摘""要:香草蘭是重要的天然香料經濟作物,由尖孢鐮刀菌引起的土傳病害嚴重限制了其可持續(xù)發(fā)展,而作物輪作是防控土傳病害的有效途徑。本研究采用實時熒光定量PCR結合高通量測序方法,在溫室盆栽條件下,研究輪作胡椒/斑蘭葉/糯米香茶對香草蘭病原菌及根際土壤微生物群落的影響。結果表明:與撂荒和連作香草蘭處理相比,輪作斑蘭葉和糯米香茶顯著降低了土壤中尖孢鐮刀菌(Fusarium"oxysporum)的數量,并顯著提高了根際土壤細菌群落的豐富度和多樣性。撂荒、連作和輪作顯著誘導形成3種不同的群落結構,但輪作斑蘭葉和糯米香茶結構相似。輪作后門水平上顯著增加了優(yōu)勢細菌酸桿菌門(Acidobacteria)、綠彎菌門(Chloroflexi)及Rokubacteria門,以及優(yōu)勢真菌子囊菌門(Ascomycota)的相對豐度,且屬水平上增加了優(yōu)勢細菌類諾卡氏屬(Nocardioides)的相對豐度,即輪作胡椒后該屬的相對豐度為64.26%,輪作斑蘭葉后相對豐度達到98.54%,輪作糯米香茶后則為63.07%。隨機森林結果表明,輪作斑蘭葉能特異激發(fā)Terriglobus屬、克雷伯桿菌屬(Kribbella)、粘球菌屬(Myxococcus)細菌核心類群,以及枝頂孢霉屬(Acremonium)、帚枝霉屬(Sarocladium)真菌核心類群,且輪作斑蘭葉后真菌群落物種間網絡互作更緊密。輪作后顯著提高土壤pH,而土壤pH、細菌和真菌群落結構是顯著抑制病原菌的最重要指示因子。綜合表明,在長期連作的香草蘭土壤中輪作短期且經濟價值高的香料作物斑蘭葉,對緩解香草蘭土傳病害的發(fā)生效果較好。
關鍵詞:輪作;香草蘭;斑蘭葉;根際微生物;微生物群落中圖分類號:Q939.96;S573.9""""""文獻標志碼:A
Crop"Rotation"Effects"on"Pathogen"Dynamics"and"Rhizosphere"Microbial"Assemblages"of"Vanilla
XING"Yizhang1,"HONG"Shan2,3,4*,"YANG"Jinming5,"ZHAO"Qingyun1,"SU"Fan1,"ZHUANG"Huifa1,"WANG"Hui1
1."Spice"and"Beverage"of"Institute,"Chinese"Academy"of"Tropical"Agricultural"Sciences"/"Key"Laboratory"of"Genetic"Resources"Utilization"of"Spice"and"Beverage"Crops,"Ministry"of"Agriculture"and"Rural"Affairs"/"Hainan"Provincial"Key"Laboratory"of"Genetic"Improvement"and"Quality"Regulation"for"Tropical"Spice"and"Beverage"Crops,"Wanning,"Hainan"571533,"China;"2."Institute"of"Genetics"and"Developmental"Biology,"Chinese"Academy"of"Sciences"/"State"Key"Laboratory"of"Plant"Genomics,"Beijing"100101,"China;"3."Hainan"Seed"Industry"Laboratory,"Sanya,"Hainan"572025,"China;"4."Sanya"Institute,"Hainan"Academy"of"Agricultural"Sciences"/"Institute"of"Vegetables,"Hainan"Academy"of"Agricultural"Sciences,"Sanya,"Hainan"572025,"China;"5."School"of"Tropical"Agriculture"and"Forestry,"Hainan"University,"Haikou,"Hainan"570228,"China
Abstract:"Vanilla,"a"vital"spice"crop,"faces"significant"challenges"from"soil-borne"diseases"caused"by"Fusarium"oxysporum,"affecting"its"sustainable"cultivation."This"study"utilized"quantitative"polymerase"chain"reaction"(qPCR)"and"high-throughput"sequencing"to"assess"the"impact"of"rotating"black"pepper,"pandan,"and"sweet"rice"tea"on"pathogen"levels"and"the"rhizosphere"soil"microbial"communities"of"vanilla"plants"cultivated"in"a"pot"environment."Incorporating"pandan"and"sweet"rice"tea"into"the"crop"rotation"significantly"reduced"the"prevalence"of"F."oxysporum"and"enhanced"both"the"abundance"and"diversity"of"the"rhizosphere"soil"bacteria."Three"distinct"microbial"community"structures"associated"with"fallow,"monoculture,"and"crop"rotation"conditions"were"identified."Notably,"the"rotations"involving"pandan"and"sweet"rice"tea"showed"no"significant"differences"in"the"bacterial"and"fungal"community"compositions."Crop"rotation"notably"increased"the"relative"abundance"of"key"phyla"such"as"Acidobacteria,"Chloroflexi,"Rokubacteria"and"Ascomycota."Moreover,"the"relative"abundance"of"the"dominant"bacterial"genus"Nocardioides"increased"at"the"genus"level,"with"a"relative"abundance"of"64.26%"after"pepper"rotation,"98.54%"after"pandan"rotation,"and"63.07%"after"sweet"rice"tea"rotation."The"core"microbiome,"featuring"species"such"as"Terriglobus,"Kribbella,"Myxococcus,"Acremonium"and"Sarocladium,"showed"a"particularly"strong"response"to"the"presence"of"pandan,"suggesting"a"closer"network"interaction"among"fungal"species"post-rotation."Additionally,"crop"rotation"was"found"to"significantly"raise"the"soil"pH,"which,"along"with"the"altered"bacterial"and"fungal"community"structures,"emerged"as"critical"factors"in"disease"suppression."Collectively,"our"results"suggest"that"integrating"the"economically"valuable"spice"crop"pandan"into"the"rotation"schedule"in"vanilla"monoculture"systems"can"significantly"reduce"the"incidence"of"soil-borne"diseases,"offering"a"sustainable"cultivation"strategy"for"vanilla.
Keywords:"crop"rotation;"vanilla;"pandan;"rhizosphere"microorganisms;"microbial"community
DOI:"10.3969/j.issn.1000-2561.2025.01.020
"
香草蘭(Vanilla"planifolia),隸屬于蘭科香草蘭屬,是一種多年生的熱帶藤本攀緣植物。以其獨特的香氣和風味被譽為“天然食品香料之王”[1],享有極高的聲譽。但因其易受土傳病原真菌尖孢鐮刀菌(Fusarium"oxysporum"f."sp."vanilla)侵染而引發(fā)嚴重的連作障礙,造成產量下降和品質降低。前期研究表明,長期連作后加劇香草蘭枯萎病的發(fā)生可歸因于土壤微生物群落組成和結構的改變,即有益微生物的減少和真菌病原菌的積累[2]。
土壤微生物群落是增強作物抗病和抗逆能力的關鍵因素[3]。土壤微生物群落的多樣性與作物的健康狀況緊密相關[4]。研究指出,土壤中功能微生物的多樣性可以提高作物對病害的抵抗力,并通過促進營養(yǎng)吸收和產生抗菌化合物來增強作物的抗逆性[5]。土壤微生物尤其是真菌,對土壤結構的形成和維持起著重要作用[6]。它們通過分泌膠結物質促使形成土壤微團聚體,進而影響土壤的水分保持能力和通氣性,從而促進作物健康生長[7]。此外,農業(yè)管理措施包括耕作方式和作物輪作,對土壤微生物群落的組成和功能有顯著的正向調控作用[8-9]。
作物輪作通過調控土壤微生物群落的豐富度和多樣性以保障土壤和作物健康,是環(huán)境友好且經濟可行的防控土傳病害的綠色措施[10]。基于此,團隊前期開發(fā)了胡椒(Piper"nigrum"L.)-香草蘭和咖啡(Coffea"L.)-香草蘭輪作模式,發(fā)現輪作胡椒能顯著增加真菌木霉屬(Trichoderma)和青霉屬(Penicillium)的有益類群。通過重塑真菌群落結構和組成,從而實現高效抗病[11]。但胡椒也是多年生香料作物,如何在有限的耕地上結合時下農業(yè)生產短平快的經濟種植效益需求,開發(fā)出更多既能緩解香草蘭連作障礙又能收獲經濟效益高的輪作作物,對香草蘭產業(yè)的可持續(xù)發(fā)展具有重要的作用。
根際核心微生物是一類關鍵的指示性物種,它們通過與植物的互動或在微生物之間的相互作用,對微生物群落的結構進行調控[12]。團隊前期研究發(fā)現,在香草蘭長期連作系統(tǒng)中,與抑制香草蘭枯萎病較相關的是真菌群落的變化,且是以抑病核心微生物被孢霉菌屬(Mortierella)為主[13]。此外,研究團隊還發(fā)現了土壤理化性質,尤其是pH的變化對微生物群落結構和根際核心微生物的豐度有顯著影響[14]。鑒于此,將土壤理化特性與微生物群落分析相結合,對于深入理解輪作對香草蘭土傳枯萎病的抑制機制至關重要[15]。
以往有關輪作提高香草蘭抗病機制的研究大多聚焦于多年生香料作物,且側重從土壤真菌微生物群落角度解析香草蘭抑病機制,而缺乏解析土壤細菌微生物群落及將土壤微生物和土壤理化因子聯(lián)合深度挖掘其相關機制的研究。據此,本研究在團隊前期開發(fā)胡椒的基礎上,結合新形勢下香草蘭的產業(yè)需求,篩選出熱帶地區(qū)極具特色,生產上種植周期短、經濟效益價值高的香料作物——斑蘭葉(Pandanus"amaryllifolius)和糯米香茶(Strobilanthes"tonkinensis"Lindau)構建胡椒-香草蘭/斑蘭葉-香草蘭/糯米香茶-香草蘭輪作新模式。通過熒光定量PCR和高通量測序的方法,評估這3種輪作模式對香草蘭病原菌及根際土壤微生物群落的影響,以期為香草蘭土傳病害的防控提供新視角和理論依據。"""
供試連作香草蘭品種為墨西哥香草蘭(Vanilla"planifolia"Andrews);輪作作物選取熱帶地區(qū)特色的香料作物——胡椒/斑蘭葉/糯米香茶,均由中國熱帶農業(yè)科學院香料飲料研究所提供。
1.2.1""試驗設計""盆栽試驗于2022年4月至2023年4月在中國熱帶農業(yè)科學院香料飲料研究所溫室大棚中開展。采集香草蘭枯萎病發(fā)病嚴重且連續(xù)種植10"a以上的香草蘭土壤。以連種香草蘭(X)為連作對照,同時設置撂荒負對照(CK),以種植胡椒(H)、斑蘭葉(B)及糯米香茶(C)為輪作模式作物。采用隨機區(qū)組設計,每個處理設立3次生物學重復,每個重復種植6盆,每盆1株。每盆填充15"kg土壤,花盆規(guī)格為32"cm×"25"cm,確保每盆植物之間有足夠的空間,并且相互獨立,避免潛在的交叉影響。
每個花盆施加90"g普通有機肥料,肥料一次性與采集土壤混合,確保肥料在每盆土壤中分布均勻。斑蘭葉作物遵循農業(yè)生產操作,于盆栽4個月時進行1次收割,采收后繼續(xù)留苗種植。化學肥料施用方案則參照傳統(tǒng)農事操作,于盆栽12個月后采集根際土壤樣品。
1.2.2""根際土壤樣品采集""每個處理隨機選取9盆(9個重復),將香草蘭/胡椒/斑蘭葉/糯米香茶植株從土壤中輕輕拔出,保存至4"℃冰盒中迅速帶回實驗室,輕抖植物根系,抖落下的與植物根系緊密結合的土壤視為根際土壤[16]。
1.2.3""土壤樣品的理化性質測定""土壤理化性質測定參照《土壤農化分析》[17]中的相關方法。使用玻璃電極酸度計測定土壤懸濁液pH;采用重鉻酸鉀氧化結合外加熱方法測定土壤有機質含量;利用堿解擴散法測定土壤堿解氮含量;采用鉬銻抗比色法分析土壤速效磷含量;利用火焰光度計測定土壤速效鉀含量。
1.2.4""樣品總DNA的提取""準確稱取0.4"g各處理的根際土壤。使用強力土壤DNA提取試劑盒(MoBio"Laboratories,"Carlsbad,"CA,"USA)提取DNA。參照試劑盒說明書進行試驗操作。提取后將所得DNA樣本存放于-70"℃冰箱中,備用。
1.2.5""香草蘭根際土壤病原菌總豐度測定""采用實時熒光定量PCR技術測定香草蘭病原菌的總豐度。病原菌特異性擴增引物為AFP308R和ITS1F[13]。采用含有尖孢鐮刀菌(Fusarium"oxysporum)ITS區(qū)域序列的質粒,通過10倍稀釋法建立標準曲線。利用ABI7500實時熒光定量PCR儀,按照PCR模板程序對標準曲線和樣本進行測定。PCR擴增體系:總體積20"μL,包含10"μL"SYBR?"Premix"Ex"Taq?"(2倍濃度,TaKaRa"Bio"Inc.,"Japan),每種引物0.4"μL(濃度達到10"μmol/L),0.4"μL"ROX"Reference"Dye"Ⅱ(50倍濃度),2"μL"DNA模板,6.8"μL無菌水。通過分析溶解曲線和擴增效率來評估PCR的擴增效果。每個樣本進行3次獨立測定,所得數據進行對數轉換,以每克干土對數拷貝數呈現結果。
1.2.6""香草蘭根際土壤樣品擴增子建庫測序""土壤細菌的16S"rRNA基因V4區(qū)域的擴增采用特異性引物520F和802R[18]。對于土壤真菌,擴增ITS區(qū)域的ITS1片段,使用的引物為ITS5F和ITS1R[19]。擴增過程中樣本會加上Barcodes/Linkers和Adapters以備測序。PCR擴增體系:25"μL"總混合體系,5倍反應緩沖液5"μL,5倍GC緩沖液5"μL,10"μmol/L的引物1"μL,模板DNA"2"μL,100"mmol/L"dNTP"5"μL,以及無酶水8.75"μL。PCR擴增參數設置:98"℃預變性,持續(xù)2"min;98"℃變性,持續(xù)15"s;細菌擴增的退火溫度為55"℃,持續(xù)30"s;真菌擴增的退火溫度為50"℃,同樣持續(xù)30"s;72"℃延伸,30"s;28~30個循環(huán)。
PCR擴增后的產物通過QIAquick"PCR"Purification"Kit(德國QIAGEN公司)進行純化處理。純化后的DNA樣本利用Qubit?2.0"Fluorometer(美國Invitrogen公司)測定其濃度。隨后,采用NEB"Next?"UltraTM"DNA"Library"Prep"Kit"for"Illumina(英國New"England"Biolabs公司)對等濃度混合的測序樣本構建測序文庫。
構建的文庫質量通過Agilent"2100"Bioanalyzer"Instruments(美國Agilent"Technologies"Co."Ltd)和KAPA"Library"Quantification"Kits(美國Kapa"Biosystems公司)進行檢測和驗證。從文庫構建到測序均由上海派森諾生物科技股份有限公司完成。
1.2.7""香草蘭根際土壤樣品數據生物信息學分析""原始測序數據首先通過Trimmomatic軟件[20](v0.33)進行質量篩選,去除低質量的序列;利用Cutadapt[21](v1.9.1)識別并剪除引物序列;利用USEARCH[22](v10)對成對的序列進行合并,并使用UCHIME[23](v8.1)去除嵌合體,獲得純凈的高質量序列。
使用QIIME2[24](v2020.6)中的DADA2[25]算法對經過質量控制的數據進行去噪處理。以測序所得序列總數的0.005%作為閾值,用于篩選和過濾掉異常序列變體。使用RDP"classifier工具對擴增的序列變體(ASV)進行序列比對分析,細菌的序列與RDP"Bacterial"16S"rRNA數據庫[26]進行匹配,真菌的序列與UNITE"Fungal"ITS數據庫[27]進行比對,確保準確識別其分類。"
在完成測序數據的質量控制后,共鑒定出327"794個細菌的序列變體(ASVs)和12"633個真菌的ASVs。Chao1和ACE指數用于評估微生物群落的物種豐富度,而Shannon和Invsimpson指數則用于衡量群落的多樣性。采用基于Bray-Curtis距離矩陣的主坐標分析(PCoA)和層次聚類分析測定微生物群落的Beta多樣性,并通過多元置換方差分析(PERMANOVA)來檢驗不同群落間的差異是否具有統(tǒng)計學意義。每個ASV的相對豐度以其在樣本中序列數占總序列數的百分比來表示。
利用randomForest包分析輪作作物間差異特異富集的核心微生物。網絡分析部分使用ggCluster Net包制圖,篩選出相關系數(r)gt;0.8且Plt;0.05
的數據點構建微生物間的相關性網絡圖。以上分析均在R軟件中完成。
采用Duncan’s新復極差法統(tǒng)計分析不同處理間的病原菌豐度、微生物多樣性指數、微生物門和屬水平的組成,以及土壤理化因子之間的差異顯著性;利用R語言中的vegan包進行線性擬合,探究病原菌與微生物多樣性、群落結構及組成之間的關系;采用一般線性模型(逐步回歸分析)的方法評估細菌和真菌群落及其多樣性和核心物種在抑制病原菌方面的潛力。
ITS測序結果發(fā)現,與撂荒(CK)和香草蘭連作(X)處理相比,輪作胡椒(H)、斑蘭葉(B)和糯米香茶(C)后根際土壤中的鐮刀菌屬(Fusarium)相對豐度均無顯著差異,但輪作斑蘭葉后呈降低趨勢,且輪作斑蘭葉顯著低于輪作糯米香茶處理(Plt;0.05,圖1A)。qPCR熒光定量結果則表明,與撂荒和香草蘭連作處理相比,輪作斑蘭葉和糯米香茶后則能顯著降低土壤中病原菌尖孢鐮刀菌(F."oxysporum)的拷貝數(Plt;0.05,圖1B)。以上結果表明,輪作斑蘭葉能有效降低土壤中病原菌的數量。
"
"
由表1可知,與香草蘭連作處理相比,輪作斑蘭葉和糯米香茶均能顯著提高土壤細菌群落的豐富度和多樣性(Plt;0.05),但二者之間無顯著差異;輪作胡椒能顯著提高土壤細菌群落的豐富度。對真菌群落而言,與撂荒和香草蘭連作處理相比,輪作斑蘭葉能顯著降低根際土壤微生物細菌群落的豐富度和多樣性(Plt;0.05);而與香草蘭連作處理相比,輪作胡椒顯著降低土壤真菌群落的豐富度。
土壤細菌方面,通過PCoA分析發(fā)現,根際土壤細菌群落變異形成了撂荒、香草蘭連作及輪
"
作(胡椒/斑蘭葉/糯米香茶)3種不同典型栽培模式的結構(圖2A)。而基于置換多元方差分析(PERMANOVA)表明,撂荒、連作和輪作分組間的群落結構呈顯著差異(R2=0.34,"Plt;0.01)。進一步層次聚類分析也表明,撂荒處理和連作香草蘭處理樣本間重復性良好,均能獨立聚為一簇,胡椒輪作也能聚為一簇,但輪作斑蘭葉和輪作糯米香茶群落結構極為相似,無明顯分區(qū)(圖2B)。細菌高通量測序結果表明,與連作香草蘭相比,輪作在優(yōu)勢門水平上顯著增加酸酐菌門(Acidoba cteria)、綠彎菌門(Chloroflexi)及Rokubacteria門類群的相對豐度(Plt;0.05,圖3A)。屬水平分析則發(fā)現,與連作香草蘭相比,輪作胡椒/斑蘭葉/糯米香茶處理則不同程度上顯著增加類諾卡氏屬(No cardioides)微生物,其增幅分別達到64.26%、98.54%和63.07%(圖2B)。
土壤真菌方面,通過PCoA分析表明,根際真菌土壤微生物群落也形成了撂荒、香草蘭連作及輪作(胡椒/斑蘭葉/糯米香茶)3種不同的結構(圖2C)。且經過置換多元方差檢驗也證實3種不同的群落結構呈顯著差異(R2=0.32,"Plt;0.01)。層次聚類結果表明,撂荒處理和香草蘭連作處理單獨聚為一類,輪作胡椒/斑蘭葉/糯米香茶的群落結構相似,錯綜交叉聚集,無明顯區(qū)分(圖2D)。基于ITS高通量測序則發(fā)現,與連作香草蘭相比,輪作在優(yōu)勢門水平上顯著增加子囊菌門(Ascomycota)類群的相對豐度(Plt;0.05,圖3B)。屬水平分析則發(fā)現,與連作香草蘭相比,輪作處理能特異顯著增加Ascobolus屬微生物的相對豐度,輪作胡椒、斑蘭葉和糯米香茶處理的Ascobolus屬相對豐度分別為4.69%、4.85%、1.75%,而連作香草蘭處理的相對豐度僅為0.01%(圖2D)。
線性回歸分析結果表明,土壤細菌微生物群落豐富度(Chao指數)、多樣性(Shannon指數)及群落結構(PCoA1)均與香草蘭枯萎病病原菌F."oxysporum拷貝數存在顯著負相關關系(Plt;"0.05,圖4A~圖4C);而土壤細菌中僅有門水平上的放線菌門(Actinobacteria)和綠彎菌門(Chloroflex)類群的相對豐度與病原菌F."oxysporum拷貝數呈顯著負相關(Plt;0.05,圖4D~圖4K);土壤真菌方面,真菌群落結構(PCoA1)、群落豐富度(Chao指數)及真菌組成子囊菌門(Ascomycota)類群相對豐度均與病原菌F."oxysporum拷貝數呈顯著負相關(Plt;0.05,圖4L~圖4O)。
為了識別撂荒、連作和輪作樣本間的差異關鍵核心物種,采用隨機森林分析并根據物種的貢獻度權重高低進行排序,排名前10的ASV物種如圖5所示。在細菌中,與連作香草蘭處理相比,輪作斑蘭葉和糯米香茶能特異富集ASV122517、ASV8386及ASV275757物種(Plt;0.05),且均與病原菌F."oxysporum呈顯著負相關(Plt;0.05,圖5A~圖5B)。而在真菌中,與連作香草蘭相比,輪作斑蘭葉能特異顯著富集ASV5998及ASV7292物種(Plt;0.05),且與病原菌F."oxysporum呈顯著負相關(Plt;0.05);而輪作糯米香茶后則能顯著富集ASV5434(Plt;"0.05),與病原菌F."oxysporum同樣呈顯著負相關關系(Plt;0.05,圖5C~圖5D)。
撂荒、連作及輪作處理的根際細菌和真菌相關性網絡具有明顯差異(圖6)。每個圓點代表1個ASV物種,并被注釋到門水平;橘黃色代表物種間呈正相關,藍色代表物種間呈負相關。每個處理的網絡拓撲性質如表2所示。結果表明,在細菌中,與連作香草蘭負相關連接數(43.55%)相比,輪作胡椒處理節(jié)點的負相關連接為38.89%,而輪作斑蘭葉和糯米香茶的則分別為45.45%和50.00%。連作與輪作之間的節(jié)點平均度差異不顯著,但輪作斑蘭葉和糯米香茶處理的平均聚類系數高于連作處理,特別是輪作斑蘭葉后平均聚類系數達0.50,而連作香草蘭的僅為0.19(圖6A)。
在真菌中(表2),與連作香草蘭相比,輪作胡椒/斑蘭葉/糯米香茶均不同程度地減少了節(jié)點負相關的連接數,增加了平均度和平均聚類系數。與連作香草蘭負相關連接數(9.89%)相比,輪作胡椒處理的負相關連接數為2.68%,輪作斑蘭葉的僅為1.23%,而輪作糯米香茶的為3.47%,表明輪作后根際土壤真菌群落結構更穩(wěn)定。與連作香草蘭節(jié)點平均度相比,輪作胡椒/斑蘭葉/糯米香茶的節(jié)點平均度均不同程度的增加,特別是輪作斑蘭葉后的真菌網絡節(jié)點平均度達到5.74,增加了2倍,菌群連接更緊密。此外,真菌類群在微生物網絡中的節(jié)點平均度普遍高于細菌類群,特別是子囊菌門(Ascomycota)類群(圖6B),表明子囊菌門在微生物互作中具有更重要的生態(tài)位。
綜合分析表明,在長期連作的香草蘭土壤上輪作胡椒/斑蘭葉/糯米香茶均會不同程度地增加細菌和真菌群落物種間互惠共生的正向作用,且輪作斑蘭葉效果更好。"
通過測定輪作不同香料作物后的土壤理化性質,結果表明,與連作香草蘭處理相比,輪作胡椒/斑蘭葉/糯米香茶均能顯著提高土壤pH,以及土壤有機質、堿解氮、速效磷和速效鉀的含量(Plt;0.05),但輪作斑蘭葉和糯米香茶后的pH和速效鉀含量無顯著差異(表3)。
將有效的土壤理化因子與尖孢鐮刀菌構建一般線性模型,用于評估土壤理化因子抑制病原菌增殖的可能性大小及預測其相對重要性。結果表明,5個土壤理化因子解釋了總模型變量的87.33%,其中,pH是影響病原菌濃度的一個顯著且關鍵的微生物生態(tài)指標(Plt;0.05),它對模型總變量的解釋度達到26.72%(表4)。
將對病原菌具有顯著負相關關系的微生物指"
示因子與病原菌再次構建線性模型,用于預測微生物因子抑制病原菌濃度的相對重要性。結果表明,細菌群落、真菌群落及子囊菌門(Ascomycota)類群相對豐度是抑制病原菌的顯著指示因子(Plt;0.05),分別解釋了17.01%、8.05%和11.22%的模型總變量(表4)。
連作障礙是指在同一片土地上連續(xù)種植相同作物,導致土壤養(yǎng)分失衡、病原菌累積和微生物群落失衡,進而限制作物生長,降低產量和品質的現象。香草蘭是一種熱帶多年生藤本植物,尤其容易受到連作障礙的影響。本團隊前期研究表明,通過輪作種植多年生作物胡椒可以有效改善土壤真菌群落結構及其組成,增強香草蘭的抗病性[11]。進一步篩選出熱帶特色、種植周期短且經濟效益高的香料作物斑蘭葉和糯米香茶進行輪作盆栽試驗,結果顯示,輪作斑蘭葉能顯著降低土壤中鐮刀菌屬的相對豐度,特別是減少了尖孢鐮刀菌的數量。這一發(fā)現與先前的輪作研究相符,證實了輪作可以有效控制病原菌的增長[11]。此外,類似的通過輪作減少作物土傳病害的研究亦廣泛開展。如辣椒-香蕉輪作[12]、茄子-香蕉輪作[28]和菠蘿-香蕉輪作[29]模式均能有效降低根際土壤中尖孢鐮刀菌的數量,增強香蕉的抗病性。輪作改變了植物宿主,打斷了病原菌的營養(yǎng)循環(huán)[3],這可能是提升香草蘭抗病能力的關鍵因素。
土壤微生物的多樣性和豐富度在植物應對環(huán)境壓力時發(fā)揮著關鍵作用,它們協(xié)助植物抵御外來侵害并促進植物恢復[3]。本研究發(fā)現,輪作周期短且經濟價值高的斑蘭葉和糯米香茶顯著提高了土壤細菌群落的豐富度和多樣性,而降低了土壤真菌群落的豐富度和多樣性。前期研究也發(fā)現,輪作多年生胡椒和咖啡能提高土壤真菌群落的豐富度和多樣性[11]。表明不同作物的輪作模式對細菌和真菌群落的豐富度和多樣性的影響有差異。特定的輪作作物通過激發(fā)特定的有益微生物類群的繁殖和生長,進而影響土壤微生物群落結構。而這些微生物與病原菌爭奪植物根部的生態(tài)位資源,限制了病原菌的營養(yǎng)來源,從而能有效控制其增長[30]。
已有研究表明,長期作物輪作后微生物群落結構和組成與連作栽培模式間有顯著差異[10]。本研究中,無論細菌還是真菌群落結構,撂荒、連作和輪作均能顯著區(qū)分,形成3種完全不同的群落結構,但輪作胡椒/斑蘭葉/糯米香茶之間的群落結構很相似,無法區(qū)分。這一發(fā)現與前期的輪作研究結果[11]一致。推測可能是輪作的時長不夠,還不足以富集到更多特異的微生物。由于輪作效應,微生物群落的變化將影響特定微生物的響應。進一步研究發(fā)現,輪作能顯著富集細菌門水平上的酸桿菌門(Acidobacteria)和綠彎菌門(Chloroflexi)微生物,屬水平則顯著富集類諾卡氏屬(Nocar dioides)微生物,且與病原菌呈顯著負相關;而真菌則顯著富集門水平上的子囊菌門(Ascomy cota)和屬水平上的Ascobolus屬微生物。雖然目前尚無足夠的證據表明這些微生物具有直接的抗病功能。但值得注意的是,這些微生物都是土壤中的優(yōu)勢菌門,可能是通過間接影響其他微生物的定殖而發(fā)揮抗病功能[31]。
為鑒定識別出各輪作作物特異富集且對病原菌有潛在拮抗功能的核心微生物,采用專業(yè)尋找生物標志物的隨機森林分析,研究發(fā)現,輪作斑蘭葉后能特異富集Terriglobus屬、克雷伯桿菌屬(Kribbella)和粘球菌屬(Myxococcus)核心細菌類群,以及枝頂孢霉屬(Acremonium)和帚枝霉屬(Sarocladium)真菌核心類群,且均與病原菌呈顯著負相關關系。值得注意的是,前期的胡椒輪作能顯著富集有益的拮抗真菌類群木霉屬(Trichoderma)和青霉屬(Penicillium),表明不同的輪作作物根系代謝物有差異,富集的特定有益微生物類群也有差異[32]。已有研究表明,克雷伯桿菌屬和粘球菌屬的微生物在土壤中廣泛分布,而枝頂孢霉屬及帚枝霉屬均屬于叢梗孢科(Hypomycetes)真菌微生物,均能產生多樣的次級代謝產物,而這些產物具有抗菌、抗生素和其他活性物質,是生物防治方面重要的微生物資源[33-35]。因此推測:這些具備生物防治特性的微生物種群豐度的變化可能影響了輪作過程中的病原菌數量,進而增強了香草蘭對病害的抵抗力。
基于數學算法構建的微生物共發(fā)生關系網絡,可用于研究微生物群落的多樣性、復雜性及穩(wěn)定性,近年來已被廣泛應用[36-38]?;诖耍瑢α袒?、連作、輪作胡椒、輪作斑蘭葉及輪作糯米香茶5個處理的根際土壤細菌和真菌分別構建了微生物網絡,通過綜合考量網絡特征系數,如正相關連接邊數、平均度、平均聚類系數等,發(fā)現輪作斑蘭葉后的細菌和真菌物種間互惠共生的正相關作用更強,可能通過ASV物種間更緊密的互作關系提高了根際微生物多樣性[39],從而提升了菌群協(xié)同抵抗病原菌入侵根際的能力。
前期研究得出,在高發(fā)枯萎病的香蕉園輪作辣椒后,通過提高土壤pH可重塑微生物組成,富集有益的假單胞菌屬(Pseudomonas)微生物,增強了香蕉的抗病性[14]。本研究也發(fā)現,輪作斑蘭葉和糯米香茶能顯著提升根際土壤pH,而土壤pH是限制病原菌的最顯著因子,可解釋模型變量的26.72%。進一步利用一般線性模型分析揭示了細菌群落、真菌群落以及子囊菌門的相對豐度在抑制病原菌方面起著顯著的作用。這與TAO等[40]的研究結果相符合,即根際細菌群落的變化對于抑制香蕉土傳枯萎病至關重要。
在土傳病害頻發(fā)的香草蘭園輪作斑蘭葉可顯著降低鐮刀菌屬的相對豐度和尖孢鐮刀菌的拷貝數,增加細菌群落的豐富度和多樣性。通過特異富集細菌Terriglobus屬、克雷伯桿菌屬(Krib bella)和粘球菌屬(Myxococcus)核心類群,以及真菌枝頂孢霉屬(Acremonium)及帚枝霉屬(Sarocladium)核心類群可重塑微生物群落組成。輪作斑蘭葉作物后可顯著提高土壤pH,土壤pH提升的同時影響了細菌和真菌的群落結構,從而抑制了病原菌的定殖,推測這些變化是輪作提高香草蘭抗病能力的重要原因。
參考文獻
[1]"MINOO"D,"JAYAKUMAR"V,"VEENA"S,"VIMALA"J,"BASHA"A,"SAJI"K,"BABU"K"N,"PETER"K."Genetic"variations"and"interrelationships"in"Vanilla"planifolia"and"few"related"species"as"expressed"by"RAPD"polymorphism[J]."Genetic"Resources"and"Crop"Evolution,"2008,"55(3):"459-470.
[2]"XIONG"W,"ZHAO"Q"Y,"ZHAO"J,"XUN"W,"LI"R,"ZHANG"R,"WU"H,"SHEN"Q."Different"continuous"cropping"spans"significantly"affect"microbial"community"membership"and"structure"in"a"vanilla-grown"soil"as"revealed"by"deep"pyrosequencing[J]."Microbial"Ecology,"2015,"70(1):"209-218.
[3]"TRIVEDI"P,"LEACH"J"E,"TRINGE"S"G,"SA"T"M,"SINGH"B"K."Plant-microbiome"interactions:"from"community"assembly"to"plant"health[J]."Nature"Reviews"Microbiology,"2020,"18(11):"607-621.
[4]"PEDRINHO"A,"MENDES"L,"DE"ARAUJO"PEREIRA"A,"VAISHNV"A,"KARPOUZAS,"SINGH"B"K."Soil"microbial"diversity"plays"an"important"role"in"resisting"and"restoring"degraded"ecosystems[J]."Plant"and"Soil,"2024,"500(1):"325-"349.
[5]"ROMERO"F,"HILFIKER"S,"EDLINGER"A,"HELD"A,"HARTMAN"K,"LABOUYRIE"M,"VAN"DER"M."Soil"microbial"biodiversity"promotes"crop"productivity"and"agro-"ecosystem"functioning"in"experimental"microcosms[J]."Science"of"The"Total"Environment,"2023,"885:"163683.
[6]"YARZáBAL"R,"áLVAREZ"P,"GUNDE-CIMERMAN"N,"CIANCAS"J,"GUTIéRREZ-CEPEDA"A,"OCA?A"A,"BATISTA-GARCíA"R."Exploring"extremophilic"fungi"in"soil"mycobiome"for"sustainable"agriculture"amid"global"change[J]."Nature"Communications,"2024,"15(1):"6951.
[7]"HARTMANN"M,"SIX"J."Soil"structure"and"microbiome"functions"in"agroecosystems[J]."Nature"Reviews"Earth"amp;"Environment,"2023,"4(1):"4-18.
[8]"LONGEPIERRE"M,"WIDMER"F,"KELLER"T,"WEISSKOPF"P,"COLOMBI"T,"SIX"J,"HARTMANN"M."Limited"resilience"of"the"soil"microbiome"to"mechanical"compaction"within"four"growing"seasons"of"agricultural"management[J]."ISME"Communications,"2021,"1(1):"44.
[9]"YANG"T"K,"SIDDIQUE"H"M,"LIU"K."Cropping"systems"in"agriculture"and"their"impact"on"soil"health:"a"review[J]."Global"Ecology"and"Conservation,"2020,"23:"e01118.
[10]"ZHOU"Y,"YANG"Z,"LIU"J,"LI"X,"WANG"X,"DAI"C,"ZHANG"T,"CARRION"V"J,"WEI"Z,"CAO"F."Crop"rotation"and"native"microbiome"inoculation"restore"soil"capacity"to"suppress"a"root"disease[J]."Nature"Communications,"2023,"14(1):"8126.
[11]"XIONG"W,"ZHAO"Q"Y,"XUE"C,"XUN"W"B,"ZHAO"J,"WU"H"S,"LI"R,"SHEN"Q"R."Comparison"of"fungal"community"in"black"pepper-vanilla"and"vanilla"monoculture"systems"associated"with"vanilla"Fusarium"wilt"disease"[J]."Frontiers"in"Microbiology,"2016,"7:"117.
[12]"HONG"S,"YUAN"X"F,"YANG"J"M,"YANG"Y,"JV"H"L,"LI"R,"JIA"Z"J,"RUAN"Y"Z."Selection"of"rhizosphere"communities"of"diverse"rotation"crops"reveals"unique"core"microbiome"associated"with"reduced"banana"Fusarium"wilt"disease[J]."New"Phytologist,"2023,"238(5):"2194-2209.
[13]"XIONG"W,"LI"R,"REN"Y,"LIU"C,"ZHAO"Q"Y,"WU"H"S,"JOUSSET"A,"SHEN"Q"R."Distinct"roles"for"soil"fungal"and"bacterial"communities"associated"with"the"suppression"of"vanilla"Fusarium"wilt"disease[J]."Soil"Biology"and"Biochemistry,"2017,"107:"198-207.
[14]"HONG"S,"JV"H"L,"LU"M,"WANG"B"B,"ZHAO"Y,"RUAN"Y"Z."Significant"decline"in"banana"Fusarium"wilt"disease"is"associated"with"soil"microbiome"reconstruction"under"chilli"pepper-banana"rotation[J]."European"Journal"of"Soil"Biology,"2020,"97:"103154.
[15]"CHEN"Y,"BONKOWSKI"M,"SHEN"Y,"GRIFFITHS"B"S,"JIANG"Y,"WANG"X,"SUN"B."Root"ethylene"mediates"rhizosphere"microbial"community"reconstruction"when"chemi cally"detecting"cyanide"produced"by"neighbouring"plants[J]."Microbiome,"2020,"8:"4.
[16]"鮑士旦."土壤農化分析[M]."3"版."北京:"中國農業(yè)出版社,"2000.BAO"S"D."Soil"analysis"in"agricultural"chemistry[M]."3rd"ed."Beijing:"China"Agricultural"Press,"2000."(in"Chinese)
[17]"CAPORASO"J"G,"LAUBER"C"L,"WALTERS"W"A,"BERG"L"D,"LOZUPONE"C"A,"TURNBAUGH"P"J,"FIERER"N,"KNIGHT"R."Global"patterns"of"16S"rRNA"diversity"at"a"depth"of"millions"of"sequences"per"sample[J]."Proceedings"of"the"National"Academy"of"Sciences"of"the"United"States"of"America,"2011,"108:"4516-4522.
[18]"SCHOCH"C"L,"SEIFERT"K"A,"HUHNDORF"S,"ROBERT"V,"SPOUGE"J"L,"LEVESQUE"C"A,"CHEN"W."Nuclear"ribosomal"internal"transcribed"spacer"(ITS)"region"as"a"universal"DNA"barcode"marker"for"fungi[J]."Proceedings"of"the"National"Academy"of"Sciences"of"the"United"States"of"America,"2012,"109(16):"6241-6246.
[19]"BOLGER"A"M,"LOHSE"M,"USADEL"B."Trimmomatic:"a"flexible"trimmer"for"Illumina"sequence"data[J]."Bioinformatics,"2014,"30(15):"2114-2120.
[20]"MARTIN"M."Cutadapt"removes"adapter"sequences"from"high-throughput"sequencing"reads[J]."EMBnet"Journal,"2011,"17(1):"10-12.
[21]"EDGAR"R"C."UPARSE:"highly"accurate"OTU"sequences"from"microbial"amplicon"reads[J]."Nature"Methods,"2013,"10(10):"996-999
[22]"EDGAR"R"C,"HAAS"B"J,"CLEMENTE"J"C,"QUINCE"C,"KNIGHT"R."UCHIME"improves"sensitivity"and"speed"of"chimera"detection[J]."Bioinformatics,"2011,"27(16):"2194-"2200.
[23]"BOLYEN"E,"RIDEOUT"J"R,"DILLON"M"R,"BOKULICH"N"A,"ABNET"C"C,"GHALITH"G"A,"ALEXANDER"H,"ALM"E"J,"ARUMUGAM"M,"ASNICAR"F."Reproducible,"interactive,"scalable"and"extensible"microbiome"data"science"using"QIIME"2[J]."Nature"Biotechnology,"2019,"37(8):"852-857.
[24]"CALLAHAN"B"J,"MCMURDIE"P"J,"ROSEN"M"J,"HAN"A"W,"JOHNSON"A"J"A,"HOLMES"S"P."DADA2:"high-resolu tion"sample"inference"from"Illumina"amplicon"data[J]."Nature"Methods,"2016,"13(7):"581-583.
[25]"WANG"Q,"GARRITY"G"M,"TIEDJE"J"M,"COLE"J"R."Naive"bayesian"classifier"for"rapid"assignment"of"rRNA"sequences"into"the"new"bacterial"taxonomy[J]."Applied"and"Environmental"Microbiology,"2007,"73(16):"5261-5267.
[26]"K?LJALG"U,"NILSSON"R"H,"ABARENKOV"K,"TEDERSOO"L,"TAYLOR"A"F"S,"BAHRAM"M,"BATES"S"T,"BRUNS"T"D,"BENGTSSON-PALME"J,"CALLAGHAN"T"M."Towards"a"unified"paradigm"for"sequence-based"identification"of"fungi[J]."Molecular"Ecology,"2013,"22(21):"5271-"5277.
[27]"趙娜,"李榮,"辛侃,"趙艷,"阮云澤,"符常明."茄科蔬菜輪作對高發(fā)枯萎病蕉園土壤可培養(yǎng)微生物的影響[J]."熱帶作物學報,"2014,"35(8):"1469-1474.ZHAO"N,"LI"R,"XIN"K,"ZHAO"Y,"RUAN"Y"Z,"FU"C"M."Effects"of"different"Solanaceae"crop"rotations"on"the"soil"culturable"microbes"in"an"orchard"with"serious"Fusarium"wilt"disease[J]."Chinese"Journal"of"Tropical"Crops,"2014,"35(8):"1469-1474."(in"Chinese)"
[28]"YUAN"X"F,"WANG"B"B,"HONG"S,"XIONG"W,"SHEN"Z"Z,"RUAN"Y"Z,"LI"R,"SHEN"Q"R,"DINI-ANDREOTE"F."Promoting"soil"microbial-mediated"suppressiveness"against"Fusarium"wilt"disease"by"the"enrichment"of"specific"fungal"taxa"via"crop"rotation[J]."Biology"and"Fertility"of"Soils,"2021,"57(8):"1137-1153.
[29]"CHA"J"Y,"HAN"S,"HONG"H"J,"CHO"H,"KIM"D,"KWON"Y,"KWON"S"K,"CRüSEMANN"M,"LEE"Y"B,"KIM"J"F."Microbial"and"biochemical"basis"of"a"Fusarium"wilt-suppressive"soil[J]."The"ISME"Journal,"2016,"10(1):"119-129.
[30]"WEN"T,"DING"Z,"THOMASHOW"L"S,"HALE"L,"YANG"S,"XIE"P,"LIU"X,"WANG"H,"SHEN"Q,"YUAN"J."Deciphering"the"mechanism"of"fungal"pathogen-induced"disease-suppres sive"soil[J]."New"Phytologist,"2023,"238(6):"2634-2650.
[31]"HUBER"K"J,"PESTER"M,"EICHORST"S"A,"NAVARRETE"A"A,"FOESEL"B"U."Acidobacteria:"towards"unraveling"the"secrets"of"a"widespread,"though"enigmatic,"phylum[J]."Frontiers"in"Microbiology,"2022,"13:"960602.
[32]"WEN"T,"XIE"P"H,"LIU"H"W,"LIU"T,"ZHAO"M"L,"YANG"S"D,"NIU"G"Q,"HALE"L,"SINGH"B"K,"KOWALCHUK"G"A,"SHEN"Q"R,"YUAN"J."Tapping"the"rhizosphere"metabolites"for"the"prebiotic"control"of"soil-borne"bacterial"wilt"disease[J]."Nature"Communications,"2023,"14:"4497.
[33]"VIRUéS-SEGOVIA"J"R,"REYES"F,"RUíZ"S,"MARTíN"J,"FERNáNDEZ-PASTOR"I,"JUSTICIA"C,"DE"M,"DíAZ"C,"MACKENZIE"T"A,"GENILLOUD"O."Kribbellichelins"A"and"B,"two"new"antibiotics"from"Kribbella"sp."CA-293567"with"activity"against"several"human"pathogens[J]."Molecules"(Basel,"Switzerland),"2022,"27(19):"6355.
[34]"SAGGU"S"K,"NATH"A,"KUMAR"S."Myxobacteria:"biology"and"bioactive"secondary"metabolites[J]."Research"in"Microbiology,"2023,"174(7):"104079.
[35]"PERDOMO"H,"SUTTON"D"A,"GARCíA"D,"FOTHERGILL"A"W,"CANO"J,"GENé"J,"SUMMERBELL"R"C,"RINALDI"M"G,"GUARRO"J."Spectrum"of"clinically"relevant"Acremonium"species"in"the"United"States[J]."Journal"of"Clinical"Microbiology,"2011,"49(1):"243-256.
[36]"XIONG"C,"ZHU"Y"G,"WANG"J"T,"SINGH"B,"HAN"L"L,"SHEN"J"P,"LI"P"P,"WANG"G"B,"WU"C"F,"GE"A"H."Host"selection"shapes"crop"microbiome"assembly"and"network"complexity[J]."New"Phytologist,"2021,"229(2):"1091-1104.
[37]"DE"VRIES"F"T,"GRIFFITHS"R"I,"BAILEY"M,"CRAIG"H,"GIRLANDA"M,"GWEON"H"S,"HALLIN"S,"KAISERMANN"A,"KEITH"A"M,"KRETZSCHMAR"M."Soil"bacterial"networks"are"less"stable"under"drought"than"fungal"networks[J]."Nature"Communications,"2018,"9:"3033.
[38]"GUSEVA"K,"DARCY"S,"SIMON"E,"ALTEIO"L"V,"MONTESINOS-NAVARRO"A,"KAISER"C."From"diversity"to"complexity:"microbial"networks"in"soils[J]."Soil"Biology"and"Biochemistry,"2022,"169:"108604.
[39]"WU"H,"GAO"T"H,"HU"A,"WANG"J"J."Network"complexity"and"stability"of"microbes"enhanced"by"microplastic"diversity[J]."Environmental"Science"amp;"Technology,"2024,"58:"4334-4345.
[40]"TAO"C"Y,"LI"R,"XIONG"W,"SHEN"Z"Z,"LIU"S"S,"WANG"B"B,"RUAN"Y"Z,"GEISEN"S"F,"SHEN"Q"R,"KOWALCHUK"G"A."Bio-organic"fertilizers"stimulate"indigenous"soil"Pseudomonas"populations"to"enhance"plant"disease"suppression[J]."Microbiome,"2020,"8(1):"137.
"