摘要:【目的】南方根結(jié)線蟲是威脅桃產(chǎn)業(yè)綠色發(fā)展的地下主要害蟲,開發(fā)抗性分子標(biāo)記,對抗性砧木分子育種具有重要意義?!痉椒ā扛鶕?jù)前人對桃砧木抗根結(jié)線蟲的定位結(jié)果,在GDR網(wǎng)站peach genome V2.0查詢定位區(qū)間的候選基因。在5個抗病、5個感病種質(zhì)中擴(kuò)增候選基因,并通過DNAMAN、IGV等軟件對候選基因進(jìn)行序列差異分析,開發(fā)抗南方根結(jié)線蟲KASP分子標(biāo)記,在抗性種質(zhì)筑波3號與感性種質(zhì)哈露紅的雜交F2群體中對該分子標(biāo)記進(jìn)行驗(yàn)證,并與前人開發(fā)的SCAR和35bp indel抗南方根結(jié)線蟲分子標(biāo)記的準(zhǔn)確性進(jìn)行比較?!窘Y(jié)果】KASP標(biāo)記結(jié)果將基因型劃分為3種,分別為抗性純合型(A),抗性雜合型(B),感性純合型(C),A∶B∶C=42∶94∶64,與表型符合率為88.5%;SCAR標(biāo)記檢測結(jié)果劃分為2種,分別為抗病型(A1)和感病型(C1),A1∶C1=135∶65,與表型符合率為87.0%;35bp indel分子標(biāo)記分為3種類型,分別為抗性純合型(A2),抗性雜合型(B2),感性純合型(C2),A2∶B2∶C2=1∶154∶45,與表型符合率為52.0%?!窘Y(jié)論】本研究中開發(fā)的KASP標(biāo)記提高了分子標(biāo)記選擇準(zhǔn)確率,對抗南方根結(jié)線蟲分子育種具有重要意義。
關(guān)鍵詞:桃;KASP標(biāo)記;南方根結(jié)線蟲;抗性
中圖分類號:S662.1文獻(xiàn)標(biāo)志碼:A文章編號:1009-9980(2024)07-1429-
Development and utilization of molecular markers for resistance of peach(Prunus persica)rootstocks to southern root-knot nematodes
WANG Huimin1,LI Yong2,3,WU Jinlong2,LI Wenqing2,CAO Ke2,WANG Xinwei2,3,WANG Lirong2,3*
(1School of Horticulture and Forestry,Tarim University,Alar 843300,Xinjiang,China;2Zhengzhou Fruit Research Institute,Chinese Academy of Agricultural Sciences,Zhengzhou 450009,Henan,China;3Institute of Western Agricultural,Chinese Academy of Agricultur-al Sciences,Changji 831100,Xinjiang,China)
Abstract:【Objective】Meloidogyne incognita is an underground pest threatening the development of peach industry.It is of great significance to develop molecular markers for the resistance to the pest for breeding new rootstocks.【Methods】According to the mapping results of peach rootstocks published by the predecessors,the candidate genes in the mapping interval were queried in GDR website Peach Ge-nome V2.0.The candidate genes were amplified by PCR in five resistant germplasm Nemaguard,Oki-nawa,Tsukuba 2,Tsukuba 3 and Shouxingtao 1,and five susceptible germplasm Bailey,Kashi 1,Kashi 2,Harrow Blood and Siberian C.The target fragments of PCR products were purified,ligated and se-quenced by agarose gel electrophoresis.The hybrid F2 population of disease-resistant germplasm Tsuku-ba 3 and susceptible germplasm Harrow Blood was inoculated with M.incognita,and the phenotypes of the population were investigated three months later to verify the accuracy of the KASP marker,and compared with the accuracy of molecular markers developed by the predecessors for the resistance to Meloidogyne incognita in SCAR and 35 bp indel.【Results】Six candidate genes were found through previous studies,namely Prupe.2G055500,Prupe.2G055600,Prupe.2G055700,Prupe.2G055800,Prupe.2G055900 and Prupe.2G056000.Through sequence comparison,it was found that there were regular variations in the resistant and susceptible varieties of the gene Prupe.2G055500,and there was a 2 bp indel variation(Pp02:6 601 310 bp,G→GAT)in its intron,and at insertion existed in the resistant varieties,but not in the susceptible varieties.In addition,using IGV software,with v2.0.a1 version as the reference genome,the same results were found in 10 resequencing data of peach germplasm materi-als.A molecular marker for genotyping was developed by using the above mutation sites.Five resistant germplasm and five susceptible germplasm were detected by this marker.The results showed that FAM and HEX fluorescence signals were simultaneously detected in the resistant germplasm Nemaguard,and the signal point was red,and the genotype was AT/--;The signal points of resistant germplasm Oki-nawa Tsukuba2 Tsukuba3 Shouxingtao 1 are green,aggregated near the Y axis,and the genotype is AT/AT;The signals of sensitive germplasm Bailey Kashi 1 Kashi2 Harrow Blood Siberian C are blue,ag-gregated near the X axis,and the genotype is--/--.The detection results of KASP marker in F2 popula-tion divided the genotypes into three types,green fluorescence was homozygous for resistance(A),red fluorescence was heterozygous for resistance(B),blue fluorescence was homozygous for sensibility(C),and A∶B∶C=42∶94∶64 was close to 1∶2∶1,which was consistent with separation of mendelian law.The detection results of SCAR markers in F2 population were also divided into two types.The ma-terials with target bands were resistant(A1),and the materials without target bands were sensitive(C1),and A1∶C1=135∶65,which did not conform to separation phenomenon.Three bands can be amplified by 35 bp indel marker in F2 population.Taking Hong Gen Gan Su Tao 1 as control,one band in the same position is classified as A2,two corresponding bands in the same position are classified as B2,and no band in the same position is classified as C2,and A2∶B2∶C2=1∶154∶45,which is not in confor-mity with separation phenomenon.The phenotypic survey ofF2 population showed that the ratio of root-less nodules to rootless nodules was 147:53.Based on the phenotypic investigation results ofF2 popula-tion resistance to Meloidogyne incognita,the selection efficiency of three markers was evaluated.The results showed that the selection coincidence rate of KASP for resistant materials was 95.6%,that of susceptible materials was 73.4%,and the total coincidence rate was 88.5%.The selection coincidence rate of SCAR marked as resistant material is 94.8%,that of scar marked as sensitive material is 70.8%,and the total coincidence rate is 87.0%.The selection coincidence rate of 35 bp indel marked as resis-tant materials was 66.5%,and the total coincidence rate was 52.0%.Among the three molecular mark-ers for resistance to Meloidogyne incognita,the correct rate of KASP molecular marker was the highest,followed by SCAR marker,and the correct rate of 35 bp indel marker was the lowest.【Conclusion】Based on the mapping results of resistance genes of cultivated peaches to Meloidogyne incognita,this study developed a KASP molecular marker,which was verified in the F2 population.It was found that the KASP molecular marker developed in this study had the highest accuracy compared with the molec-ular marker developed by predecessors.The development of this marker improves the selection efficien-cy of resistant varieties and provides resources for accelerating molecular breeding.
Keywords:Peach;KASP marker;Meloidogyne incognita;Resistance
根結(jié)線蟲是一種重要的植物寄生性線蟲,主要危害作物根系[1-2],嚴(yán)重影響農(nóng)業(yè)生產(chǎn)。在桃產(chǎn)業(yè)中,根結(jié)線蟲感染會導(dǎo)致樹勢衰弱、果實(shí)產(chǎn)量和品質(zhì)降低,甚至死樹。南方根結(jié)線蟲是危害我國桃樹的主要線蟲種類[3]。對比傳統(tǒng)化學(xué)防治方法,選用抗性砧木是解決根結(jié)線蟲危害問題的根本途徑。前人研究發(fā)現(xiàn)野生種質(zhì)紅根甘肅桃1號(P.kansuensis)對南方根結(jié)線蟲完全免疫,山桃(P.davidiana)以及壽星桃1號(P.persica)對南方根結(jié)線蟲高抗[4]。
近年來,分子標(biāo)記輔助育種在植物中得到廣泛應(yīng)用,顯著提高了選擇的準(zhǔn)確性,縮短了育種周期。李肯等[5]利用indel分子標(biāo)記檢測32份甜瓜基因型,檢測結(jié)果與表型符合率極高;吳翼等[6]利用分子標(biāo)記對100株香水椰子的純度進(jìn)行檢驗(yàn),發(fā)現(xiàn)分子標(biāo)記結(jié)果與表型鑒定完全吻合,可用于鑒定苗期香水椰子的純度;劉廣等[7]利用篩選到的3個分子標(biāo)記檢測20份西瓜材料抗枯萎病情況,檢測結(jié)果與表型基本一致。由于不同研究者利用的遺傳群體不同,因此得到的標(biāo)記與性狀連鎖距離的遠(yuǎn)近不同,甚至位于不同的染色體上[8]。在桃上,為獲得與桃抗南方根結(jié)線蟲緊密連鎖的標(biāo)記,劉偉[9]利用分子標(biāo)記將紅根甘肅桃抗南方根結(jié)線蟲基因定位在LG5(linkage group,LG),緊密連鎖M3E15-300標(biāo)記;Cao等[10]、張倩[11]利用多種分子標(biāo)記如SSR、RGA等將野生種質(zhì)紅根甘肅桃1號的抗南方根結(jié)線蟲基因PkMi定位到2號染色體頂端,位于兩個標(biāo)記NBS29與NBS3之間,連鎖SSR的標(biāo)記UDP98-025,隨后通過標(biāo)記加密鑒定到了紅根甘肅桃抗南方根結(jié)線蟲關(guān)鍵基因并加以驗(yàn)證。Duval等[12]利用[(Pamirskij×Rubira)×(Mont-clar×Nemared)]的雜交群體,將栽培桃(P.persica)抗性基因定位在2號染色體,但與野生種質(zhì)紅根甘肅桃1號抗性基因位置不同,位于A20 SNP和SNP_APP91標(biāo)記之間,約92kb,關(guān)鍵基因尚不明確。
栽培桃是桃砧木的最重要類型。筆者在本研究中基于Duval等[12]對栽培桃抗南方根結(jié)線蟲的定位結(jié)果,擬通過定位區(qū)間內(nèi)序列差異比較,鎖定候選關(guān)鍵基因,開發(fā)抗南方根結(jié)線蟲的相關(guān)分子標(biāo)記,以期在抗南方根結(jié)線蟲砧木育種中應(yīng)用。
1材料和方法
1.1試驗(yàn)材料
5個表型為抗南方根結(jié)線蟲的品種:列瑪格、阿克拉娃、筑波2號、筑波3號、壽星桃1號;5個表型感性品種:貝蕾、喀什1號、喀什2號、哈露紅、西伯利亞C[13]。雜交F2代群體為筑波3號(抗)×哈露紅(感)。
線蟲材料取自中國農(nóng)業(yè)科學(xué)院鄭州果樹研究所桃園,鑒定為南方根結(jié)線蟲后接種至番茄苗中進(jìn)行繁殖備用。
1.2候選基因的確認(rèn)
通過Duval等[12]對栽培桃的定位結(jié)果,桃抗根結(jié)線蟲基因在標(biāo)記A20SNP與SNP_APP91的92kb區(qū)間內(nèi),通過GDR網(wǎng)站在peach genome V2.0中對該候選序列進(jìn)行BLAST找到對應(yīng)區(qū)域包含的所有候選基因共6個。利用IGV可視化和Excel表查看10份種質(zhì)的基因組重測序結(jié)果,挑選具有規(guī)律性序列差異的基因進(jìn)行下一步驗(yàn)證[14]。
1.3葉片DNA的提取、PCR擴(kuò)增及測序
采集筑波3號(抗)×哈露紅(感)F2群體(共200株)及10份種質(zhì)的葉片,用CTAB法提取DNA。DNA的質(zhì)量與濃度用紫外分光光度儀NanoDrop 1000 spectrophotometer(Themo Scientific)測定,利用無菌水將其稀釋至100~200 ng·μL-1后保存至-20℃。在10份種質(zhì)中對候選基因進(jìn)行基因組序列擴(kuò)增(擴(kuò)增引物見表1),擴(kuò)增模板為H2O 7μL,上、下游引物各1μL,1μL DNA以及10μL Mix(南京諾唯贊生物科技股份有限公司,南京)。擴(kuò)增條件按照Mix說明書進(jìn)行。PCR產(chǎn)物通過凝膠電泳后,參考韋瑩華等[15]的方法稍作修改,將產(chǎn)物進(jìn)行回收、連接載體、挑取單克隆并通過陽性鑒定后將菌液交由生工生物工程(上海)股份有限公司測序、拼接,查看序列差異的軟件為DNAMAN。
1.4 KASP標(biāo)記基因分型
競爭性等位基因特異性PCR(KASP)擴(kuò)增參考吉爽秋等[16]的方法,所用熒光為六氯熒光素(hexachlo-rouorescein,HEX)和羧基熒光素(carboxy fluorescein,F(xiàn)AM),引物序列見表2。
1.5 2個分子標(biāo)記的檢測
采用前人開發(fā)的SCAR分子標(biāo)記和35bp indel分子標(biāo)記檢測200株實(shí)生苗抗南方根結(jié)線蟲情況[17-18]。利用2個標(biāo)記分別對200株實(shí)生苗進(jìn)行PCR序列擴(kuò)增(引物見表3),SCAR標(biāo)記檢測結(jié)果通過凝膠電泳查看,35 bp indel分子標(biāo)記檢測結(jié)果通過聚丙烯酰胺凝膠電泳查看。
1.6 F2群體表型的調(diào)查
參考吳波鴻[19]的方法稍作修改,收集番茄根上繁殖的南方根結(jié)線蟲蟲卵,在28℃培養(yǎng)箱孵化5d后收集南方根結(jié)線蟲二齡幼蟲(J2)制成線蟲懸浮液于50 mL離心管中,隨后在顯微鏡下確認(rèn)該懸浮液濃度為50頭J2·100μL-1。對20株桃苗進(jìn)行南方根結(jié)線蟲的接種,每盆接種3 mL。接種后定期對溫室的桃苗進(jìn)行管理,3個月后調(diào)查表型,觀察桃苗有無根結(jié)。
1.7 3個單一標(biāo)記在雜交群體中的選擇符合率
抗性符合率=標(biāo)記為抗性的F2群體中表型為無根結(jié)的個數(shù)/標(biāo)記檢測為無根結(jié)的群體總數(shù);感性符合率=標(biāo)記為感性的F2群體中表型為有根結(jié)的個數(shù)/標(biāo)記檢測為有根結(jié)的群體總數(shù)。
2結(jié)果與分析
2.1候選基因的確認(rèn)及序列差異分析
根據(jù)Duval等[12]對栽培桃抗南方根結(jié)線蟲的定位結(jié)果,找到了6個候選基因即Prupe.2G055500、Prupe.2G055600、Prupe.2G055700、Prupe.2G055800、Prupe.2G055900和Prupe.2G056000。利用重測序數(shù)據(jù)查看候選基因的序列差異情況,發(fā)現(xiàn)基因Prupe.2G055500在抗感品種中存在規(guī)律性變異位點(diǎn)。為進(jìn)一步驗(yàn)證,筆者在5個抗性和5個感性品種中對該基因進(jìn)行擴(kuò)增、測序,經(jīng)軟件DNAMAN比對后發(fā)現(xiàn)基因Prupe.2G055500在抗、感品種中確實(shí)存在規(guī)律性變異,其內(nèi)含子上存在一個2bp的ins變異(Pp02:6 601 310 bp,G→GAT),抗性品種存在AT插入,感性品種無(圖1);另外,以v2.0.a1版本為參考基因組,通過IGV軟件查看10份桃種質(zhì)材料的重測序數(shù)據(jù),并進(jìn)行序列的比對、分析,發(fā)現(xiàn)了同樣的結(jié)果(圖2),表明該插入具有高度準(zhǔn)確性。
2.2 KASP分子標(biāo)記的開發(fā)與檢測
結(jié)合上述對候選基因序列的比對結(jié)果,筆者在該位點(diǎn)開發(fā)了一個用于基因分型的KASP分子標(biāo)記。利用該標(biāo)記對5份抗性種質(zhì)和5份感性種質(zhì)進(jìn)行目標(biāo)位點(diǎn)基因型檢測,發(fā)現(xiàn)抗性種質(zhì)列瑪格同時檢測到FAM和HEX熒光信號,信號點(diǎn)為紅色,基因型為AT/--;抗性種質(zhì)阿克拉娃、筑波2號、筑波3號和紅壽星信號點(diǎn)為綠色,聚合在y軸附近,基因型為AT/AT;感性種質(zhì)喀什1號、貝蕾、喀什2號、哈露紅和西伯利亞C的信號為藍(lán)色,聚合在x軸附近,基因型為--/--。
為檢驗(yàn)KASP分子標(biāo)記的適用性和有效性,利用抗性材料筑波3號和感性材料哈露紅的F2代200株個體進(jìn)行驗(yàn)證。利用KASP標(biāo)記對每份單株進(jìn)行目標(biāo)位點(diǎn)基因型檢測,結(jié)果顯示該群體有3種基因型,把熒光信號為綠色的顯性純合類基因型記為A,熒光信號為紅色的顯性雜合類基因型記為B;熒光信號為藍(lán)色的隱性純合類基因型記為C(圖3)。200株實(shí)生苗的基因分型結(jié)果如下:A類的材料有42份,占總?cè)后w的21.0%;B類的材料有94份,占總?cè)后w的47.0%;C類的材料有64份,占總?cè)后w的32.0%??剐约兒希ˋ)∶抗性雜合(B)∶感性(C)=42∶94∶64,接近1∶2∶1。經(jīng)卡方檢驗(yàn)可知χ2=5.56,p值>0.05,結(jié)果表明內(nèi)含子的插入與根結(jié)線蟲抗性顯著相關(guān),說明該分子標(biāo)記符合孟德爾分離定律,且抗南方根結(jié)線蟲基因?yàn)轱@性遺傳,與前人研究結(jié)果較一致[20]。
2.3 SCAR、35 bp indel分子標(biāo)記檢測結(jié)果
利用前人已開發(fā)的SCAR標(biāo)記[17]、紅根甘肅桃35 bp indel[18]分子標(biāo)記對F2群體200株實(shí)生苗進(jìn)行基因分型。通過瓊脂糖凝膠電泳查看SCAR標(biāo)記結(jié)果,將結(jié)果劃分為A1、C1兩類。其中A1為抗南方根結(jié)線蟲,C1為感南方根結(jié)線蟲。部分SCAR標(biāo)記結(jié)果如圖4所示,擴(kuò)增出A1類條帶的材料有135份,占總?cè)后w的67.5%;擴(kuò)增出C1類條帶的材料有65份,占總?cè)后w的32.5%。即SCAR分子標(biāo)記檢測結(jié)果為抗南方根結(jié)線蟲的植株有135株,對南方根結(jié)線蟲感性的植株有65株,經(jīng)卡方檢驗(yàn)可知χ2=6.00,p值<0.05,不符合分離定律。
通過聚丙烯酰胺凝膠電泳35bp indel分子標(biāo)記擴(kuò)增出了3種類型的條帶,分別記為A2、B2、C2。部分標(biāo)記檢測結(jié)果如圖5所示,以抗性材料紅根甘肅桃1號為對照,在該位點(diǎn)有1條帶記為A2類,在該位點(diǎn)有對應(yīng)2條帶記為B2類,在該位點(diǎn)無條帶則記為C2類。結(jié)果顯示,擴(kuò)增出A2類型條帶的材料有1份,占總?cè)后w的0.5%;擴(kuò)增出B2類型條帶的材料有154份,占總?cè)后w的77.0%;擴(kuò)增出C2類型條帶的材料有45份,占總?cè)后w的22.5%,A2∶B2∶C2=1∶154∶45。標(biāo)記結(jié)果表明200株實(shí)生苗中抗根結(jié)線蟲的有155株,感性的有45株,抗∶感≈3∶1,卡方檢驗(yàn)顯示χ2=0.67,p值>0.05,該位點(diǎn)的缺失與根結(jié)線蟲的抗性有顯著相關(guān)性。在聚丙烯酰胺凝膠電泳結(jié)果中顯示超過2/3的植株在該處均有2條帶,說明該群體在此處的基因型大多為雜合。
2.4 3個分子標(biāo)記的選擇效率分析
對F2群體接種南方根結(jié)線蟲,3個月后調(diào)查該群體對南方根結(jié)線蟲的抗性情況。結(jié)果如表4所示,無根結(jié)與有根結(jié)之比為2.77∶1,經(jīng)卡方檢驗(yàn)可知χ2=0.24,p值>0.05,該群體符合孟德爾遺傳定律?;贔2群體對南方根結(jié)線蟲抗性的表型調(diào)查結(jié)果,評價3個標(biāo)記的選擇效率。從表5中可以看出,具有KASP標(biāo)記的A類抗性基因型材料有42份,其中表型鑒定為抗性的材料有41份,抗性選擇符合率為97.6%;具有KASP標(biāo)記的B類抗性基因型材料有94份,表型鑒定為抗性的材料有89份,抗性選擇符合率為94.7%;具有KASP標(biāo)記的C類感性基因型材料有64份,表型鑒定為感性的材料有47份,感性選擇符合率為73.4%,總符合率達(dá)到88.5%。具有SCAR標(biāo)記的A1類抗性帶型的材料有135份,其中表型鑒定結(jié)果為抗性的材料有128份,抗性選擇符合率為94.8%;具有SCAR標(biāo)記的C1類感性帶型的材料有65份,表型鑒定為感性的材料有46份,感性選擇符合率為70.8%,總符合率也達(dá)到87.0%。具有35 bp in-del分子標(biāo)記為A2類抗性帶型的材料有1份,無表型鑒定為抗性的材料,抗性表型選擇符合率為0;具有35 bp indel分子標(biāo)記為B2類的抗性帶型材料有154份,表型鑒定為抗性的材料有103份,抗性選擇符合率為66.9%;具有35 bp indel分子標(biāo)記為C2類的抗性帶型的材料有45份,表型鑒定為感性的材料只有1份,感性選擇符合率為2.2%,總符合率為52.0%??傊?,3個抗南方根結(jié)線蟲分子標(biāo)記中,KASP分子標(biāo)記檢測的正確率最高;SCAR標(biāo)記次之,但同樣正確率較高;35bp indel分子標(biāo)記的正確率最低。
3討論
目前已報道的、能完全用于商業(yè)化生產(chǎn)的抗根結(jié)線蟲基因很有限,野生秘魯番茄中的Mi基因運(yùn)用最廣泛[21]。在育種改良過程中,研究者利用不同分子標(biāo)記檢測了供試番茄中的Mi基因,發(fā)現(xiàn)檢測結(jié)果差異明顯,有的檢測方法如CAPS檢測Mi基因的時候存在明顯假陽性,而另一種標(biāo)記方法即SCAR標(biāo)記檢測相比之下更穩(wěn)定、便捷[22-25]。在李屬植物中,Ma、Rmia、Rmja為已知的抗線蟲基因。目前桃的抗性基因Rmia能完全抑制根結(jié)線蟲繁殖和根結(jié)線蟲蟲癭的形成,對南方根結(jié)線蟲、大豆根結(jié)線蟲都具有抗性[26-27]。Duval等[28]利用分子標(biāo)記評估該基因?qū)ι形礄z測過的埃塞俄比亞根結(jié)線蟲(M.ethiopica)的抗性,發(fā)現(xiàn)基因分型結(jié)果與表型完全匹配,說明該基因能完全控制M.ethiopica,同時更新了基因Ma、Rmia、Rmja對線蟲的抗性譜系,發(fā)現(xiàn)Ma基因?qū)€蟲具有廣譜抗性。筆者在本研究中所用SCAR標(biāo)記位于LG2抗性基因座附近,35 bp indel分子標(biāo)記位于紅根甘肅桃1號抗南方根結(jié)線蟲基因啟動子區(qū),KASP標(biāo)記位于2號染色體候選基因Pru-pr.2G055500的內(nèi)含子上。利用不同分子標(biāo)記檢測栽培桃F2群體對南方根結(jié)線蟲的抗性,發(fā)現(xiàn)35 bp indel分子標(biāo)記檢測結(jié)果與另外兩個標(biāo)記結(jié)果的準(zhǔn)確率相比差異顯著,這說明野生種質(zhì)紅根甘肅桃1號與栽培桃的抗性基因不同;SCAR標(biāo)記與KASP標(biāo)記準(zhǔn)確率較接近,原因可能是所用的遺傳群體與樣本數(shù)量不同。為加快育種進(jìn)程,利用抗性基因開發(fā)分子標(biāo)記可提高材料中抗性基因篩選的效率,為選育具有綜合抗病的新品種奠定基礎(chǔ)。范惠冬等[29]利用抗性基因分子標(biāo)記分析105份番茄種質(zhì)資源中7個病害相關(guān)的8個抗性基因的分布情況,為抗性基因的聚合育種提供了參考。筆者通過分析定位區(qū)間內(nèi)的變異,僅在候選基因上找到一處與抗感性顯著相關(guān)的2bp indel變異位點(diǎn),隨后開發(fā)分子標(biāo)記并在群體中進(jìn)行驗(yàn)證準(zhǔn)確率為89.0%,較已報道的標(biāo)記準(zhǔn)確率高。但由于標(biāo)記準(zhǔn)確率未達(dá)到100%,推測該變異位點(diǎn)為連鎖標(biāo)記,可能并非功能性變異,筆者下一步將對候選區(qū)間內(nèi)結(jié)構(gòu)變異、轉(zhuǎn)座子變異等不同變異類型進(jìn)行檢測,并在群體中開展準(zhǔn)確率和功能驗(yàn)證,發(fā)掘南方根結(jié)線蟲抗性關(guān)鍵基因。
在本研究中,群體的表型調(diào)查結(jié)果符合分離定律,但一定程度上也受環(huán)境影響。一方面,南方根結(jié)線蟲的生長和侵染受土壤溫度和濕度影響,適合J2侵染的溫度為15℃~30℃[30-32]。研究發(fā)現(xiàn),溫度超過35℃或低于5℃都會抑制南方根結(jié)線蟲的生長,最適宜根結(jié)線蟲生活的土壤濕度為6%,土壤過于干燥或濕潤均不利于南方根結(jié)線蟲的活動[32-33]。另一方面,植物對線蟲有一定的趨避性,感病植株在接觸線蟲時可能會躲避線蟲的進(jìn)攻。Duval等[28]研究發(fā)現(xiàn),易感苗在線蟲侵染時偶爾會躲避線蟲的進(jìn)攻而產(chǎn)生假抗性個體,為保證評估表型的準(zhǔn)確率,需對植株進(jìn)行持續(xù)性接種根結(jié)線蟲以降低錯評植株的風(fēng)險。因此,筆者在本試驗(yàn)中改良了抗性鑒定指標(biāo),以根結(jié)有無替代根結(jié)率作為評價指標(biāo),顯著提高了表型鑒定的準(zhǔn)確率。另外,也可通過延長線蟲侵染時間和多次接種根結(jié)線蟲提高表型數(shù)據(jù)的準(zhǔn)確性和穩(wěn)定性。
4結(jié)論
基于前人對栽培桃抗南方根結(jié)線蟲基因的定位結(jié)果,開發(fā)了一個KASP分子標(biāo)記,并在雜交F2代群體中進(jìn)行驗(yàn)證,發(fā)現(xiàn)與前人開發(fā)的抗南方根結(jié)線蟲分子標(biāo)記比較,筆者在本研究中開發(fā)的KASP標(biāo)記準(zhǔn)確率最高。該標(biāo)記的開發(fā)提高了抗性品種的選擇效率,為加快分子育種進(jìn)程提供了資源。
參考文獻(xiàn)References:
[1]舒梅,馮紹衛(wèi),何志強(qiáng).甜瓜‘傣姑’冬春栽培技術(shù)[J].農(nóng)業(yè)科技通訊,2019(3):270-274.
SHU Mei,F(xiàn)ENG Shaowei,HE Zhiqiang.Cultivation techniques of melon‘Daigu’in winter and spring[J].Bulletin of Agricultur-al Science and Technology,2019(3):270-274.
[2]李紅琴.兩種高山藥材根結(jié)線蟲病防治藥劑篩選[D].昆明:云南農(nóng)業(yè)大學(xué),2023.
LI Hongqin.Screening of Meloidogyne hapla nematicides for tow alpine medicinal plants[D].Kunming:Yunnan Agricultural University,2023.
[3]朱更瑞,王力榮,左覃元,張學(xué)煒.桃根結(jié)線蟲種的鑒定及最佳接種方法研究[J].果樹科學(xué),2000,17(增刊):30-35.
ZHU Gengrui,WANG Lirong,ZUO Qinyuan,ZHANG Xuewei.Identification of peach root-knot nematode species and study on the best inoculation method[J].Journal of Fruit Science,2000,17(Suppl.):30-35.
[4]朱更瑞,王力榮,左覃元,張學(xué)煒.桃砧木資源對南方根結(jié)線蟲的抗性[J].果樹科學(xué),2000,17(增刊):36-39.
ZHU Gengrui,WANG Lirong,ZUO Qinyuan,ZHANG Xuewei.Resistance of peach rootstock resources to southern root-knot nematodes[J].Journal of Fruit Science,2000,17(Suppl.):36-39.
[5]李肯,張偉,武云鵬,潘靜怡,彭冬秀,張若緯.甜瓜果肉硬度分子標(biāo)記的開發(fā)與利用[J].華北農(nóng)學(xué)報,2023,38(5):94-101.
LI Ken,ZHANG Wei,WU Yunpeng,PAN Jingyi,PENG Dongxiu,ZHANG Ruowei.Development and utilization of mo-lecular markers for identification of pulp firmness in melon[J].Acta Agriculturae Boreali-Sinica,2023,38(5):94-101.
[6]吳翼,李靜,楊耀東.利用SSR分子標(biāo)記快速鑒定香水椰子種苗純度[J].分子植物育種,2023,21(6):1977-1984.
WU Yi,LI Jing,YANG Yaodong.Rapid identification of aromat-ic coconut purity by SSR molecular markers[J].Molecular Plant Breeding,2023,21(6):1977-1984.
[7]劉廣,黃曉云,徐錦華,張曼,姚協(xié)豐,婁麗娜,徐建,侯茜,朱凌麗,羊杏平.西瓜枯萎病抗性分子標(biāo)記篩選與應(yīng)用[J].江蘇農(nóng)業(yè)科學(xué),2022,50(18):279-283.
LIU Guang,HUANG Xiaoyun,XU Jinhua,ZHANG Man,YAO Xiefeng,LOU Lina,XU Jian,HOU Qian,ZHU Lingli,YANG Xingping.Screening and application of molecular markers for Fusarium wilt resistance in watermelon[J].Jiangsu Agricultural Sciences,2022,50(18):279-283.
[8]姚曉云,陳春蓮,熊運(yùn)華,黃永萍,彭志勤,劉進(jìn),尹建華.水稻加工和外觀品質(zhì)性狀QTL鑒定[J].中國水稻科學(xué),2023,37(5):507-517.
YAO Xiaoyun,CHEN Chunlian,XIONG Yunhua,HUANG Yongping,PENG Zhiqin,LIU Jin,YIN Jianhua.Identification of QTL for milling and appearance quality traits in rice(Oryza sativa L.)[J].Chinese Journal of Rice Science,2023,37(5):507-517.
[9]劉偉.甘肅桃遺傳連鎖圖譜的構(gòu)建及抗南方根結(jié)線蟲的分子標(biāo)記[D].南京:南京農(nóng)業(yè)大學(xué),2010.
LIU Wei.Genetic linkage map construction of Prunus kansuen-sis and molecular markers for resistance to root-kont nematode(Meloidogyne incognita)[D].Nanjing:Nanjing Agricultural Uni-versity,2010.
[10]CAO K,WANG L R,ZHAO P,ZHU G R,F(xiàn)ANG W C,CHEN C W,WANG X W.Identification of a candidate gene for resis-tance to root-knot nematode in a wild peach and screening of its polymorphisms[J].Plant Breeding,2014,133(4):530-535.
[11]張倩.紅根甘肅桃1號抗南方根結(jié)線蟲基因的定位與發(fā)掘[D].北京:中國農(nóng)業(yè)科學(xué)院,2018.
ZHANG Qian.Locating and excavating of genes on Meloido-gyne incognita resistance in Honggengansutao 1(Prunus kan-suensis L.)[D].Beijing:Chinese Academy of Agricultural Sci-ences,2018.
[12]DUVAL H,HOERTER M,POLIDORI J,CONFOLENT C,MASSE M,MORETTI A,VAN GHELDER C,ESMENJAUD D.High-resolution mapping of the RMia gene for resistance to root-knot nematodes in peach[J].Tree Geneticsamp;Genomes,2014,10(2):297-306.
[13]王力榮,朱更瑞,方偉超.中國桃遺傳資源[M].北京:中國農(nóng)業(yè)出版社,2012.
WANG Lirong,ZHU Gengrui,F(xiàn)ANG Weichao.Peach genetic resource in China[M].Beijing:China Agriculture Press,2012.
[14]LI Y,CAO K,ZHU G R,F(xiàn)ANG W C,CHEN C W,WANG X W,ZHAO P,GUO J,DING T Y,GUAN L P,ZHANG Q,GUO W W,F(xiàn)EI Z J,WANG L R.Genomic analyses of an extensive collection of wild and cultivated accessions provide new in-sights into peach breeding history[J].Genome Biology,2019,20(1):36.
[15]韋瑩華,丁盛,董娟,杜鳳,崔欣,唐卓.基于LAMP建立非洲豬瘟病毒的快速可視化檢測方法[J].應(yīng)用與環(huán)境生物學(xué)報,2022,28(5):1325-1330.
WEI Yinghua,DING Sheng,DONG Juan,DU Feng,CUI Xin,TANG Zhuo.Rapid visual detection of African swine fever vi-rus based on LAMP[J].Chinese Journal of Applied and Environ-mental Biology,2022,28(5):1325-1330.
[16]吉爽秋,王力榮,李勇,朱更瑞,曹珂,方偉超,陳昌文,王新衛(wèi),張琦,吳金龍.桃花花型(鈴形/薔薇形)基因型鑒定、分子標(biāo)記開發(fā)與利用[J].果樹學(xué)報,2023,40(3):422-431.
JI Shuangqiu,WANG Lirong,LI Yong,ZHU Gengrui,CAO Ke,F(xiàn)ANG Weichao,CHEN Changwen,WANG Xinwei,ZHANG Qi,WU Jinlong.Identification of peach flower genotype(Non-showy/Showy),development of flower-type related molecular markers[J].Journal of Fruit Science,2023,40(3):422-431.
[17]YAMAMOTO T,HAYASHI T.New root-knot nematode resis-tance genes and their STS markers in peach[J].Scientia Horti-culturae,2002,96(1/2/3/4):81-90.
[18]CAO K,PENG Z,ZHAO X,LI Y,LIU K Z,ARUS P,F(xiàn)ANG W C,CHEN C W,WANG X W,WU J L,F(xiàn)EI Z J,WANG L R.Chromosome-level genome assemblies of four wild peach spe-cies provide insights into genome evolution and genetic basis of stress resistance[J].BMC Biology,2022,20(1):139.
[19]吳波鴻.轉(zhuǎn)錄因子HY5調(diào)控南方根結(jié)線蟲侵染發(fā)育機(jī)理研究[D].沈陽:沈陽農(nóng)業(yè)大學(xué),2022.
WU Bohong.Study on the mechanism of HY5 regulating nema-tode infection and development[D].Shenyang:Shenyang Agri-cultural University,2022.
[20]SHARPE R H,HESSE C O,LOWNSBERY B F,PERRY V G,HANSEN C J.Breeding peaches for root-knot nematode Resis-tance 1[J].Journal of the American Society for Horticultural Sci-ence,1969,94(3):209-212.
[21]WILLIAMSON V M.Plant nematode resistance genes[J].Cur-rent Opinion in Plant Biology,1999,2(4):327-331.
[22]LI Q,XIE Q G,SMITH-BECKER J,NAVARRE D A,KALOSHIAN I.Mi-1-Mediated aphid resistance involves sali-cylic acid and mitogen-activated protein kinase signaling cas-cades[J].Molecular Plant-Microbe Interactions,2006,19(6):655-664.
[23]BHATTARAI K K,XIE Q G,POURSHALIMI D,YOUNG-LOVE T,KALOSHIAN I.Coi1-dependent signaling pathway is not required for Mi-1-mediated potato aphid resistance[J].Mo-lecular Plant-Microbe Interactions,2007,20(3):276-282.
[24]HU C L,ZHAO W C,F(xiàn)AN J W,LI Z L,YANG R,ZHAO F K,WANG J L,WANG S H.Protective enzymes and genes related to the JA pathway are involved in the response to root-knot nem-atodes at high soil temperatures in tomatoes carrying Mi-1[J].Horticulture,Environment,and Biotechnology,2015,56(4):546-554.
[25]戴均濤,張慎璞,王暄,丁修恒,李紅梅.3種檢測番茄抗根結(jié)線蟲Mi基因分子標(biāo)記法的比較[J].南京農(nóng)業(yè)大學(xué)學(xué)報,2018,41(5):848-853.
DAI Juntao,ZHANG Shenpu,WANG Xuan,DING Xiuheng,LI Hongmei.Comparison of three molecular markers for detect-ing Mi gene of resistance to root-knot nematode in tomato culti-vars[J].Journal of Nanjing Agricultural University,2018,41(5):848-853.
[26]ESMENJAUD D,MINOT J C,VOISIN R,PINOCHET J,SI-MARD M H,SALESSES G.Differential response to root-knot nematodes in Prunus species and correlative genetic implica-tions[J].Journal of Nematology,1997,29(3):370-380.
[27]ESMENJAUD D,VOISIN R,VAN GHELDER C,BOSSELUTN,LAFARGUE B,DI VITO M,DIRLEWANGER E,PO?SSEL J L,KLEINHENTZ M.Genetic dissection of resis-tance to root-knot nematodes Meloidogyne spp.in plum,peach,almond,and apricot from various segregating interspecific Prunus progenies[J].Tree Geneticsamp;Genomes,2009,5(2):279-289.
[28]DUVAL H,VAN GHELDER C,PORTIER U,CONFOLENT C,MEZA P,ESMENJAUD D.New data completing the spectrum of the Ma,RMia,and RMja genes for resistance to root-knot nematodes(Meloidogyne spp.)in Prunus[J].Phytopathology,2019,109(4):615-622.
[29]范惠冬,許世霖,鄭士金,田松,王宇微,宮慶銳.105份番茄種質(zhì)資源的抗性基因分子標(biāo)記檢測[J/OL].北方園藝,2024:1-10.(2024-01-19).https://kns.cnki.net/kcms/detail/23.1247.S.20240119.1246.004.html.
FAN Huidong,XU Shilin,ZHENG Shijin,TIAN Song,WANG Yuwei,GONG Qingrui.Molecular marker detection of resis-tance genes in 105 tomato germplasm resources[J/OL].Northern Horticulture,2024:1-10.(2024-01-19).https://kns.cnki.net/kc-ms/detail/23.1247.S.20240119.1246.004.html.
[30]王袁,郭澤,李曉輝,徐世曉,邢學(xué)霞,張思琦,何佳,劉超,陳芳,楊鐵釗.不同溫度條件下根結(jié)線蟲侵染對煙草根系的影響[J].作物雜志,2018(4):161-166.
WANG Yuan,GUO Ze,LI Xiaohui,XU Shixiao,XING Xuexia,ZHANG Siqi,HE Jia,LIU Chao,CHEN Fang,YANG Tiezhao.Effects of Meloidogyne incognita infection on tobacco root sys-tem under different temperatures[J].Crops,2018(4):161-166.
[31]魏佩瑤,潘嵩,彭德良,張鋒,陳志杰,張淑蓮,李英梅.低溫脅迫對南方根結(jié)線蟲存活的影響及在北方溫室的應(yīng)用[J].應(yīng)用生態(tài)學(xué)報,2023,34(7):1981-1987.
WEI Peiyao,PAN Song,PENG Deliang,ZHANG Feng,CHEN Zhijie,ZHANG Shulian,LI Yingmei.Effect of low-temperature stress on the survival of Meloidogyne incognita and its applica-tion in greenhouse of Northern China[J].Chinese Journal of Ap-plied Ecology,2023,34(7):1981-1987.
[32]陳立杰,魏峰,段玉璽,白春明,霍璟珣,朱曉峰.溫濕度對南方根結(jié)線蟲卵孵化和二齡幼蟲的影響[J].植物保護(hù),2009,35(2):48-52.
CHEN Lijie,WEI Feng,DUAN Yuxi,BAI Chunming,HUO Jingxun,ZHU Xiaofeng.Effects of temperature and moisture on egg hatching and the second instars of Meloidogyne incognita[J].Plant Protection,2009,35(2):48-52.
[33]曹素芳,漆永紅,杜蕙,陳書龍.溫度和濕度對南方根結(jié)線蟲存活的影響[J].植物保護(hù),2012,38(6):108-111.
CAO Sufang,QI Yonghong,DU Hui,CHEN Shulong.Effects of temperature and moisture on the survival of Meloidogyne incog-nita[J].Plant Protection,2012,38(6):108-111.