萄糖苷酶和β-櫻草糖苷酶的活性,但β-葡萄糖苷酶和β-櫻草糖苷酶主要位于細胞壁中,而GBVs主要儲存在液泡中,紅光萎凋造成的脅迫并不足以嚴重改變鮮葉的內(nèi)部結構,糖苷酶和GBVs無法大量直接接觸和反應,因此紅光萎凋對茶葉香氣改變的主要原因可能并不是糖苷水解[87]。在紅光萎凋過程中,茶葉中與VTs合成相關的關鍵限速酶活性隨萎凋過程逐漸升高,而萜烯合酶活性在萎凋后期(6~9 h)顯著增加,促進芳樟醇、α-法尼烯等揮發(fā)性香氣成分的合成,從而改善紅茶的香氣品質[87]。此外,UV-B處理后茶葉中4-己內(nèi)酯、反式芳樟醇氧化物等具有果香、木香的香氣成分含量顯著提高,而(Z)-4-庚烯醛、己醛等青草氣物質含量降低,改善了茶葉香氣品質[88]。Xie等[82]研究發(fā)現(xiàn),某些揮發(fā)性化合物只有在特定的光照處理下才會被檢測到,如(E)-2-己烯醛和水楊酸順式-3-己烯酯僅在紅光和黃光處理下被檢測到。
不同波段人工光源萎凋造成的脅迫影響了葉片的光合作用。葉片中許多化合物可以通過吸收光能來催化酶活性,調(diào)控風味物質次級代謝的路徑,進而有助于茶葉香氣化合物的代謝和釋放。
4 機械損傷脅迫對茶葉品質的影響
機械損傷脅迫是植物生長過程中經(jīng)歷的主要脅迫因素之一。它會破壞植物的組織結構,引起細胞膜的氧化損傷,導致ROS代謝失衡[89]。機械損傷能誘導植物激活相關酶類的表達、影響抗氧化系統(tǒng)和激素信號轉導等一系列生理生化反應[90]。部分茶葉在萎凋過程中,同樣會受到機械損傷脅迫的影響。機械損傷脅迫會加速萎凋葉水分的散失,增加呼吸強度,改變細胞滲透率,造成細胞膜損傷,增強PPO、POD和果膠酶活性。這些反應為烏龍茶、花香紅茶和白茶獨特品質的形成奠定了基礎。
搖青是烏龍茶加工工藝中機械損傷脅迫產(chǎn)生的主要方式。搖青產(chǎn)生的機械損傷脅迫促使葉片細胞結構發(fā)生變化,在搖青后期,盡管細胞形態(tài)嚴重變形,大部分細胞器(液泡、質體和線粒體)的膜被破壞,但葉片細胞壁仍保持完整[91]。也有研究發(fā)現(xiàn),搖青階段茶葉受到的失水脅迫比靜置更嚴重,并且搖青增加了纖維素酶和果膠酶的活性,促進了細胞壁的降解。搖青引起的細胞結構變化促進了茶葉內(nèi)部多酚類物質的氧化和氨基酸的釋放。此外,搖青產(chǎn)生的機械損傷脅迫會引起黃酮苷的降解以清除環(huán)境脅迫產(chǎn)生的ROS[92]。
烏龍茶搖青過程中細胞壁保持完整,這意味著烏龍茶獨特香氣的形成或許并非源于GBVs的酶水解,可能是其他因素造成的[91]。吲哚是烏龍茶的特征香氣成分之一,其形成主要是通過烏龍茶搖青階段的持續(xù)損傷脅迫,激活了吲哚合成基因CsTSB2的表達[93]。在連續(xù)機械損傷脅迫下,茉莉酸信號傳導的關鍵轉錄因子CsMYC2的表達上調(diào),促進了茉莉酸和(E)-橙花醇等特征香氣化合物的合成[94]。此外,為響應持續(xù)機械損傷脅迫,葉片中茉莉內(nèi)酯合成基因CsLOXs表達顯著增強,促進了具有茉莉花香的茉莉內(nèi)酯的合成[95]。同時搖青還增強了脂質過氧化,進一步促進青葉醛和青葉醇等青草味物質的散失[96]。這些芳香化合物的積累有利于烏龍茶花果香的形成[97]。
傳統(tǒng)工夫紅茶的香型以甜香為主,其制作工序包括萎凋、揉捻、發(fā)酵和干燥[98]。在傳統(tǒng)紅茶的萎凋工藝后加入搖青工藝,使葉緣細胞受到機械摩擦和碰撞,產(chǎn)生的機械損傷脅迫有利于多酚類的酶促氧化及谷氨酸的脫羧,從而降低兒茶素含量,增強茶黃素-3,3'-雙沒食子酸酯的形成,促使氨基酸和可溶性糖含量的提高,使茶湯顏色更明亮、滋味更鮮甜[99]。搖青處理進一步促進了脂肪酸和類胡蘿卜素的氧化降解,并調(diào)節(jié)萜類化合物的生物合成,以增加具有花香果味的(Z)-己酸-3-己烯酯、己酸乙酯、反式β-紫羅蘭酮和吲哚等香氣化合物的含量,為花果香型紅茶的形成奠定了物質基礎[100-101]。黃紅纓等[102]將攤青后的茶葉進行搖青,制備的紅茶香氣更濃且醇正。搖青的順序也影響著茶葉品質的形成,先萎凋后搖青所制的紅茶更具果香,而先搖青后萎凋所制的紅茶更具花香[103]。葉玉龍等[104]發(fā)明了振動式茶葉萎凋裝置,該裝置通過碰撞激發(fā)茶葉香氣,達到同時進行萎凋與搖青的效果,提高了萎凋工藝的效率。搖青通過適當?shù)臋C械損傷脅迫對細胞造成損傷,激活香氣物質的代謝途徑,促進茶葉細胞內(nèi)的酶促反應和物質之間的轉化,從而有助于(Z)-己酸-3-己烯酯和吲哚等關鍵香氣物質的生成,賦予了茶葉濃郁的花果香。
5 總結與展望
萎凋過程中茶鮮葉受到一系列的環(huán)境脅迫。失水脅迫主要通過增加細胞液濃度來增強水解酶、氧化酶、糖苷酶等酶的活性;溫度脅迫能直接影響酶活性來改變萎凋進程;光脅迫主要利用茶樹葉片內(nèi)色素對光能的吸收作用影響葉片中的物質代謝;機械損傷脅迫則主要通過破壞細胞結構,促進細胞內(nèi)的生化反應。這些環(huán)境脅迫有助于促進萎凋過程中茶葉內(nèi)生化成分的改變,從而形成獨特的風味。
不同脅迫可能會激活不同的信號傳導途徑和基因表達模式,從而導致茶葉發(fā)生特定的代謝變化。例如,日光脅迫有利于苯丙氨酸和FPP/GPP降解形成香氣物質,而搖青產(chǎn)生的機械損傷脅迫有利于類胡蘿卜素和不飽和脂肪酸氧化降解產(chǎn)生香氣物質[68]。當機械損傷脅迫與低溫脅迫結合時,茉莉內(nèi)酯的積累量比單獨脅迫處理更高,顯示出協(xié)同效應,這種協(xié)同效應與雙重脅迫下特定基因(CsLOX1)表達的增強有關[95]。茶葉萎凋(攤放)過程中不同脅迫引起的物質變化與茶葉整體品質之間的協(xié)同調(diào)控網(wǎng)絡還并不清楚,其具體機制仍需進一步探究。
植物體內(nèi)含有的光受體包括:吸收紅光/遠紅光的光敏色素;吸收UV-B的UV-B受體;吸收藍光/UV-A的隱花色素、向光素和ZEITLUPE型受體[105-106]。這些光受體能夠感受不同波長的光信號,并轉化為生化信號以調(diào)控下游基因表達,從而可以有效地影響植物體內(nèi)次生代謝產(chǎn)物的形成。光是植物萜類化合物產(chǎn)生的重要調(diào)節(jié)因子。光質可以改變萜類化合物的分布,而光強度和光周期影響含量。如藍光和紅光處理采后番茄果實可分別誘導隱花色素和光敏色素表達,抑制光信號轉導的轉錄因子HY5降解,促進番茄紅素生物合成[73]。在茶葉萎凋過程中,光質對光受體的激活程度、光受體間的相互作用、以及光信號與內(nèi)源激素信號的交叉調(diào)控如何影響茶葉萜類等化合物調(diào)控的具體機制尚未完全闡明。
植物體在遭受脅迫時,細胞內(nèi)氧自由基動態(tài)平衡被破壞,產(chǎn)生大量的ROS,造成膜脂質過氧化和DNA損傷等氧化應激反應,影響植物的生長發(fā)育[107]。而茶葉在加工過程中不斷遭受脅迫,這一過程可能會誘導體內(nèi)積累大量ROS,茶葉中含有的抗氧化酶、茶多酚、類胡蘿卜等化合物以及植物激素都具有抗氧化性,能夠抵抗ROS造成的傷害。大量的ROS會引起這些酶活性和代謝物含量發(fā)生變化,但ROS含量的改變對茶葉萎凋過程中品質的影響尚不清楚,未來研究應進一步探索脅迫影響茶葉品質的具體機制。
參考文獻
[1] Fang X, Liu Y N, Xiao J Y, et al. GC-MS and LC-MS/MS metabolomics revealed dynamic changes of volatile and non-volatile compounds during withering process of black tea [J]. Food Chemistry, 2023, 410: 135396. doi: 10.1016/j.foodchem.2023.135396.
[2] Qi D D, Shi Y L, Lu M, et al. Effect of withering/spreading on the physical and chemical properties of tea: a review [J]. Comprehensive Reviews in Food Science and Food Safety, 2024, 23(5): e70010. doi: 10.1111/1541-4337.70010.
[3] Shan X J, Yu Q Y, Chen L, et al. Analyzing the influence of withering degree on the dynamic changes in non-volatile metabolites and sensory quality of Longjing green tea by non-targeted metabolomics [J]. Frontiers in Nutrition, 2023, 10: 1104926. doi: 10.3389/fnut.2023.1104926.
[4] Ye Y L, Yan J N, Cui J L, et al. Dynamic changes in amino acids, catechins, caffeine and gallic acid in green tea during withering [J]. Journal of Food Composition and Analysis, 2018, 66: 98-108.
[5] Qiao D H, Zhu J Y, Mi X Z, et al. Effects of withering time of fresh leaves on the formation of flavor quality of Taiping Houkui tea [J]. LWT, 2023, 182: 114833. doi: 10.1016/j.lwt.2023.114833.
[6] 吳秋兒, 唐良生, 王則金. 烏龍茶機械萎凋工藝參數(shù)[J]. 茶葉科學, 1995, 15(1): 39-42.
Wu Q E, Tang L S, Wang Z J. Technical parameters of mechanical withering for Oolong tea [J]. Journal of Tea Science, 1995, 15(1): 39-42.
[7] Tomlins K I, Mashingaidze A. Influence of withering, including leaf handling, on the manufacturing and quality of black teas: a review [J]. Food Chemistry, 1997, 60(4): 573-580.
[8] Chen Q C, Shi J, Mu B, et al. Metabolomics combined with proteomics provides a novel interpretation of the changes in nonvolatile compounds during white tea processing [J]. Food Chemistry, 2020, 332: 127412. doi: 10.1016/j.foodchem.2020.127412.
[9] Zhou Y H, Luo F, Gong X J, et al. Targeted metabolomics and DIA proteomics-based analyses of proteinaceous amino acids and driving proteins in black tea during withering [J]. LWT, 2022, 165: 113701. doi: 10.1016/j.lwt.2022.113701.
[10] 滑金杰, 袁海波, 江用文, 等. 萎凋過程鮮葉理化特性變化及其調(diào)控技術研究進展[J]. 茶葉科學, 2013, 33(5): 465-472.
Hua J J, Yuan H B, Jiang Y W, et al. A review on the regulation technique of withering process and the change in physical and chemical properties of leaves [J]. Journal of Tea Science, 2013, 33(5): 465-472.
[11] 劉財國, 于文濤, 樊曉靜, 等. 白茶萎凋過程葉片微形態(tài)動態(tài)變化規(guī)律[J]. 茶葉學報, 2021, 62(2): 73-77.
Liu C G, Yu W T, Fan X J, et al. Changes in foliar micromorphology of white tea during withering [J]. Acta Tea Sinica, 2021, 62(2): 73-77.
[12] Xiang L H, Zhu C, Qian J J, et al. Positive contributions of the stem to the formation of white tea quality-related metabolites during withering [J]. Food Chemistry, 2024, 449: 139173. doi: 10.1016/j.foodchem.2024.139173.
[13] Shao C Y, Zhang C Y, Lü Z D, et al. Pre- and post-harvest exposure to stress influence quality-related metabolites in fresh tea leaves (Camellia sinensis) [J]. Scientia Horticulturae, 2021, 281: 109984. doi: 10.1016/j.scienta.2021.109984.
[14] Zeng L T, Wang X W, Liao Y Y, et al. Formation of and changes in phytohormone levels in response to stress during the manufacturing process of Oolong tea (Camellia sinensis) [J]. Postharvest Biology and Technology, 2019, 157: 110974. doi: 10.1016/j.postharvbio.2019.110974.
[15] Gu D C, Yang J, Wu S H, et al. Epigenetic regulation of the phytohormone abscisic acid accumulation under dehydration stress during postharvest processing of tea (Camellia sinensis) [J]. Journal of Agricultural and Food Chemistry, 2021, 69(3): 1039-1048.
[16] Cheng H Y, Wu W, Liu X F, et al. Transcription factor CsWRKY40 regulates L-theanine hydrolysis by activating the CsPDX2.1 promoter in tea leaves during withering [J]. Horticulture Research, 2022, 9: uhac025. doi: 10.1093/hr/uhac025.
[17] Chen Y, Zeng L, Liao Y, et al. Enzymatic reaction-related protein degradation and proteinaceous amino acid metabolism during the black tea (Camellia sinensis) manufacturing process [J]. Foods, 2020, 9(1): 66. doi: 10.3390/foods9010066.
[18] 陳佳佳, 朱陳松, 朱文偉, 等. 白茶萎凋過程中氨基酸類物質代謝分析[J]. 茶葉科學, 2021, 41(4): 471-481.
Chen J J, Zhu C S, Zhu W W, et al. Analysis of the metabolism of amino acids during the withering of white tea [J]. Journal of Tea Science, 2021, 41(4): 471-481.
[19] Zhou J T, Yu X L, He C, et al. Withering degree affects flavor and biological activity of black tea: a non-targeted metabolomics approach [J]. LWT, 2020, 130: 109535. doi: 10.1016/j.lwt.2020.109535.
[20] Yu P H, Huang H, Zhao X, et al. Dynamic variation of amino acid content during black tea processing: a review [J]. Food Reviews International, 2023, 39(7): 3970-3983.
[21] Zhou C Z, Zhu C, Li X Z, et al. Transcriptome and phytochemical analyses reveal the roles of characteristic metabolites in the taste formation of white tea during the withering process [J]. Journal of Integrative Agriculture, 2022, 21(3): 862-877.
[22] Deng X M, Shang H, Chen J J, et al. Metabolomics combined with proteomics provide a novel interpretation of the changes in flavonoid glycosides during white tea processing [J]. Foods, 2022, 11(9): 1226. doi: 10.3390/foods11091226.
[23] Wang Z H, Gao C X, Zhao J M, et al. The metabolic mechanism of flavonoid glycosides and their contribution to the flavor evolution of white tea during prolonged withering [J]. Food Chemistry, 2024, 439: 138133. doi: 10.1016/j.foodchem.2023.138133.
[24] Wang Y, Zheng P C, Liu P P, et al. Novel insight into the role of withering process in characteristic flavor formation of teas using transcriptome analysis and metabolite profiling [J]. Food Chemistry, 2019, 272: 313-322.
[25] Zeng L T, Watanabe N, Yang Z Y. Understanding the biosyntheses and stress response mechanisms of aroma compounds in tea (Camellia sinensis) to safely and effectively improve tea aroma [J]. Critical Reviews in Food Science and Nutrition, 2019, 59(14): 2321-2334.
[26] Yang Z Y, Baldermann S, Watanabe N. Recent studies of the volatile compounds in tea [J]. Food Research International, 2013, 53(2): 585-599.
[27] Zhou Y, Zeng L T, Gui J D, et al. Functional characterizations of β-glucosidases involved in aroma compound formation in tea (Camellia sinensis) [J]. Food Research International, 2017, 96: 206-214.
[28] Pu X J, Dong X M, Li Q, et al. An update on the function and regulation of methylerythritol phosphate and mevalonate pathways and their evolutionary dynamics [J]. Journal of Integrative Plant Biology, 2021, 63(7): 1211-1226.
[29] Wang J M, Wu B, Zhang N, et al. Dehydration-induced carotenoid cleavage dioxygenase 1 reveals a novel route for β-Ionone formation during tea (Camellia sinensis) withering [J]. Journal of Agricultural and Food Chemistry, 2020, 68(39): 10815-10821.
[30] 滑金杰, 江用文, 袁海波, 等. 萎凋溫度對鮮葉物性及呼吸特性的影響[J]. 中國農(nóng)學通報, 2014, 30(18): 291-296.
Hua J J, Jiang Y Y, Yuan H B, et al. The effect of withering temperature on physical characteristics and respiration of tea fresh leaves [J]. Chinese Agricultural Science Bulletin, 2014, 30(18): 291-296.
[31] 滑金杰, 袁海波, 王偉偉, 等. 萎凋溫度對鮮葉主要生化成分和酶活動態(tài)變化規(guī)律的影響[J]. 茶葉科學, 2015, 35(1): 73-81.
Hua J J, Yuan H B, Wang W W, et al. Effect of withering temperature on dynamic changes of main biochemical components and enzymatic activity of tea fresh leaves [J]. Journal of Tea Science, 2015, 35(1): 73-81.
[32] 張湘琳, 凌智輝, 胡維霞, 等. 不同溫度熱風萎凋對紅茶萎凋葉及成茶品質的影響[J]. 茶葉科學, 2024, 44(3): 483-492.
Zhang X L, Ling Z H, Hu W X, et al. Effects of different temperature hot air withering on withered leaves and tea quality of black tea [J]. Journal of Tea Science, 2024, 44(3): 483-492.
[33] 劉洋, 陳勤操, 劉德春, 等. 茶葉多酚氧化酶三相分離純化及酶學性質研究[J]. 食品工業(yè)科技, 2022, 43(9): 119-124.
Liu Y, Chen Q C, Liu D C, et al. Purification of polyphenol oxidase from tea leaf by three phase partitioning and enzymatic properties [J]. Science and Technology of Food Industry, 2022, 43(9): 119-124.
[34] 鄧仕彬, 方舒娜, 林金來. 萎凋工藝對福鼎白茶品質影響研究[J]. 食品研究與開發(fā), 2021, 42(13): 77-83.
Deng S B, Fang S N, Lin J L. Effect of withering process on the quality of Fuding white tea [J]. Food Research and Development, 2021, 42(13): 77-83.
[35] 潘玉華, 黃先洲, 周寒松. 人工調(diào)控萎凋室溫濕度的白茶加工工藝探究[J]. 湖北農(nóng)業(yè)科學, 2013, 52(5): 1144-1148.
Pan Y H, Huang X Z, Zhou H S. Study on white tea processing technology by artificial control of temperature and humidity during withering [J]. Hubei Agricultural Sciences, 2013, 52(5): 1144-1148.
[36] 黃藩, 王迎春, 葉玉龍, 等. 變溫萎凋技術對貢眉白茶品質的影響[J]. 中國農(nóng)學通報, 2022, 38(19): 159-164.
Huang F, Wang Y C, Ye Y L, et al. Effects of temperature-changing withering technology on the quality of gongmei white tea [J]. Chinese Agricultural Science Bulletin, 2022, 38(19): 159-164.
[37] 高遠, 高建華, 程紅霞, 等. 一種熱風循環(huán)均料式茶葉萎凋裝置: ZL202410063323.9 [P]. 2024-03-22[2024-10-16].
Gao Y, Gao J H, Cheng H X, et al. A hot air circulation and even distribution tea withering device: ZL202410063323.9 [P]. 2024-03-22[2024-10-16].
[38] 游芳寧, 鄧慧莉, 胡娟, 等. 不同溫度LED光萎凋對鐵觀音MEP上游關鍵基因和香氣的影響[J]. 中國農(nóng)業(yè)科學, 2020, 53(2): 346-356.
You F N, Deng H L, Hu J, et al. Effects of LED light withering at different temperatures on expression of key genes in the upstream of MEP and formation of volatiles in tieguanyin tea [J]. Scientia Agricultura Sinica, 2020, 53(2): 346-356.
[39] Feng J, Zhuang J Y, Chen Q L, et al. The effect of maturity of tea leaves and processing methods on the formation of milky flavor in white tea: a metabolomic study [J]. Food Chemistry, 2024, 447: 139080. doi: 10.1016/j.foodchem.2024.139080.
[40] 吳轉容. 日光萎凋對紅茶品質的影響[D]. 武漢: 華中農(nóng)業(yè)大學, 2023.
Wu Z R. Effect of sun withering on the quality of black tea [D]. Wuhan: Huazhong Agricultural University, 2023.
[41] Deng H L, Chen S S, Zhou Z W, et al. Transcriptome analysis reveals the effect of short-term sunlight on aroma metabolism in postharvest leaves of Oolong tea (Camellia sinensis) [J]. Food Research International, 2020, 137: 109347. doi: 10.1016/j.foodres.2020.109347.
[42] Aaqil M, Peng C X, Kamal A, et al. Tea harvesting and processing techniques and its effect on phytochemical profile and final quality of black tea: a review [J]. Foods, 2023, 12(24): 4467. doi: 10.3390/foods12244467.
[43] 田野. 低溫對茶葉品質及其理化成分的影響[D]. 杭州: 中國計量學院, 2015.
Tian Y. Effect on tea quality and chemical compositions at low temperature [D]. Hangzhou: China Jiliang University, 2015.
[44] Yu X L, Li Y C, He C, et al. Nonvolatile metabolism in postharvest tea (Camellia sinensis L.) leaves: effects of different withering treatments on nonvolatile metabolites, gene expression levels, and enzyme activity [J]. Food Chemistry, 2020, 327: 126992. doi: 10.1016/j.foodchem.2020.126992.
[45] Yu X L, Hu S, He C, et al. Chlorophyll metabolism in postharvest tea (Camellia sinensis L.) leaves: variations in color values, chlorophyll derivatives, and gene expression levels under different withering treatments [J]. Journal of Agricultural and Food Chemistry, 2019, 67(38): 10624-10636.
[46] 亓俊然, 張龍雪, 陳新穎, 等. 鮮葉萎凋前期低溫處理對金萱白茶品質的影響[J]. 食品工業(yè)科技, 2022, 43(18): 63-71.
Qi J R, Zhang L X, Chen X Y, et al. Effect of low temperature treatment on the quality of Jinxuan white tea in the early stage of fresh leaves withering [J]. Science and Technology of Food Industry, 2022, 43(18): 63-71.
[47] 吳亮宇, 黃旭建, 林金科, 等. 一種含有高保留率EGCG的烏龍茶初制加工方法: ZL201910514771.5[P]. 2021-09-24[2024-10-16].
Wu L Y, Huang X J, Lin J K, et al. A method for initial processing of Oolong tea with high retention rate of EGCG: ZL201910514771.5 [P]. 2021-09-24[2024-10-16].
[48] 陸安霞. 低溫處理對茶樹鮮葉物質代謝及其所制工夫紅茶品質的影響[D]. 重慶: 西南大學, 2020.
Lu A X. Effects of low temperature on the metabolism of tea fresh leaves and the quality of congou black tea [D]. Chongqing: Southwest University, 2020.
[49] 亓俊然. 鮮葉低溫處理對金萱白茶品質的影響研究[D]. 泰安: 山東農(nóng)業(yè)大學, 2022.
Qi J R. Effect of Low temperature treatment of fresh leaves on the quality of Jinxuan white tea [D]. Taian: Shandong Agricultural University, 2022.
[50] 虞昕磊. 鮮葉攤放方式對綠茶色、香、味品質成分代謝的影響研究[D]. 武漢: 華中農(nóng)業(yè)大學, 2020.
Yu X L. Effects of different withering methods on components metabolism related to color aroma and taste quality in green tea [D]. Wuhan: Huazhong Agricultural University, 2020.
[51] 譚艷娉, 于學領, 陳倩蓮, 等. 采前和采后脅迫對茶葉品質的影響研究進展[J]. 亞熱帶農(nóng)業(yè)研究, 2022, 18(3): 184-191.
Tan Y P, Yu X L, Chen Q L, et al. Progress on effects of pre- and post-harvest stress on tea quality [J]. Subtropical Agriculture Research, 2022, 18(3): 184-191.
[52] Roeber V M, Bajaj I, Rohde M, et al. Light acts as a stressor and influences abiotic and biotic stress responses in plants [J]. Plant, Cell amp; Environment, 2021, 44(3): 645-664.
[53] 何華鋒, 金雨青, 褚飛洋, 等. 基于單因素和響應面優(yōu)化的工夫紅茶單色光補償萎凋品質分析[J]. 科學技術與工程, 2018, 18(22): 112-120.
He H F, Jin Y Q, Chu F Y, et al. Quality analysis of congou black tea with monochromatic light compensatory withering based on single factor and response surface optimization [J]. Science Technology and Engineering, 2018, 18(22): 112-120.
[54] Wu H T, Sheng C Y, Lu M X, et al. Identification of the causes of aroma differences in white tea under different withering methods by targeted metabolomics [J]. Food Bioscience, 2024, 59: 104020. doi: 10.1016/j.fbio.2024.104020.
[55] Lin J Z, Liu F, Zhou X F, et al. Effect of red light on the composition of metabolites in tea leaves during the withering process using untargeted metabolomics [J]. Journal of the Science of Food and Agriculture, 2022, 102(4): 1628-1639.
[56] 袁林穎, 楊娟, 鐘應富, 等. LED光質萎凋對綠茶品質的影響研究[J]. 南方農(nóng)業(yè), 2016, 10(16): 90-92.
Yuan L Y, Yang J, Zhong Y F, et al. Effect of LED withering on green tea quality [J]. South China Agriculture, 2016, 10(16): 90-92.
[57] 游鴻婷. 人工光源干燥對曬青綠茶品質影響研究[D]. 杭州: 浙江大學, 2020.
You H T. Study on effect of drying processing with artificial light on the quality of sundried green tea [D]. Hangzhou: Zhejiang University, 2020.
[58] 蓋淑杰, 王奕雄, 李蘭, 等. 茶樹生長光調(diào)控研究進展[J]. 茶葉科學, 2022, 42(6): 753-767.
Gai S J, Wang Y X, Li L, et al. Research progress of tea plant (Camellia sinensis) growth under light regulation [J]. Journal of Tea Science, 2022, 42(6): 753-767.
[59] 宛曉春. 茶葉生物化學[M]. 3版. 北京: 中國農(nóng)業(yè)出版社, 2003.
Wan X C. Tea biochemistry [M]. 3rd ed. Beijing: China Agriculture Press, 2003.
[60] Huang W J, Lu G F, Deng W W, et al. Effects of different withering methods on the taste of Keemun black tea [J]. LWT, 2022, 166: 113791. doi: 10.1016/j.lwt.2022.113791.
[61] 劉家泉, 賴少希, 瞿文, 等. 日光萎凋對清飲型紅茶品質的影響研究[J]. 廣東茶業(yè), 2012(5): 23-24.
Liu J Q, Lai S X, Qu W, et al. Study on the effect of sun withering on the quality of black tea [J]. Guangdong Tea Industry, 2012(5): 23-24.
[62] Huang W J, Fang S M, Su Y L, et al. Insights into the mechanism of different withering methods on flavor formation of black tea based on target metabolomics and transcriptomics [J]. LWT, 2023, 189: 115537. doi: 10.1016/j.lwt.2023.115537.
[63] 曹詩雨, 吳轉容, 廖凱麗, 等. 日光萎凋對不同鮮葉嫩度與茶樹品種加工紅茶品質的影響[J]. 華中農(nóng)業(yè)大學學報, 2024, 43(6): 270-281.
Cao S Y, Wu Z R, Liao K L, et al. Effects of sun withering on the quality of black tea of different fresh leaf tenderness and tea plant cultivars [J]. Journal of Huazhong Agricultural University, 2024, 43(6): 270-281.
[64] Jia X L, Zhang Q, Chen M H, et al. Analysis of the effect of different withering methods on tea quality based on transcriptomics and metabolomics [J]. Frontiers in Plant Science, 2023, 14: 1235687. doi: 10.3389/fpls.2023.1235687.
[65] 周玲, 王慶華, 彭磊, 等. 一種大葉種白茶及其加工方法: ZL202310292475.1[P]. 2023-07-14[2024-10-16].
Zhou L, Wang Q H, Peng L, et al. A large-leaf white tea and its processing method: ZL202310292475.1 [P]. 2023-07-14[2024-10-16].
[66] 陳壽松. 烏龍茶光萎凋過程香氣代謝的分子機制及品質調(diào)控研究[D]. 福州: 福建農(nóng)林大學, 2017.
Chen S S. Study on molecular mechanism of volatiles metabolism and quality regulation during light withering process in Oolong tea [D]. Fuzhou: Fujian Agriculture and Forestry University, 2017.
[67] Zou L, Sheng C Y, Xia D Z, et al. Mechanism of aroma formation in white tea treated with solar withering [J]. Food Research International, 2024, 194: 114917. doi: 10.1016/j.foodres.2024.114917.
[68] 喬小燕, 操君喜, 吳華玲, 等. 不同萎凋方式和碰青工藝對紅茶揮發(fā)性成分的影響[J]. 熱帶作物學報, 2017, 38(8): 1572-1577.
Qiao X Y, Cao J X, Wu H L, et al. Effects of different withering measures and peng-qing treatments on volatile flavor compounds of black tea [J]. Chinese Journal of Tropical Crops, 2017, 38(8): 1572-1577.
[69] Zhu C, Zhang S T, Fu H F, et al. Transcriptome and phytochemical analyses provide new insights into long non-coding rnas modulating characteristic secondary metabolites of Oolong tea (Camellia sinensis) in solar-withering [J]. Frontiers in Plant Science, 2019, 10: 1638. doi: 10.3389/fpls.2019.01638.
[70] 朱晨, 張舒婷, 周承哲, 等. 萎凋處理對烏龍茶風味品質形成的轉錄組分析[J]. 生物工程學報, 2022, 38(1): 303-327.
Zhu C, Zhang S T, Zhou C Z, et al. Transcriptome analysis reveals the role of withering treatment in flavor formation of Oolong tea (Camellia sinensis) [J]. Chinese Journal of Biotechnology, 2022, 38(1): 303-327.
[71] Wu H T, Chen Y Y, Feng W Z, et al. Effects of three different withering treatments on the aroma of white tea [J]. Foods, 2022, 11(16): 2502. doi: 10.3390/foods11162502.
[72] Wang Y H, Li C X, Lin J Q, et al. The impact of different withering approaches on the metabolism of flavor compounds in Oolong tea leaves [J]. Foods, 2022, 11(22): 3601. doi: 10.3390/foods11223601.
[73] Contreras-Avilés W, Heuvelink E, Marcelis L F M, et al. Ménage à trois: light, terpenoids, and quality of plants [J]. Trends in Plant Science, 2024, 29(5): 572-588.
[74] 夏濤. 制茶學[M]. 3版. 北京: 中國農(nóng)業(yè)出版社, 2016.
Xia T. Tea processing [M]. 3rd ed. Beijing: China Agriculture Press, 2016.
[75] Ai Z Y, Zhang B B, Chen Y Q, et al. Impact of light irradiation on black tea quality during withering [J]. Journal of Food Science and Technology, 2017, 54(5): 1212-1227.
[76] 李軍營, 徐超華, 崔明昆, 等. 不同光質對煙草葉片生長及葉綠素熒光參數(shù)的影響[J]. 江蘇農(nóng)業(yè)科學, 2015, 43(11): 140-145.
Li J Y, Xu C H, Cui M K, et al. Effects of different light quality on growth and chlorophyll fluorescence parameters of tobacco leaves [J]. Jiangsu Agricultural Sciences, 2015, 43(11): 140-145.
[77] 邢澤南, 張丹, 李薇, 等. 光質對油葵芽苗菜生長和品質的影響[J]. 南京農(nóng)業(yè)大學學報, 2012, 35(3): 47-51.
Xing Z N, Zhang D, Li W, et al. Effects of light quality on the growth and quality of Helianthus annuus sprouts [J]. Journal of Nanjing Agricultural University, 2012, 35(3): 47-51.
[78] 陳壽松, 金心怡, 林宏政, 等. 烏龍茶LED補光萎凋品質特性研究[J]. 農(nóng)業(yè)機械學報, 2016, 47(7): 282-289.
Chen S S, Jin X Y, Lin H Z, et al. Research on quality characteristic using led as supplementary lighting during withering process in Oolong tea [J]. Transactions of the Chinese Society for Agricultural Machinery, 2016, 47(7): 282-289.
[79] 羅紅玉, 王奕, 吳全, 等. 光質萎凋對不同茶樹品種紅茶品質的影響[J]. 食品工業(yè)科技, 2021, 42(10): 15-21.
Luo H Y, Wang Y, Wu Q, et al. Effect of withering light-wave bands on different varieties black tea quality [J]. Science and Technology of Food Industry, 2021, 42(10): 15-21.
[80] 倪德江, 胡興明, 張德, 等. 一種去除夏秋季利川紅苦澀味的方法: ZL202410981014.X[P]. 2024-10-01[2024-10-16].
Ni D J, Hu X M, Zhang D, et al. A method for removing the bitter taste of Lichuan black tea in summer and autumn: ZL202410981014.X [P]. 2024-10-01[2024-10-16].
[81] Tian S Y, Zhou H, Yao X Z, et al. Finding the optimal light quality and intensity for the withering process of Fuding Dabai tea and its impact on quality formation [J]. LWT, 2024, 193: 115713. doi: 10.1016/j.lwt.2023.115713.
[82] Xie J L, Wang Q W, Hu J J, et al. Uncovering the effects of spreading under different light irradiation on the volatile and non-volatile metabolites of green tea by intelligent sensory technologies integrated with targeted and non-targeted metabolomics analyses [J]. Food Chemistry, 2025, 463: 141482. doi: 10.1016/j.foodchem.2024.141482.
[83] Collings E R, Alamar M C, Márquez M B, et al. Improving the tea withering process using ethylene or UV-C [J]. Journal of Agricultural and Food Chemistry, 2021, 69(45): 13596-13607.
[84] Hua J J, Zhu X Z, Ouyang W, et al. Non-target and target quantitative metabolomics with quantitative aroma evaluation reveal the influence mechanism of withering light quality on tea aroma and volatile metabolites evolution [J]. Food Research International, 2024, 192: 114773. doi: 10.1016/j.foodres.2024.114773.
[85] 項麗慧, 林馥茗, 孫威江, 等. LED黃光對工夫紅茶萎凋過程香氣相關酶基因表達及活性影響[J]. 茶葉科學, 2015, 35(6): 559-566.
Xiang L H, Lin F M, Sun W J, et al. Effects of LED yellow light on the expression levels of aroma related genes and the enzyme activity in withering process of congou black tea [J]. Journal of Tea Science, 2015, 35(6): 559-566.
[86] 李玉川, 陳玉瓊, 秦慕雪, 等. 不同光質對夏秋紅茶萎凋葉揮發(fā)性成分的影響[J]. 食品安全質量檢測學報, 2022, 13(14): 4415-4422.
Li Y C, Chen Y Q, Qin M X, et al. Effects of different light on the volatile components of withering leaves of summer-autumn black tea [J]. Journal of Food Safety and Quality, 2022, 13(14): 4415-4422.
[87] Li Y C, He C, Yu X L, et al. Study on improving aroma quality of summer-autumn black tea by red-light irradiation during withering [J]. LWT, 2022, 154: 112597. doi: 10.1016/j.lwt.2021.112597.
[88] Wang X H, Cao J J, Cheng X, et al. UV-B application during the aeration process improves the aroma characteristics of Oolong tea [J]. Food Chemistry, 2024, 435: 137585. doi: 10.1016/j.foodchem.2023.137585.
[89] Ali S, Tyagi A, Bae H. ROS interplay between plant growth and stress biology: challenges and future perspectives [J]. Plant Physiology and Biochemistry, 2023, 203: 108032. doi: 10.1016/j.plaphy.2023.108032.
[90] 郝志龍, 林宏政, 徐邢燕, 等. 采后茶青葉對振動力脅迫的生理響應[J]. 食品科學, 2023, 44(1): 30-37.
Hao Z L, Lin H Z, Xu X Y, et al. Physiological response of postharvest tea leaves under vibration stress [J]. Food Science, 2023, 44(1): 30-37.
[91] Zeng L T, Zhou X C, Su X G, et al. Chinese oolong tea: an aromatic beverage produced under multiple stresses [J]. Trends in Food Science amp; Technology, 2020, 106: 242-253.
[92] Wu L Y, Wang Y H, Liu S H, et al. The stress-induced metabolites changes in the flavor formation of oolong tea during enzymatic-catalyzed process: a case study of Zhangping Shuixian tea [J]. Food Chemistry, 2022, 391: 133192. doi: 10.1016/j.foodchem.2022.133192.
[93] Zeng L T, Zhou Y, Gui J D, et al. Formation of volatile tea constituent indole during the oolong tea manufacturing process [J]. Journal of Agricultural and Food Chemistry, 2016, 64(24): 5011-5019.
[94] Li J L, Zeng L T, Liao Y Y, et al. Influence of chloroplast defects on formation of jasmonic acid and characteristic aroma compounds in tea (Camellia sinensis) leaves exposed to postharvest stresses [J]. International Journal of Molecular Sciences, 2019, 20(5): 1044. doi: 10.3390/ijms20051044.
[95] Zeng L T, Zhou Y, Fu X M, et al. Biosynthesis of jasmine lactone in tea (Camellia sinensis) leaves and its formation in response to multiple stresses [J]. Journal of Agricultural and Food Chemistry, 2018, 66(15): 3899-3909.
[96] 黃福平, 陳偉, 陳榮冰, 等. 烏龍茶做青過程脂質過氧化作用及其對茶葉品質的影響[J]. 茶葉科學, 2002, 22(2): 147-151.
Huang F P, Chen W, Chen R B, et al. Lipid peroxidation induced by zuoqing process of oolong tea and its effect on tea quality [J]. Journal of Tea Science, 2002, 22(2): 147-151.
[97] 吳晴陽, 周子維, 武清揚, 等. 烏龍茶加工過程中α-法呢烯的形成關鍵調(diào)控基因的篩選與表達分析[J]. 食品工業(yè)科技, 2020, 41(15): 135-142.
Wu Q Y, Zhou Z W, Wu Q Y, et al. Screening and expression analysis of key regulator gene associated with α-farnesene formation during manufacturing process of oolong tea [J]. Science and Technology of Food Industry, 2020, 41(15): 135-142.
[98] Li J, Hua J J, Zhou Q H, et al. Comprehensive lipidome-wide profiling reveals dynamic changes of tea lipids during manufacturing process of black tea [J]. Journal of Agricultural and Food Chemistry, 2017, 65(46): 10131-10140.
[99] Wang J J, Qu L C, Yu Z M, et al. Targeted quantitative metabolomic and flavor objective quantification technique reveal the impact mechanism of shaking on black tea quality and non-volatile metabolites [J]. Food Chemistry, 2024, 458: 140226. doi: 10.1016/j.foodchem.2024.140226.
[100] Wang J J, Ouyang W, Zhu X Z, et al. Effect of shaking on the improvement of aroma quality and transformation of volatile metabolites in black tea [J]. Food Chemistry: X, 2023, 20: 101007. doi: 10.1016/j.fochx.2023.101007.
[101] Xue J J, Liu P P, Yin J F, et al. Dynamic changes in volatile compounds of shaken black tea during its manufacture by GC×GC-TOFMS and multivariate data analysis [J]. Foods, 2022, 11(9): 1228. doi: 10.3390/foods11091228.
[102] 黃紅纓, 張艷, 王政, 等. 一種可提升紅茶香味的紅茶制備方法: ZL202410073829.8[P]. 2024-03-22[2024-10-16].
Huang H Y, Zhang Y, Wang Z, et al. A method for making black tea with enhanced aroma: ZL202410073829.8 [P]. 2024-03-22[2024-10-16].
[103] Lin J Z, Tu Z, Zhu H K, et al. Effects of shaking and withering processes on the aroma qualities of black tea [J]. Horticulturae, 2022, 8(6): 549. doi: 10.3390/horticulturae8060549.
[104] 葉玉龍, 羅凡, 胡智臻, 等. 振動式茶葉萎凋裝置: ZL202410945393.7[P]. 2024-10-29[2024-10-16].
Ye Y L, Luo F, Hu Z Z, et al. Vibrating tea withering device: ZL202410945393.7 [P]. 2024-10-29[2024-10-16].
[105] Paik I, Huq E. Plant photoreceptors: multi-functional sensory proteins and their signaling networks [J]. Seminars in Cell amp; Developmental Biology, 2019, 92: 114-121.
[106] Viczián A, Klose C, ádám é, et al. New insights of red light-induced development [J]. Plant, Cell amp; Environment, 2017, 40(11): 2457-2468.
[107] Ali S, Tyagi A, Bae H. ROS interplay between plant growth and stress biology: challenges and future perspectives [J]. Plant Physiology and Biochemistry, 2023, 203: 108032. doi: 10.1016/j.plaphy.2023.108032.