摘要:乳酸乳球菌是乳酸菌在異源表達(dá)蛋白方面的應(yīng)用與研究中的一種重要模式菌,由于其公認(rèn)的安全性、益生特性、無包涵體和內(nèi)毒素、易于表面顯示和細(xì)胞外分泌使其成為蛋白異源表達(dá)的理想宿主。由于乳酸乳球菌刺激黏膜免疫的特性,其在遞呈病毒、細(xì)菌抗原等方面得到了廣泛應(yīng)用。闡述了乳酸乳球菌表達(dá)系統(tǒng)的相關(guān)研究進(jìn)展,著重介紹了乳酸乳球菌表達(dá)異源蛋白的分泌和錨定策略,并總結(jié)了對(duì)乳酸乳球菌作為細(xì)胞工廠在食品、醫(yī)藥,特別是抗原呈遞方面的應(yīng)用,最后對(duì)乳酸乳球菌表達(dá)系統(tǒng)未來的研究方向進(jìn)行了展望。
關(guān)鍵詞:乳酸乳球菌;表達(dá)系統(tǒng);異源蛋白;分泌表達(dá);表面展示
doi:10.13304/j.nykjdb.2023.0244
中圖分類號(hào):Q78
文獻(xiàn)標(biāo)志碼:A
文章編號(hào):1008?0864(2025)01?0025?10
乳酸菌(Lactic acid bacteria,LAB)是一類能利用糖發(fā)酵產(chǎn)乳酸的革蘭氏陽性菌的統(tǒng)稱,形態(tài)上主要以球菌和桿菌的形式出現(xiàn)[1]。其中,乳酸乳球菌(Lactococcus lactis)是乳酸菌的模式菌株,被美國食品和藥物管理局(Food and Drug Administration,F(xiàn)DA)認(rèn)證為“一般認(rèn)為安全(generally recognizedas safe,GRAS)”[2],乳酸乳球菌是繼大腸桿菌、酵母、枯草芽孢桿菌之后備受關(guān)注的異源蛋白表達(dá)宿主菌[3],常應(yīng)用于食品發(fā)酵、藥物生產(chǎn)等方面。
乳酸乳球菌表達(dá)系統(tǒng)已經(jīng)表達(dá)了來源于細(xì)菌、真核生物和病毒的多種外源蛋白。相較于大腸桿菌,乳酸乳球菌更容易將蛋白分泌到細(xì)胞外環(huán)境。乳酸乳球菌的另一優(yōu)勢為其僅有1種胞外蛋白酶HrtA(high-temperature requirement)[4],外源蛋白不容易被降解,利于蛋白質(zhì)的下游加工。因此,利用乳酸乳球菌作為細(xì)胞工廠來生產(chǎn)異源蛋白越來越受到重視,尤其是在生產(chǎn)藥品、食品級(jí)蛋白質(zhì)、抗原和細(xì)胞因子等方面[5]。
高效的表達(dá)系統(tǒng)是宿主能夠表達(dá)外源蛋白的關(guān)鍵因素,本文主要介紹了乳酸乳球菌表達(dá)系統(tǒng),同時(shí)介紹了乳酸乳球菌表達(dá)異源蛋白的分泌和錨定策略,并對(duì)乳酸乳球菌在食品、藥品和疫苗等領(lǐng)域的應(yīng)用進(jìn)行總結(jié),最后對(duì)乳酸乳球菌表達(dá)系統(tǒng)進(jìn)行展望。
1 乳酸乳球菌表達(dá)系統(tǒng)
乳酸乳球菌在異源蛋白生產(chǎn)方面應(yīng)用廣泛,高效穩(wěn)定的表達(dá)系統(tǒng)是乳酸乳球菌表達(dá)外源蛋白的關(guān)鍵因素之一,表達(dá)系統(tǒng)包括幾個(gè)關(guān)鍵的結(jié)構(gòu)元件,如啟動(dòng)子、終止子、信號(hào)肽等。啟動(dòng)子調(diào)節(jié)基因的表達(dá)時(shí)間和表達(dá)水平,可分為組成型啟動(dòng)子和誘導(dǎo)型啟動(dòng)子,適宜啟動(dòng)子的選擇由幾個(gè)因素決定,包括與宿主菌株的兼容性、期望的表達(dá)模式以及轉(zhuǎn)錄產(chǎn)物的性質(zhì)[6?7]?;?種啟動(dòng)子,目前乳酸乳球菌已經(jīng)開發(fā)了多種組成型和誘導(dǎo)型表達(dá)系統(tǒng)。
1.1 組成型表達(dá)系統(tǒng)
組成型啟動(dòng)子是一類可以穩(wěn)定表達(dá)的啟動(dòng)子,它允許其相關(guān)基因的持續(xù)、穩(wěn)定轉(zhuǎn)錄,無特定信號(hào)或誘導(dǎo)因子即可持續(xù)表達(dá),無時(shí)空特異性。管家基因是一類長時(shí)間處于轉(zhuǎn)錄活躍狀態(tài)的基因,在細(xì)胞的各個(gè)階段均能持續(xù)表達(dá)且受環(huán)境影響較小,是組成型啟動(dòng)子的良好候選,比如乳酸菌的核糖體RNA,其啟動(dòng)子被證實(shí)為良好的組成型啟動(dòng)子[8],除此之外,延伸因子的啟動(dòng)子也是組成型啟動(dòng)子的候選之一,比如來自乳酸乳球菌IL1403的Ptuf啟動(dòng)子[9]。目前,在乳酸乳球菌中已經(jīng)鑒定出幾種組成型的啟動(dòng)子,如P23、P32、P59等,被用于乳酸乳球菌表達(dá)外源基因(表1)。
一般來說,強(qiáng)組成型表達(dá)系統(tǒng)可以獲得更高水平的外源蛋白,它可以在大規(guī)模發(fā)酵中穩(wěn)定生產(chǎn)高水平的蛋白質(zhì),不需要添加額外的誘導(dǎo)化合物,避免了額外成本,但是目前的組成型表達(dá)系統(tǒng)相對(duì)于誘導(dǎo)型表達(dá)系統(tǒng)來說強(qiáng)度不高[20],所以篩選出更高效的組成型啟動(dòng)子也是目前研究的熱點(diǎn)。
1.2 誘導(dǎo)型表達(dá)系統(tǒng)
誘導(dǎo)型啟動(dòng)子會(huì)受到細(xì)胞內(nèi)外環(huán)境信號(hào)調(diào)控,通過添加誘導(dǎo)劑或者改變環(huán)境可以控制誘導(dǎo)型啟動(dòng)子在細(xì)胞內(nèi)的表達(dá),誘導(dǎo)啟動(dòng)子主要由兩部分組成,即啟動(dòng)子和相關(guān)的調(diào)控基因,使用誘導(dǎo)型表達(dá)系統(tǒng)必須保證調(diào)控基因能夠在對(duì)應(yīng)細(xì)胞中表達(dá),這樣誘導(dǎo)啟動(dòng)子才能在細(xì)胞中正常發(fā)揮功能。
迄今為止最成功的乳酸乳球菌誘導(dǎo)表達(dá)系統(tǒng)是由乳酸鏈球菌素(nisin)誘導(dǎo)的受控基因表達(dá)系統(tǒng)(nisin controlled gene expression system,NICE)[21]。nisin 是一種由34 個(gè)氨基酸組成的短肽,是研究最廣泛的細(xì)菌素,它源于一些乳酸乳桿菌菌株中發(fā)現(xiàn)的乳鏈菌肽生物合成操縱子(nisABTCIPRKFEG),nisin 通過信號(hào)轉(zhuǎn)導(dǎo)誘導(dǎo)其自身的生物合成。其中,NisK 作為nisin分子的受體,NisK 在細(xì)胞表面感知到nisin的信號(hào)后,將信號(hào)繼續(xù)傳遞給細(xì)胞內(nèi)的反應(yīng)調(diào)節(jié)蛋白NisR使其磷酸化,從而啟動(dòng)基因簇上的啟動(dòng)子PnisA和PnisF下游基因的轉(zhuǎn)錄。NICE系統(tǒng)配合使用的宿主菌株是乳酸乳球菌NZ9000,由不產(chǎn)nisin的MG1363菌株改造而來,其基因組中插入了nisR 和nisK 基因,當(dāng)環(huán)境中存在亞抑制量的nisin (0.1~5.0 ng·mL-1)時(shí),即可啟動(dòng)PnisA啟動(dòng)子下游的目的基因轉(zhuǎn)錄。
NICE系統(tǒng)具有以下3種優(yōu)點(diǎn):①系統(tǒng)成熟、操作簡單;②蛋白表達(dá)嚴(yán)格受控,可表達(dá)毒性蛋白;③蛋白表達(dá)量高。但應(yīng)注意的是,nisin本身價(jià)格昂貴,且在后續(xù)蛋白生產(chǎn)過程中需要進(jìn)行提純[22]。
除此之外,還有多種誘導(dǎo)型表達(dá)系統(tǒng)被篩選出來,如P(Zn)zitR 啟動(dòng)子和zitR 調(diào)節(jié)基因體系,當(dāng)環(huán)境中鋅含量豐富時(shí)而ZitR 抑制因子會(huì)與P(Zn)zitR 結(jié)合抑制其轉(zhuǎn)錄,而當(dāng)環(huán)境中缺少鋅時(shí)ZitR會(huì)失活,使得P(Zn)zitR 可以與RNA聚合酶結(jié)合啟動(dòng)轉(zhuǎn)錄,乙二胺四乙酸(ethylenediaminetetraacetic acid,EDTA)可以減少環(huán)境中的鋅,當(dāng)培養(yǎng)基中添加EDTA 時(shí),環(huán)境中的Zn 減少導(dǎo)致ZitR 失活,從而誘導(dǎo)P(Zn)zitR 下游基因的表達(dá)[23]。P170表達(dá)系統(tǒng)是一類壓力誘導(dǎo)型表達(dá)系統(tǒng),由誘導(dǎo)型啟動(dòng)子P170 控制,該啟動(dòng)子負(fù)責(zé)未知功能基因orfX 的轉(zhuǎn)錄,細(xì)菌生長至穩(wěn)定期時(shí),環(huán)境pH 6.0~6.5條件下可誘導(dǎo)下游目的基因的轉(zhuǎn)錄。由于乳酸乳球菌在生長過程中本身會(huì)生產(chǎn)乳酸導(dǎo)致環(huán)境pH降低,所以與需要添加誘導(dǎo)劑的誘導(dǎo)表達(dá)系統(tǒng)相比,P170表達(dá)系統(tǒng)通過乳酸菌代謝產(chǎn)生的乳酸來實(shí)現(xiàn)下游基因的表達(dá),利于蛋白生產(chǎn)后的純化,已經(jīng)利用該表達(dá)系統(tǒng)生產(chǎn)多種蛋白質(zhì)24?25]。除了通過添加誘導(dǎo)劑來激活的誘導(dǎo)啟動(dòng)子之外,有些誘導(dǎo)啟動(dòng)子是通過環(huán)境脅迫來使下游基因表達(dá),如由壓力調(diào)節(jié)的表達(dá)系統(tǒng)SICE(stress-inducible controllexpression),通過此系統(tǒng)在2種不同的人類病理學(xué)小鼠模型中驗(yàn)證了SICE系統(tǒng)在體內(nèi)的功能[26]。
1.3 分泌型表達(dá)
根據(jù)目的蛋白的定位可以將乳酸乳球菌表達(dá)外源蛋白的形式分為3種:胞質(zhì)內(nèi)表達(dá)、分泌表達(dá)和錨定表達(dá)。與胞質(zhì)內(nèi)表達(dá)蛋白相比,將蛋白分泌到細(xì)胞外更受青睞,分泌表達(dá)可以實(shí)現(xiàn)連續(xù)培養(yǎng)并簡化后續(xù)純化步驟。當(dāng)使用乳酸乳球菌作為人類或動(dòng)物消化道中的蛋白質(zhì)遞送載體時(shí),分泌型表達(dá)有利于蛋白質(zhì)(如酶或抗原)與其靶標(biāo)(底物或免疫系統(tǒng))之間的相互作用[5]。乳酸乳球菌具有單層細(xì)胞壁,可以直接將蛋白分泌到細(xì)胞外環(huán)境[27],利于純化蛋白。乳酸乳球菌僅具有1種細(xì)胞外管家蛋白酶HrtA,降低了分泌的異源蛋白被降解的幾率[4, 28]。
乳酸乳球菌的蛋白分泌過程與其他革蘭氏陽性菌類似,先合成蛋白質(zhì)前體,它包含目的蛋白部分及其N端的信號(hào)肽。前體蛋白被宿主的分泌機(jī)制識(shí)別隨后通過Sec(secretion)機(jī)制易位[29]。該過程中信號(hào)肽被切割,成熟蛋白在細(xì)胞外釋放[5]。在乳酸乳球菌中,主要分泌的蛋白是Usp45,其功能尚不清楚。然而,乳酸乳球菌Usp45的信號(hào)肽是迄今為止用于乳酸乳球菌分泌系統(tǒng)最成功的信號(hào)肽,有研究通過一系列突變對(duì)其進(jìn)行改造,使其分泌效率進(jìn)一步提高51%[30]。Baradaran等[31]從戊糖片球菌中分離到一種新的信號(hào)肽SPK1,它能夠分泌與乳酸乳球菌中的Usp45信號(hào)肽效率相當(dāng)?shù)漠愒吹鞍?。?dāng)SPK1分泌β-環(huán)糊精葡萄糖轉(zhuǎn)移酶時(shí),盡管它的分泌效率高于USP45,但總蛋白量卻低于USP45[32],說明信號(hào)肽不僅對(duì)外源蛋白的分泌有復(fù)雜的影響,而且對(duì)總蛋白質(zhì)產(chǎn)量也有影響。與枯草芽孢桿菌相比,乳酸乳球菌的分泌能力仍較低[33]??莶菅挎邨U菌每升培養(yǎng)物可分泌產(chǎn)生25 g蛋白質(zhì)[34?35],然而乳酸乳球菌的產(chǎn)量卻遠(yuǎn)低于該數(shù)值[33, 36?37],有研究通過優(yōu)化葡萄球菌核酸酶在MG1363中的生產(chǎn)條件,達(dá)到了210 mg·L-1的產(chǎn)率[38]。雖然沒有系統(tǒng)地比較枯草芽孢桿菌和乳酸乳球菌中相同蛋白質(zhì)的分泌動(dòng)力學(xué)和最終生產(chǎn)水平,但生產(chǎn)力的明顯差異可能歸因于多種因素。首先,枯草芽孢桿菌可以生長到比乳酸乳球菌高得多的細(xì)胞密度。此外,由于乳酸的產(chǎn)生會(huì)導(dǎo)致乳酸乳球菌的培養(yǎng)基pH持續(xù)降低,可能對(duì)菌的生長有所限制。所以在蛋白產(chǎn)量優(yōu)化方面,乳酸乳球菌需進(jìn)一步提升。
1.4 細(xì)胞壁錨定表達(dá)
革蘭氏陽性菌單層的細(xì)胞膜和較厚的細(xì)胞壁使得它們適合在細(xì)胞表面展示蛋白質(zhì)。在細(xì)菌細(xì)胞壁上展示蛋白質(zhì)可以使細(xì)菌充當(dāng)?shù)鞍踪|(zhì)的載體,特別是抗原的載體,并幫助所展示的蛋白質(zhì)與目標(biāo)環(huán)境相互作用。目前,在乳酸菌中共發(fā)現(xiàn)了5種不同類型的錨定方式:跨膜結(jié)構(gòu)域錨定、脂蛋白錨定、LPXTG型錨定、AcmA重復(fù)序列錨定和表面蛋白錨定[39]。
在乳酸乳球菌中,最常用的錨定方式是LPXTG(Leu-Pro-X-Thr-Gly)型錨定,該錨定機(jī)制依賴于分選酶的活性,通過分選酶定位到五肽基序(LPXTG)上并切割目標(biāo)蛋白的分選信號(hào),促進(jìn)目標(biāo)蛋白共價(jià)錨定到細(xì)胞壁上[40?41]。除此之外,另一種常用的錨定策略是使用AcmA重復(fù)序列非共價(jià)結(jié)合到細(xì)胞表面,AcmA 是乳酸乳球菌MG1363的主要自溶蛋白,是一種由N端活性位點(diǎn)結(jié)構(gòu)域和C端肽聚糖結(jié)合結(jié)構(gòu)域組成的蛋白[42]。使用AcmA重復(fù)序列的非共價(jià)錨定已被證明跨表面顯示外源蛋白,即外源蛋白的表達(dá)和錨定是分開的,表達(dá)細(xì)胞表達(dá)融合蛋白,將預(yù)處理的乳酸乳球菌細(xì)胞與融合蛋白結(jié)合;在錨定細(xì)胞中,融合蛋白包含的錨定域?qū)⒌鞍族^定到乳酸乳球菌表面,使用這種方法可以在非乳球菌宿主(如大腸桿菌)中表達(dá)異源蛋白,只需將純化的外源蛋白混合到乳酸乳球菌細(xì)胞培養(yǎng)物中,就可以純化并非共價(jià)地結(jié)合到乳酸乳球菌細(xì)胞壁上[43]。這使得乳酸乳球菌細(xì)胞可以攜帶外源蛋白而無需經(jīng)過基因改造,這種方法也被新城疫病毒血凝素-神經(jīng)氨酸酶(hemagglutinin-neuraminidase,HN)蛋白用于特異性靶向乳腺癌細(xì)胞[44]。此外,需要翻譯后修飾的真核生物蛋白也可以在真核宿主中表達(dá),并錨定在乳酸乳球菌細(xì)胞壁上[45]。該系統(tǒng)的缺點(diǎn)是,乳酸乳球菌細(xì)胞只是所顯示蛋白質(zhì)的載體,而不是生產(chǎn)蛋白質(zhì)的工廠,因此可能需要多次添加在乳酸乳球菌細(xì)胞上顯示的蛋白質(zhì)。
2 乳酸乳球菌作為細(xì)胞工廠的應(yīng)用
乳酸乳球菌作為細(xì)胞工廠一般都需要用含有1個(gè)(或多個(gè))目標(biāo)基因的質(zhì)粒進(jìn)行轉(zhuǎn)化,該基因可能編碼參與代謝物(如乳酸、乙醇、維生素)產(chǎn)生的蛋白質(zhì)或酶。此外,乳酸乳球菌可用于活粘膜疫苗接種,作為將蛋白質(zhì)或代謝物輸送到粘膜表面的活載體。
2.1 藥物和食品級(jí)蛋白質(zhì)的生產(chǎn)
乳酸乳球菌作為蛋白質(zhì)生產(chǎn)工廠的一大優(yōu)勢就是其優(yōu)秀的分泌表達(dá)系統(tǒng)[5],與大腸桿菌不同,大腸桿菌最常用的生產(chǎn)策略是細(xì)胞內(nèi)表達(dá),因此導(dǎo)致下游純化過程更加繁瑣。此外,與大腸桿菌不同,乳酸乳球菌不含高免疫原性脂多糖(lipopolysaccharide,LPS),從而使生產(chǎn)過程更簡潔、安全[22]。乳酸乳球菌只有1種主要分泌蛋白Usp45,它分泌到培養(yǎng)基中,簡化了下游純化過程,并且只有1種胞外蛋白酶HtrA[22]。乳酸乳球菌中已經(jīng)成功生產(chǎn)了幾種異源蛋白和藥物,例如細(xì)菌抗原、真核抗原和病毒抗原、白細(xì)胞介素、過敏原、毒力因子、細(xì)菌素和酶(表2)[5]。
2.2 疫苗生產(chǎn)
乳酸乳球菌除了在蛋白生產(chǎn)方面的應(yīng)用之外,另一重要的應(yīng)用就是抗原的生產(chǎn)工廠,將其作為口服疫苗使用。乳酸乳球菌作為疫苗載體有以下優(yōu)勢:一是乳酸乳球菌能夠誘導(dǎo)黏膜免疫和全身免疫,二是具有佐劑特性,三是與傳統(tǒng)減毒活疫苗如沙門氏菌和分枝桿菌相比安全風(fēng)險(xiǎn)更低[61]。
使用乳酸乳球菌攜帶表達(dá)抗原基因的原核表達(dá)載體,可以將抗原遞送到宿主粘膜(如鼻腔、口腔或胃腸道)。抗原可以以3 種不同方式呈遞:①細(xì)胞質(zhì),需要細(xì)菌裂解來釋放抗原并傳遞到靶細(xì)胞,但具有保護(hù)抗原不被宿主粘膜降解的優(yōu)點(diǎn);②分泌到宿主粘膜,抗原直接與粘膜上皮細(xì)胞等靶細(xì)胞接觸;③表面展示抗原,抗原被錨定在細(xì)胞膜上,可以保護(hù)抗原不被蛋白水解降解[62]。
乳酸乳球菌能夠以比大腸桿菌和釀酒酵母高得多的比例表達(dá)膜錨定的異源蛋白,乳酸乳球菌膜錨定蛋白占總膜蛋白的5.0%~6.0%,大腸桿菌和釀酒酵母膜錨定蛋白分別占總膜蛋白的1.0%~1.5%和0.5%[63]。Mao等[64]比較了乳酸乳球菌分泌蛋白和錨定蛋白的穩(wěn)定性,研究中在蛋白質(zhì)N端加入了Usp45信號(hào)肽序列用于蛋白分泌,之后在蛋白質(zhì)C 端添加了AcmA 重復(fù)序列用于蛋白錨定,發(fā)現(xiàn)乳酸乳球菌表面顯示蛋白比分泌蛋白更穩(wěn)定,具有更高的生物活性。Ma等[65]用乳酸乳球菌以細(xì)胞質(zhì)內(nèi)、分泌和表面錨定3種方式表達(dá)雞柔嫩艾美耳球蟲(Eimeria tenella) 3-1E蛋白發(fā)現(xiàn),表面錨定的蛋白質(zhì)可以最大程度地保護(hù)雞免疫E. tenella 感染,進(jìn)一步研究發(fā)現(xiàn)錨定表達(dá)的蛋白可以更有效的引發(fā)免疫反應(yīng)。有研究還比較了細(xì)胞質(zhì)蛋白和分泌蛋白的產(chǎn)量,發(fā)現(xiàn)分泌蛋白的產(chǎn)量高于細(xì)胞質(zhì)產(chǎn)量[5]。Ribeiro等[66]使用pWV01和pAMβ1質(zhì)粒在乳酸乳球菌中表達(dá)流產(chǎn)布魯氏菌抗原L7/L12,當(dāng)?shù)鞍踪|(zhì)在細(xì)胞質(zhì)中表達(dá)時(shí),最大產(chǎn)量達(dá)到0.5 mg·L-1,而分泌的產(chǎn)量卻可以達(dá)到3.0 mg·L-1。總之,將蛋白質(zhì)分泌到胞外,可以提高蛋白質(zhì)產(chǎn)量,同時(shí)將蛋白質(zhì)錨定在細(xì)胞表面可增加其穩(wěn)定性和免疫反應(yīng)生物活性。使用乳酸乳球菌進(jìn)行抗原生產(chǎn)的研究總結(jié)如表3所示。
3 展望
近年來,乳酸乳球菌被用來生產(chǎn)異源蛋白,主要集中在食品和醫(yī)藥等行業(yè)。盡管乳酸乳球菌擁有生物安全性的特點(diǎn),但相較于傳統(tǒng)的大腸桿菌和酵母等表達(dá)系統(tǒng),乳酸乳球菌在異源表達(dá)蛋白方面的研究處于起步階段,同時(shí)在表達(dá)外源基因時(shí),還會(huì)受到密碼子偏好性的影響,在表達(dá)如鏈球菌、屎腸球菌、乳桿菌的基因時(shí)問題較小,當(dāng)表達(dá)其他來源的外源基因時(shí),密碼子優(yōu)化可能是改善乳酸乳球菌蛋白表達(dá)的一般必要條件[81]。同時(shí),在蛋白產(chǎn)量方面,與需氧生長的枯草芽孢桿菌相比,乳酸乳球菌分泌的蛋白產(chǎn)量仍較低。
在進(jìn)一步發(fā)展和完善乳酸乳球菌的表達(dá)系統(tǒng)時(shí),可以從啟動(dòng)子方面入手。在理論方面對(duì)于乳酸乳球菌σ因子、核糖體結(jié)合位點(diǎn)、轉(zhuǎn)錄因子結(jié)合位點(diǎn)的研究尚淺,解釋啟動(dòng)子信號(hào)的工作機(jī)制有助于理解乳酸乳球菌轉(zhuǎn)錄過程和建立乳酸乳球菌的模型,篩選出乳酸乳球菌的轉(zhuǎn)錄因子也可以更好地理解它的轉(zhuǎn)錄機(jī)制以及如何調(diào)控基因的表達(dá)。在序列內(nèi)在邏輯方面,深度學(xué)習(xí)方法具有強(qiáng)大的模式提取能力,可以更好地理解啟動(dòng)子序列的內(nèi)在邏輯,同時(shí)有助于建立精準(zhǔn)的啟動(dòng)子強(qiáng)度預(yù)測工具,篩選或合成強(qiáng)度更高或者更適宜應(yīng)用的啟動(dòng)子。在實(shí)際應(yīng)用方面,高效可控的強(qiáng)啟動(dòng)子,一直是工業(yè)生產(chǎn)所需求的,但同時(shí)也應(yīng)注意成本,NICE系統(tǒng)作為目前應(yīng)用最廣泛的系統(tǒng),存在著nisin本身價(jià)格高且蛋白生產(chǎn)中需要下游提純的問題。因此,為適應(yīng)工業(yè)生產(chǎn)的高需求,應(yīng)開發(fā)新的更加便利節(jié)約的啟動(dòng)子系統(tǒng),或者對(duì)啟動(dòng)子進(jìn)行精準(zhǔn)改造,通過對(duì)其結(jié)構(gòu)的解析,進(jìn)行針對(duì)性的改造,達(dá)到最佳的表達(dá)效果。
盡管關(guān)于乳酸乳球菌獲得性抗生素耐藥性的研究有限,乳酸乳球菌也被公認(rèn)為是安全的食品級(jí)微生物,但隨著研究人員開發(fā)、構(gòu)建了許多以抗生素抗性基因作為篩選標(biāo)記的乳酸乳球菌表達(dá)載體,這些應(yīng)用很容易導(dǎo)致抗性基因轉(zhuǎn)移到環(huán)境中,導(dǎo)致產(chǎn)生耐藥菌等生物安全問題。因此,研究和開發(fā)乳酸乳球菌表達(dá)系統(tǒng)時(shí)應(yīng)注意設(shè)計(jì)載體所用的篩選標(biāo)記,以保證產(chǎn)品的生物安全性。
乳酸乳球菌已經(jīng)從一種食用細(xì)菌發(fā)展成為了一種微生物細(xì)胞工廠,用于生產(chǎn)有潛在生物經(jīng)濟(jì)價(jià)值的工業(yè)產(chǎn)品,特別是在醫(yī)療領(lǐng)域。盡管目前乳酸乳球菌表達(dá)體系還存在局限性,但依然還有很大的改進(jìn)空間。隨著對(duì)乳酸乳球菌相關(guān)研究的深入,會(huì)獲得更多的成熟高效的乳酸乳球菌表達(dá)系統(tǒng),這無論是對(duì)理論研究還是實(shí)際應(yīng)用都有重要意義。
參考文獻(xiàn)
[1] DUWAT P, SOURICE S, CESSELIN B, et al .. Respirationcapacity of the fermenting bacterium Lactococcus lactis and itspositive effects on growth and survival [J]. J. Bacteriol., 2001,183(15):4509-4516.
[2] SONG A A, IN L L A, LIM S H E, et al .. A review onLactococcus lactis: from food to factory [J/OL]. Microb. CellFact., 2017, 16(1): 55 [2023-02-22]. https://doi. org/10.1186/s12934-017-0669-x.
[3] 高瑩, 李淼, 孫元, 等. 乳酸乳球菌表達(dá)系統(tǒng)的發(fā)展現(xiàn)狀與前景展望[J]. 微生物學(xué)報(bào), 2022, 62(3): 895-905.
GAO Y, LI M, SUN Y, et al .. Development and prospects ofLactococcus lactis expression system [J]. Acta Microbiol. Sin.,2022, 62(3): 895-905.
[4] SRIRAMAN K, JAYARAMAN G. HtrA is essential forefficient secretion of recombinant proteins by Lactococcus lactis[J]. Appl. Environ. Microbiol., 2008, 74(23): 7442-7446.
[5] LE LOIR Y, AZEVEDO V, OLIVEIRA S C, et al .. Proteinsecretion in Lactococcus lactis : an efficient way to increase theoverall heterologous protein production [J/OL]. Microb. CellFact., 2005, 4(1): 2 [2023-02-22]. https://doi. org/10.1186/1475-2859-4-2.
[6] MCCRACKEN A, TURNER M S, GIFFARD P, et al .. Analysisof promoter sequences from Lactobacillus and Lactococcus andtheir activity in several Lactobacillus species [J]. Arch.Microbiol., 2000, 173(5-6): 383-389.
[7] JENSEN P R, HAMMER K. Artificial promoters for metabolicoptimization [J]. Biotechnol. Bioeng., 1998, 58(2-3): 191-195.
[8] RUD I, JENSEN P R, NATERSTAD K, et al .. A syntheticpromoter library for constitutive gene expression in Lactobacillusplantarum [J]. Microbiology (Reading), 2006, 152(Pt4): 1011-1019.
[9] KIM E B, PIAO DA C, SON J S, et al .. Cloning andcharacterization of a novel tuf promoter from Lactococcus lactissubsp. lactis IL1403 [J]. Curr. Microbiol., 2009, 59(4):425-431.
[10] OGAUGWU C E, CHENG Q, FIECK A, et al .. Characterizationof a Lactococcus lactis promoter for heterologous proteinproduction [J]. Biotechnol. Rep. (Amst), 2018, 17: 86-92.
[11] ZHAO C M, YANG H, ZHU X J, et al .. Oxalate-degradingenzyme recombined lactic acid bacteria strains reducehyperoxaluria [J]. Urology, 2018, 113: 253.e1-253.e7.
[12] DROUAULT S, ANBA J, BONNEAU S, et al .. The peptidylprolylisomerase motif is lacking in PmpA, the PrsA-likeprotein involved in the secretion machinery of Lactococcuslactis [J]. Appl. Environ. Microbiol., 2002, 68(8): 3932-3942.
[13] BORRERO J, JIMENEZ J J, GUTIEZ L, et al .. Use of theusp45 lactococcal secretion signal sequence to drive thesecretion and functional expression of enterococcal bacteriocinsin Lactococcus lactis [J]. Appl. Microbiol. Biotechnol., 2011, 89(1): 131-143.
[14] LI H S, PIAO D C, JIANG T, et al .. Recombinant interleukin 6with M cell-targeting moiety produced in Lactococcus lactisIL1403 as a potent mucosal adjuvant for peroral immunization[J]. Vaccine, 2015, 33(16): 1959-1967.
[15] KONG L H, LIU T Y, YAO Q S, et al .. Enhancing thebiosynthesis of nicotinamide mononucleotide in Lactococcuslactis by heterologous expression of FtnadE [J]. J. Sci. FoodAgric., 2023, 103(1): 450-456.
[16] DIEYE Y, HOEKMAN A J, CLIER F, et al .. Ability ofLactococcus lactis to export viral capsid antigens: a crucial stepfor development of live vaccines [J]. Appl. Environ. Microbiol.,2003, 69(12): 7281-7288.
[17] DIEYE Y, USAI S, CLIER F, et al .. Design of a proteintargetingsystem for lactic acid bacteria [J]. J. Bacteriol., 2001,183(14): 4157-4166.
[18] BAHEY-EL-DIN M, CASEY P G, GRIFFIN B T, et al ..Efficacy of a Lactococcus lactis DeltapyrG vaccine deliveryplatform expressing chromosomally integrated hly from Listeriamonocytogenes [J]. Bioeng. Bugs, 2010, 1(1): 66-74.
[19] LEE M H, ROUSSEL Y, WILKS M, et al .. Expression ofHelicobacter pylori urease subunit B gene in Lactococcus lactisMG1363 and its use as a vaccine delivery system against H.pylori infection in mice [J]. Vaccine, 2001, 19(28-29): 3927-3935.
[20] GUO T, HU S, KONG J. Functional analysis andrandomization of the nisin-inducible promoter for tuning geneexpression in Lactococcus lactis [J]. Curr. Microbiol., 2013, 66(6): 548-554.
[21] KUIPERS O P, BEERTHUYZEN M M, DE RUYTER P G,et al .. Autoregulation of nisin biosynthesis in Lactococcus lactisby signal transduction [J]. J. Biol. Chem., 1995, 270(45):27299-27304.
[22] MORELLO E, BERMúDEZ-HUMARáN L G, LLULL D, et al..Lactococcus lactis, an efficient cell factory for recombinantprotein production and secretion [J]. J. Mol. Microbiol. Biotechnol.,2008, 14(1-3): 48-58.
[23] LLULL D, POQUET I. New expression system tightlycontrolled by zinc availability in Lactococcus lactis [J]. Appl.Environ. Microbiol., 2004, 70(9): 5398-5406.
[24] J?RGENSEN C M, VRANG A, MADSEN S M. Recombinantprotein expression in Lactococcus lactis using the P170expression system [J]. FEMS Microbiol. Lett., 2014, 351(2):170-178.
[25] TANHAEIAN A, MIRZAII M, PIRKHEZRANIAN Z, et al ..Generation of an engineered food-grade Lactococcus lactisstrain for production of an antimicrobial peptide: in vitro and insilico evaluation [J/OL]. BMC Biotechnol., 2020, 20(1): 19[2023-02-22]. https://doi.org/ 10.1186/s12896-020-00612-3.
[26] BENBOUZIANE B, RIBELLES P, AUBRY C, et al ..Development of a stress-inducible controlled expression (SICE)system in Lactococcus lactis for the production and delivery oftherapeutic molecules at mucosal surfaces [J]. J. Biotechnol.,2013, 168(2): 120-129.
[27] SCHNEEWIND O, MISSIAKAS D M. Protein secretion andsurface display in gram-positive bacteria [J]. Philos. Trans. R.Soc. Lond B Biol. Sci., 2012, 367(1592): 1123-1139.
[28] POQUET I, SAINT V, SEZNEC E, et al .. HtrA is the uniquesurface housekeeping protease in Lactococcus lactis and isrequired for natural protein processing [J]. Mol. Microbiol.,2000, 35(5): 1042-1051.
[29] DESVAUX M, HéBRAUD M, TALON R, et al .. Secretion andsubcellular localizations of bacterial proteins: a semanticawareness issue [J]. Trends Microbiol., 2009, 17(4): 139-145.
[30] NG D T, SARKAR C A. Engineering signal peptides forenhanced protein secretion from Lactococcus lactis [J]. Appl.Environ. Microbiol., 2013, 79(1): 347-356.
[31] BARADARAN A, SIEO C C, FOO H L, et al .. Cloning and insilico characterization of two signal peptides from Pediococcuspentosaceus and their function for the secretion of heterologousprotein in Lactococcus lactis [J]. Biotechnol. Lett., 2013, 35(2):233-238.
[32] SUBRAMANIAM M, BARADARAN A, ROSLI M I, et al ..Effect of signal peptides on the secretion of β -cyclodextringlucanotransferase in Lactococcus lactis NZ9000 [J]. J. Mol.Microbiol. Biotechnol., 2012, 22(6): 361-372.
[33] NEEF J, KOEDIJK D G, BOSMA T, et al .. Efficient productionof secreted staphylococcal antigens in a non-lysing andproteolytically reduced Lactococcus lactis strain [J]. Appl.Microbiol. Biotechnol., 2014, 98(24): 10131-10141.
[34] VAN DIJL J M, HECKER M. Bacillus subtilis: from soilbacterium to super-secreting cell factory [J/OL]. Microb. CellFact., 2013, 12:3 [2023-02-22]. https://doi.org/ 10.1186/1475-2859-12-3.
[35] YOSHIDA K, VAN DIJL J M. Engineering Bacillus subtiliscells as factories: enzyme secretion and value-added chemicalproduction [J]. Biotechnol. Bioprocess Eng., 2020, 25(6):872-885.
[36] SAMAZAN F, ROKBI B, SEGUIN D, et al .. Production,secretion and purification of a correctly folded staphylococcalantigen in Lactococcus lactis [J/OL]. Microb. Cell Fact., 2015,14: 104 [2023-02-22]. https://doi. org/ 10.1186/s12934-015-0271-z.
[37] BERMúDEZ-HUMARáN L G, MOTTA J P, AUBRY C, et al ..Serine protease inhibitors protect better than IL-10 and TGF-βanti-inflammatory cytokines against mouse colitis when deliveredby recombinant lactococci [J/OL]. Microb. Cell Fact., 2015, 14:26 [2023-02-22]. https://doi.org/ 10.1186/s12934-015-0198-4.
[38] TRéMILLON N, ISSALY N, MOZO J, et al .. Production andpurification of staphylococcal nuclease in Lactococcus lactisusing a new expression-secretion system and a pH-regulatedmini-reactor [J/OL]. Microb. Cell Fact., 2010, 9(1): 37 [2023-02-22]. https://doi.org/ 10.1186/1475-2859-9-37.
[39] LEENHOUTS K, BUIST G, KOK J. Anchoring of proteins tolactic acid bacteria [J]. Antonie Van Leeuwenhoek, 1999, 76(1-4): 367-376.
[40] MAZMANIAN S K, LIU G, TON-THAT H, et al ..Staphylococcus aureus sortase, an enzyme that anchors surfaceproteins to the cell wall [J]. Science, 1999, 285(5428): 760-763.
[41] NAVARRE W W, SCHNEEWIND O. Proteolytic cleavage andcell wall anchoring at the LPXTG motif of surface proteins ingram-positive bacteria [J]. Mol. Microbiol., 1994, 14(1):115-121.
[42] BERLEC A, ZADRAVEC P, JEVNIKAR Z, et al ..Identification of candidate carrier proteins for surface displayon Lactococcus lactis by theoretical and experimental analysesof the surface proteome [J]. Appl. Environ. Microbiol., 2011, 77(4): 1292-1300.
[43] VAN ROOSMALEN M L, KANNINGA R, KHATTABI M E L,et al .. Mucosal vaccine delivery of antigens tightly bound to anadjuvant particle made from food-grade bacteria [J]. Methods,2006, 38(2): 144-149.
[44] BARADARAN A, YUSOFF K, SHAFEE N, et al .. Newcastle disease virus hemagglutinin neuraminidase as a potentialcancer targeting agent [J]. J. Cancer, 2016, 7(4): 462-466.
[45] KALYANASUNDRAM J, CHIA S L, SONG A A, et al ..Surface display of glycosylated Tyrosinase related protein-2(TRP-2) tumour antigen on Lactococcus lactis [J/OL]. BMCBiotechnol., 2015, 15:113 [2023-02-22]. https://doi.org/10.1186/s12896-015-0231-z.
[46] HOLS P, KLEEREBEZEM M, SCHANCK A N, et al ..Conversion of Lactococcus lactis from homolactic to homoalaninefermentation through metabolic engineering [J]. Nat. Biotechnol.,1999, 17(6): 588-592.
[47] DONG Z, ZHANG J, LI H, et al .. Codon and propeptideoptimizations to improve the food-grade expression of bile salthydrolase in Lactococcus lactis [J]. Protein Pept. Lett., 2015, 22(8): 727-735.
[48] SONG A A, ABDULLAH J O, ABDULLAH M P, et al ..Overexpressing 3-hydroxy-3-methylglutaryl coenzyme Areductase (HMGR) in the lactococcal mevalonate pathway forheterologous plant sesquiterpene production [J/OL]. PLoS One,2012, 7(12): e52444 [2023-02-22]. https://doi. org/10.1371/journal.pone.0052444.
[49] HERNáNDEZ I, MOLENAAR D, BEEKWILDER J, et al ..Expression of plant flavor genes in Lactococcus lactis [J]. Appl.Environ. Microbiol., 2007, 73(5): 1544-1552.
[50] SYBESMA W, BURGESS C, STARRENBURG M, et al ..Multivitamin production in Lactococcus lactis using metabolicengineering [J]. Metab. Eng., 2004, 6(2): 109-115.
[51] RAJENDRAN V, PUVENDRAN K, GURU B, et al . Design ofaqueous two-phase systems for purification of hyaluronic acidproduced by metabolically engineered Lactococcus lactis [J]. J.Sep. Sci., 2016, 39(4):655-662.
[52] üNLü G, NIELSEN B, IONITA C. Inhibition of Listeriamonocytogenes in hot dogs by surface application of freezedriedbacteriocin-containing powders from lactic acid bacteria[J]. Probiotics Antimicro. Prot., 2016, 8(2): 102-110.
[53] GU W, XIA Q, YAO J, et al .. Recombinant expressions ofsweet plant protein mabinlin II in Escherichia coli and foodgradeLactococcus lactis [J]. World J. Microbiol. Biotechnol.,2015, 31(4): 557-567.
[54] SONG A A L, ABDULLAH J O, ABDULLAH M P, et al ..Functional expression of an orchid fragrance gene inLactococcus lactis [J]. Int. J. Mol. Sci., 2012, 13(2): 1582-1597.
[55] MARTíNEZ-CUESTA M C, GASSON M J, NARBAD A.Heterologous expression of the plant coumarate: CoA ligase inLactococcus lactis [J]. Lett. Appl. Microbiol., 2005, 40(1): 44-49.
[56] ZHANG X J, FENG S Y, LI Z T, et al .. Expression ofHelicobacter pylori hspA gene in Lactococcus lactis NICEsystem and experimental study on its immunoreactivity [J/OL].Gastroenterol. Res. Pract., 2015, 2015:750932 [2023-02-22].https://doi.org/10.1155/2015/750932.
[57] BERLEC A, RAVNIKAR M, STRUKELJ B. Lactic acidbacteria as oral delivery systems for biomolecules [J]. Pharmazie,2012, 67(11): 891-898.
[58] SYBESMA W, VAN DEN BORN E, STARRENBURG M,et al .. Controlled modulation of folate polyglutamyl tail lengthby metabolic engineering of Lactococcus lactis [J]. Appl.Environ. Microbiol., 2003, 69(12): 7101-7107.
[59] STEIDLER L, HANS W, SCHOTTE L, et al .. Treatment ofmurine colitis by Lactococcus lactis secreting interleukin-10[J]. Science, 2000, 289(5483): 1352-1355.
[60] GLENTING J, POULSEN L K, KATO K, et al .. Production ofrecombinant peanut allergen Ara h 2 using Lactococcus lactis[J/OL]. Microb. Cell Fact., 2007, 6:28 [2023-02-22]. https://doi.org/10.1186/1475-2859-6-28.
[61] POUWELS P H, LEER R J, SHAW M, et al .. Lactic acidbacteria as antigen delivery vehicles for oral immunizationpurposes [J]. Int. J. Food Microbiol., 1998, 41(2): 155-167.
[62] DUARTE S O D, MONTEIRO G A. Plasmid replicons for theproduction of pharmaceutical-grade pDNA, proteins andantigensby Lactococcus lactis cell factories [J/OL]. Int. J. Mol. Sci., 2021,22(3): 1379 [2023-02-22]. https://doi.org/10.3390/ijms22031379.
[63] BAKARI S, LEMBROUK M, SOURD L, et al .. Lactococcuslactis is an efficient expression system for mammalian membraneproteins involved in liver detoxification, CYP3A4, and MGST1[J]. Mol. Biotechnol., 2016, 58(4): 299-310.
[64] MAO R, ZHOU K, HAN Z, et al .. Subtilisin QK-2: secretoryexpression in Lactococcus lactis and surface display onto grampositiveenhancer matrix (GEM) particles [J/OL]. Microb. CellFact., 2016, 15: 80 [2023-02-22]. https://doi.org/10.1186/s12934-016-0478-7.
[65] MA C, ZHANG L, GAO M, et al .. Construction of Lactococcuslactis expressing secreted and anchored Eimeria tenella 3-1Eprotein and comparison of protective immunity againsthomologous challenge [J]. Exp. Parasitol., 2017, 178:14-20.
[66] RIBEIRO L A, AZEVEDO V, LE LOIR Y, et al .. Productionand targeting of the Brucella abortus antigen L7/L12 inLactococcus lactis: a first step towards food-grade live vaccinesagainst brucellosis [J]. Appl. Environ. Microbiol., 2002, 68(2):910-916.
[67] PEREIRA V B, CUNHA V PDA, PREISSER T M, et al ..Lactococcus lactis carrying a DNA vaccine coding for theESAT-6 antigen increases IL-17 cytokine secretion and booststhe BCG vaccine immune response [J]. J. Appl. Microbiol.,2017, 122(6): 1657-1662.
[68] YAGNIK B, SHARMA D, PADH H, et al .. Immunization withr-Lactococcus lactis expressing outer membrane protein A ofshigella dysenteriae type-1: evaluation of oral and intranasalroute of administration [J]. J. Appl. Microbiol., 2017, 122(2):493-505.
[69] GOMES-SANTOS A C, DE OLIVEIRA R P, MOREIRA T G,et al .. Hsp65-producing Lactococcus lactis prevents inflammatoryintestinal disease in mice by IL-10- and TLR2-dependentpathways [J/OL]. Front. Immunol., 2017, 8: 30 [2023-02-22].https://doi.org/10.3389/fimmu.2017.00030. eCollection 2017.
[70] CARVALHO R D, BREYNER N, MENEZES-GARCIA Z,et al .. Secretion of biologically active pancreatitis-associatedprotein I (PAP) by genetically modified dairy Lactococcus lactisNZ9000 in the prevention of intestinal mucositis [J/OL].Microb. Cell Fact., 2017, 16(1): 27 [2023-02-22]. https://doi.org/10.1186/s12934-017-0624-x.
[71] KIM D, BECK B R, LEE S M, et al .. Pellet feed adsorbed withthe recombinant Lactococcus lactis BFE920 expressing SiMAantigen induced strong recall vaccine effects against Streptococcusiniae infection in olive flounder (Paralichthys olivaceus) [J].Fish Shellfish Immunol., 2016, 55:374-383.
[72] LANG J, WANG X, LIU K, et al .. Oral delivery ofstaphylococcal nuclease by Lactococcus lactis prevents type 1diabetes mellitus in NOD mice [J]. Appl. Microbiol.Biotechnol., 2017, 101(20): 7653-7262.
[73] ZHOU B Y, SUN J C, LI X, et al .. Analysis of Immuneresponses in mice orally immunized with recombinantpMG36e-SP-TSOL18/Lactococcus lactis and pMG36e-TSOL18/Lactococcus lactis vaccines of Taenia solium [J/OL]. J.Immunol. Res., 2018, 2018: 9262631 [2023-02-22]. https://doi.org/10.1155/2018/9262631.
[74] ZHANG R, WANG C, CHENG W, et al .. Delivery ofHelicobacter pylori HpaA to gastrointestinal mucosal immunesites using Lactococcus lactis and its immune efficacy in mice[J]. Biotechnol. Lett., 2018, 40(3): 585-590.
[75] LIU L, ZHANG W, SONG Y, et al .. Recombinant Lactococcuslactis co-expressing OmpH of an M cell-targeting ligand andIBDV-VP2 protein provide immunological protection inchickens [J]. Vaccine, 2018, 36(5): 729-735.
[76] ZHOU J, WEI K, WANG C, et al .. Oral immunisation withTaishan Pinus massoniana pollen polysaccharide adjuvant withrecombinant Lactococcus lactis-expressing Proteus mirabilisompA confers optimal protection in mice [J]. Allergol.Immunopathol. (Madr), 2017, 45(5): 496-505.
[77] TORKASHVAND A, BAHRAMI F, ADIB M, et al .. Mucosaland systemic immune responses elicited by recombinantLactococcus lactis expressing a fusion protein composed ofpertussis toxin and filamentous hemagglutinin from Bordetellapertussis [J]. Microb. Pathog., 2018, 120:155-160.
[78] GUO M, YI S, GUO Y, et al .. Construction of a recombinantLactococcus lactis strain expressing a variant porcine epidemicdiarrhea virus S1 gene and its immunogenicity analysis in mice[J]. Viral Immunol., 2019, 32(3): 144-150.
[79] SONG S, LI P, ZHANG R, et al .. Oral vaccine of recombinantLactococcus lactis expressing the VP1 protein of duck hepatitisA virus type 3 induces mucosal and systemic immuneresponses [J]. Vaccine, 2019, 37(31): 4364-4369.
[80] WANG C, ZHOU H, GUO F, et al .. Oral immunization ofchickens with Lactococcus lactis expressing cjaA temporarilyreduces campylobacter jejuni colonization [J]. FoodbornePathog. Dis., 2020, 17(6): 366-372.
[81] KUNJI E R, CHAN K W, SLOTBOOM D J, et al .. Eukaryoticmembrane protein overproduction in Lactococcus lactis [J].Curr. Opin. Biotechnol., 2005, 16(5): 546-551.