摘要:【目的】建立新疆庫(kù)爾勒地區(qū)和阿克蘇地區(qū)梨火疫病菌(Erwinia amylovora)對(duì)四霉素的敏感基線(xiàn),監(jiān)測(cè)梨火疫病菌對(duì)四霉素的抗藥性水平,為四霉素防治梨火疫病田間用藥、抗藥性監(jiān)測(cè)與抗藥性治理提供理論依據(jù)?!痉椒ā坎捎靡志Ψy(cè)定100株梨火疫病菌株對(duì)四霉素的敏感性;采用平板劃線(xiàn)法和含藥培養(yǎng)基法藥劑馴化抗藥突變體,進(jìn)行抗藥性評(píng)價(jià)。【結(jié)果】共監(jiān)測(cè)到敏感菌株74個(gè),低抗菌株26個(gè)。100株菌株對(duì)四霉素的敏感性頻率接近正態(tài)分布,因此可將該曲線(xiàn)(平均EC50=1.59±1.029μg·mL-1)作為新疆庫(kù)爾勒地區(qū)和阿克蘇地區(qū)梨火疫病菌對(duì)四霉素的敏感基線(xiàn);共獲得4株抗藥突變體,均不具有穩(wěn)定遺傳性;四霉素與84%噻霉酮、中生菌素均會(huì)產(chǎn)生交互抗藥性。【結(jié)論】建立了新疆梨火疫病菌分離菌株對(duì)四霉素藥劑的敏感基線(xiàn),僅監(jiān)測(cè)到少數(shù)低抗菌株,梨火疫病菌對(duì)四霉素的抗性風(fēng)險(xiǎn)低。
關(guān)鍵詞:梨火疫病菌;四霉素;室內(nèi)毒力測(cè)定;敏感基線(xiàn);抗性穩(wěn)定性
中圖分類(lèi)號(hào):S661.2;S436.612文獻(xiàn)標(biāo)志碼:A文章編號(hào):1009-9980(2024)07-1418-11
Establishment of sensitivity baseline and evaluation of resistance to tetra-mycin of Erwinia amylovora
LüZhenhao,YANG Yuwei,LIU Qi*,YU Rui,CHEN Xiaoxiao,ZHOU Yihang,CHEN Jing
(College of Agronomy,Xinjiang Agricultural University/Key Laboratory of Prevention and Control of Invasive Alien Species in Agricul-tureamp;Forestry of the North-western Desert Oasis(Co-construction by Ministry and Province),Ministry of Agriculture and Rural Affairs/Key Laboratory of the Pest Monitoring and Safety Control of Crops and Forests of the Xinjiang Uygur Autonomous Region,Urumqi 830052,Xinjiang,China)
Abstract:【Objective】Pear fire blight caused by Erwinia amylovora is an international quarantine bac-terial disease.It is one of the top ten plant pathogenic bacteria in the world with fast transmission speed,multiple transmission routes and wide host range.Biopesticide tetramycin is a pure green biopesticide developed by Liaoning Academy of Microbial Sciences in the 1970s and was productized in the early 1990s.Tetramycin can inhibit both bacterial and fungal plant diseases.At present,there are no reports on the establishment of sensitivity baseline and the evaluation of resistance to tetramycin of E.amylovo-ra in China.The study aimed to establish a sensitivity baseline for E.amylovora to tetramycin in Korla and Aksu regions of Xinjiang,and monitor the resistance level of pear fire blight to tetramycin in the re-gion and provide a scientific basis for the field administration of tetramycin against pear fire blight,anti-biotic resistance monitoring and antibiotic resistance management.【Methods】The samples were col-lected,in ten areas in Xinjing,including Bayinguoleng and Aksu in 2021 and 2023.The bacterial strains were isolated from the infected plant materials of Korla fragrant pear.The sensitivity of 100 strains of E.amylovora isolated to tetramycin was determined by the inhibition zone method.The drug-resistant mutants were acclimated by streak plate method and drug containing medium method,followed by drug resistance evaluation.The preserved strains were separated in the NA medium,incubated at 28℃for 48 h,and single colonies were obtained by secondary activation.The single colony was transferred to the NB culture medium at 28℃,180 r·min-1 for 12 h,and the test bacterial suspension was obtained when OD600 was determined to be 1.0.After the bacterial suspension was diluted to 1×104 cfu·mL-1,100μL was coated in the NA medium until dry.Three pieces of sterilized filter paper with a diameter of 6 mm were placed on the NA medium in the petri dish.6μL of different concentrations of drug drops were absorbed on the filter paper sheet,with 5 treatment concentrations for each drug solution and 2 dishes for each concentration,for a total of 6 repetitions,with sterile water as the control.After being in-cubated at 28℃for 36 h,the diameter of the antibacterial zone was measured by the cross method,and the antibacterial rate was calculated according to the formula.The correlation coefficient and EC50 val-ue were calculated according to the bacteriostasis rate.Based on the average EC50 values of the all test-ed strains,the sensitivity baseline of tetramycin in Xinjiang was established.【Results】The results showed that from the all tested strains,74 sensitive strains were detected,accounting for 74%,and 26 re-sistant strains were detected,accounting for 26%.The distribution of EC50 values of 100 strains of E.am-ylovora ranged from 0.199 to 4.84μg·mL-1,with the maximum EC50 was 24.32 times as high as the mini-mum EC50,the average EC50 was(1.59±1.029)μg·mL-1,and the 95%confidence interval was 1.389 2-1.797 4μg·mL-1 The distribution of tetramycinto E.amylovorastrains showed a unimodal curve,which was similar to the normal distribution,and no E.amylovora strains with significantly decreased sensi-tivity were found.Therefore,the mean EC50 value of(1.59±1.029)μg·mL-1 could be used as the base-line for the sensitivity of E.amylovora strains to tetramycin in southern Xinjiang.There were some dif-ferences in the sensitivity of the 100 strains of E.amylovora between 4 regions,the strains from Aksu were more sensitive,with mean EC50 value of 0.780±0.436μg·mL-1,which was significantly different from the strains from Awati Township,Halayugong Township and Tiemengguan.After the four resistance mutants of E.amylovora were transferred to the NA medium for 10 successive generations,the resis-tance levels of the 11th generation resistance mutants were 0.275μg·mL-1,0.43μg·mL-1,0.145μg·mL-1 and 0.564μg·mL-1,respectively,which all decreased from the resistance level of low antibacterial strains to the resistance level of sensitive strains.The results indicated that the 4 resistant mutants was not genetically stabile.The EC50 values of the E.amylovora resistance mutant against tetramycin were highly correlated with the EC50 values of 84%benziothiazolinone and zhongshengmycin,and the corre-lation coefficients were 0.765 8 and 0.900 8,respectively,and the absolute values of all correlation co-efficients were higher than 0.75.It can be seen that there is a cross-resistance problem between tetra-mycin and 84%benziothiazolinone and zhongshengmycin,which are commonly used in field to con-trol E.amylovora,so the three fungicides should be avoided as alternate standby pesticides in the field to avoid cross-resistance problems.Thus,it was confirmed that tetramycin had cross-resistance with the 84%benziothiazolinone and zhongshengmycin.【Conclusion】The basic resistance of the strains of E.amylovora from different regions to fungicides was determined by both the agent and the pathogen it-self.The sensitivity baseline value of the E.amylovora isolated strains in Xinjiang to benziothiazoli-none could be established according to this study.Only a few low resistant subgroupstrains were detect-ed,and the risk of resistance to tetramycin was at low level.
Key words:Erwinia amylovora;Tetramycin;Laboratory toxicity test;Sensitive baseline;Resistance stability
由歐文氏菌[Erwinia amylovora(Burr)Win-slow et al.]侵染所致的梨火疫病是國(guó)際檢疫性的細(xì)菌病害[1-2],該病害傳播速度快,傳播途徑多,寄主范圍廣,是全球十大植物病原細(xì)菌之一[3-5]。庫(kù)爾勒香梨作為中國(guó)國(guó)家地理標(biāo)志產(chǎn)品,是當(dāng)?shù)剞r(nóng)業(yè)增效、農(nóng)民增收的重要產(chǎn)業(yè)之一[6]。因受到梨火疫病的影響,庫(kù)爾勒香梨產(chǎn)業(yè)的發(fā)展被嚴(yán)重制約。目前防治該病害的主要手段是化學(xué)防治,但國(guó)內(nèi)外連續(xù)多年使用農(nóng)用鏈霉素導(dǎo)致抗藥性菌株產(chǎn)生[7],中國(guó)于2016年6月已全部停止農(nóng)用鏈霉素登記和使用[8],因此盡快尋找安全、有效的替代藥劑至關(guān)重要。
生物農(nóng)藥四霉素是由遼寧省微生物科學(xué)研究院于20世紀(jì)70年代開(kāi)始研發(fā),90年代初實(shí)現(xiàn)產(chǎn)品化的純綠色生物農(nóng)藥[9]。已有研究表明,四霉素通過(guò)抑制病原菌生長(zhǎng),促進(jìn)作物生長(zhǎng),誘導(dǎo)作物產(chǎn)生抗性進(jìn)而達(dá)到防治病害的目的[10-11]。該藥劑主要成分為不吸水鏈霉菌梧州亞種的發(fā)酵代謝產(chǎn)物,因是天然產(chǎn)物,故具有高效、低毒的殺菌效果[12]。四霉素對(duì)細(xì)菌性和真菌性的植物病害均產(chǎn)生抑制作用,如辣椒炭疽病[13]、馬鈴薯瘡痂病[14]、核桃細(xì)菌性黑斑病[15]、茭白葉斑病[16]等,其抑菌作用廣譜,故應(yīng)用前景較好。目前中國(guó)尚未見(jiàn)梨火疫病菌對(duì)四霉素的敏感基線(xiàn)建立和抗藥性評(píng)價(jià)的研究報(bào)道。
筆者在本研究中通過(guò)建立新疆庫(kù)爾勒和阿克蘇地區(qū)(以下簡(jiǎn)稱(chēng)南疆地區(qū))梨火疫病菌對(duì)四霉素的敏感基線(xiàn),篩選梨火疫病菌對(duì)該藥劑的抗藥突變體,研究抗藥突變體的遺傳穩(wěn)定性,以及與其他田間常用化學(xué)藥劑之間有無(wú)交互抗藥性,旨在為監(jiān)測(cè)田間梨火疫病菌的四霉素抗藥性情況提供理論依據(jù),為該藥劑對(duì)梨火疫病的田間防治與抗藥性治理提供參考。
1材料和方法
1.1材料
1.1.1供試藥劑四霉素標(biāo)準(zhǔn)樣品(Tetramycin,北京曼哈格生物科技有限公司)。交互抗性的藥劑:84%噻霉酮(Benziothiazolinone,陜西西大華特制藥廠);中生菌素標(biāo)準(zhǔn)樣品(Zhongshengmycin,北京倍特仁康生物醫(yī)藥科技有限公司)。
1.1.2供試菌株2021—2023年從新疆庫(kù)爾勒哈拉玉宮鄉(xiāng)、鐵門(mén)關(guān)市、阿瓦提鄉(xiāng)及阿克蘇地區(qū)采集的梨火疫病樣,經(jīng)組織分離、鑒定,共獲得100株菌株。
1.1.3供試培養(yǎng)基NA培養(yǎng)基:無(wú)菌水1000 mL,牛肉膏3 g,酵母膏1 g,蛋白胨5 g,蔗糖10 g,氯化鈉5 g,瓊脂17 g,2 g·mL-1氫氧化鈉3000μL。121℃高壓滅菌25 min,備用。NB培養(yǎng)液:去掉瓊脂,其余試劑與NA培養(yǎng)基一致,121℃高壓滅菌25 min,備用。NA含藥培養(yǎng)基:參考李亞萌[17]“含藥培養(yǎng)基”的配比方法,將配好的不同質(zhì)量濃度四霉素藥液按1∶99的比例加入到NA培養(yǎng)基中,每個(gè)培養(yǎng)皿中藥液與培養(yǎng)基體積之和為10 mL。
1.2試驗(yàn)方法
1.2.1藥劑原藥及稀釋液配制四霉素標(biāo)準(zhǔn)樣品購(gòu)自北京曼哈格生物科技有限公司,標(biāo)準(zhǔn)樣品質(zhì)量濃度為100μg·mL-1,使用時(shí)用無(wú)菌水將母液稀釋制成1μg·mL-1、2.5μg·mL-1、5μg·mL-1、10μg·mL-1、20μg·mL-1的藥液備用。
1.2.2梨火疫病菌對(duì)四霉素的敏感性檢測(cè)利用抑菌圈法進(jìn)行敏感性檢測(cè)試驗(yàn)。在NA培養(yǎng)基上將保存菌種進(jìn)行劃線(xiàn)分離,28℃恒溫培養(yǎng)48h,將單菌落轉(zhuǎn)入NB培養(yǎng)液中28℃、180 r·min-1搖培12 h,測(cè)定OD600為1.0時(shí)得到試驗(yàn)菌懸液。將菌懸液稀釋涂布于NA培養(yǎng)基中至干燥。培養(yǎng)皿內(nèi)放置3片直徑為6mm的滅菌濾紙片于NA培養(yǎng)基上[18]。吸取6μL的不同濃度的藥液滴于濾紙片上,無(wú)菌水作為對(duì)照。28℃正置培養(yǎng)36h,使用十字交叉法測(cè)量抑菌圈直徑大小,按公式(1)計(jì)算抑菌率。根據(jù)抑菌率計(jì)算其相關(guān)系數(shù)及EC50值。依據(jù)所有供試菌株的平均EC50值建立新疆庫(kù)爾勒地區(qū)梨火疫病菌對(duì)四霉素的敏感基線(xiàn),按照公式(2)[19]計(jì)算各菌株對(duì)四霉素的抗性水平。
抑菌率%=(藥劑處理抑菌圈直徑-濾紙片直徑)/藥劑處理抑菌圈直徑×100;(1)
抗性水平=供試菌株EC50/敏感基線(xiàn)。(2)
根據(jù)各菌株的抗性水平數(shù)值,將各菌株分為敏感、低抗、中抗及高抗類(lèi)型[20]。具體劃分如下:敏感菌株(S):抗性水平=(敏感基線(xiàn)的95%置信限上限/敏感基線(xiàn)),抗性水平=1.13μg·mL-1;低抗菌株(LR):(敏感基線(xiàn)的95%置信限上限/敏感基線(xiàn))lt;抗性水平=敏感基線(xiàn)10倍,1.13μg·mL-1<抗性水平=15.9μg·mL-1;中抗菌株(MR):敏感基線(xiàn)10倍lt;抗性水平=敏感基線(xiàn)100倍,15.9μg·mL-1<抗性水平=159μg·mL-1;高抗菌株(HR):抗性水平>敏感基線(xiàn)100倍,抗性水平>159μg·mL-1。
1.2.3藥劑馴化獲得抗藥突變體以4個(gè)地區(qū)中最敏感菌株作為誘導(dǎo)抗藥突變體的親本菌株。參考胡白石[1]藥劑馴化的方法,將敏感菌株在NA培養(yǎng)基上進(jìn)行平板劃線(xiàn)分離后獲得單菌落,挑單菌落到NB培養(yǎng)液中,28℃、180 r·min-1搖培12 h,分光光度計(jì)測(cè)定OD600值為1.0的菌懸液作為試驗(yàn)親本菌懸液。用無(wú)菌接種針蘸取親本菌懸液,劃線(xiàn)接種在含有1μg·mL-1的NA含藥培養(yǎng)基上,按照此方法依次將平板中藥劑質(zhì)量濃度提高為2.5μg·mL-1、5μg·mL-1、10μg·mL-1、20μg·mL-1。
1.2.4抗藥突變體抗性水平測(cè)定采用“抑菌圈法”測(cè)定抗藥突變體對(duì)四霉素的敏感性,按照公式(2)計(jì)算抗性水平,公式(3)計(jì)算其抗性倍數(shù)。
抗性倍數(shù)=抗藥突變體EC50/親本菌株EC50。(3)
1.2.5抗藥突變體遺傳穩(wěn)定性測(cè)定將藥劑馴化得到的抗藥突變體在NA培養(yǎng)基上連續(xù)轉(zhuǎn)接10代,觀察其生長(zhǎng)情況,待第10代單菌落生長(zhǎng)36 h后,再次轉(zhuǎn)接到NA含藥培養(yǎng)基上作為第11代加以驗(yàn)證,并在含藥培養(yǎng)基上比較抗藥突變體本身和第11代抗藥突變體間的抗藥性水平差異,確定抗藥突變體繼代培養(yǎng)的遺傳穩(wěn)定性。
1.2.6抗藥突變體交互抗藥性測(cè)定采用“抑菌圈法”,用50 mL無(wú)菌水將四霉素標(biāo)準(zhǔn)物質(zhì)樣品依次稀釋為20、10、5、2.5、1 mg·L-1的質(zhì)量濃度梯度,將84%噻霉酮依次稀釋為1600、800、400、300、200、100 mg·L-1的質(zhì)量濃度梯度;中生菌素標(biāo)準(zhǔn)物質(zhì)樣品依次稀釋為200、100、50、25、10 mg·L-1的質(zhì)量濃度梯度,測(cè)定抗藥突變體對(duì)3種藥劑的EC50值。以四霉素的EC50濃度對(duì)數(shù)值為橫坐標(biāo),分別以84%噻霉酮、中生菌素標(biāo)準(zhǔn)物質(zhì)樣品的EC50濃度對(duì)數(shù)值為縱坐標(biāo),計(jì)算相關(guān)系數(shù),并以其相關(guān)系數(shù)的絕對(duì)值來(lái)判斷四霉素與以上2種殺菌劑之間是否存在交互抗藥性[21],如相關(guān)系數(shù)絕對(duì)值大于0.75時(shí),則該2種藥劑之間存在交互抗藥性[22]。
1.3數(shù)據(jù)處理
使用Microsoft Excel 2019進(jìn)行數(shù)據(jù)統(tǒng)計(jì)分析,計(jì)算各藥劑相對(duì)毒力指數(shù),并以各藥劑濃度的對(duì)數(shù)值為橫坐標(biāo)(x),抑菌率對(duì)應(yīng)的概率值為縱坐標(biāo)(y),計(jì)算毒力回歸方程及相關(guān)系數(shù)。使用SPSS 26.0計(jì)算供試藥劑的EC50值,以及進(jìn)行顯著性差異分析及其他統(tǒng)計(jì)學(xué)分析。
2結(jié)果與分析
2.1梨火疫病菌對(duì)四霉素的敏感性分布
通過(guò)分離并測(cè)定100株來(lái)自新疆不同地區(qū)的梨火疫病菌對(duì)四霉素的敏感性,發(fā)現(xiàn)100株梨火疫病菌對(duì)四霉素的抗性表現(xiàn)不一,但總體表現(xiàn)均較敏感。檢測(cè)到敏感菌株74個(gè),占比74%;抗性菌株26個(gè),占比26%,為低抗菌株,未檢測(cè)到中抗、高抗菌株,具體結(jié)果見(jiàn)表1。
2.2梨火疫病菌對(duì)四霉素敏感基線(xiàn)的建立
100株梨火疫病菌的EC50值分布范圍在0.199~4.840μg·mL-1之間,EC50最大值是EC50最小值的24.32倍,平均EC50為(1.590±1.029)μg·mL-1,95%置信區(qū)間為1.389 2~1.797 4μg·mL-1。所有梨火疫菌株對(duì)四霉素分布呈單峰曲線(xiàn),近似于正態(tài)分布(圖1),未發(fā)現(xiàn)敏感性顯著下降的梨火疫菌群,因此可將平均EC50值(1.590±1.029)μg·mL-1作為新疆南疆地區(qū)梨火疫病菌對(duì)四霉素的敏感基線(xiàn)。
2.3不同地區(qū)梨火疫病菌對(duì)四霉素的敏感性差異
4個(gè)地區(qū)的100株梨火疫病菌對(duì)四霉素的敏感性存在一定差異。如表2所示,阿克蘇市菌株較為敏感,其EC50平均值為(0.780±0.436)μg·mL-1,與阿瓦提鄉(xiāng)菌株、哈拉玉宮鄉(xiāng)菌株和鐵門(mén)關(guān)菌株均存在顯著差異。
2.4抗藥突變體篩選
通過(guò)藥劑馴化試驗(yàn)共獲得4株抗藥突變體,見(jiàn)表3。10μg·mL-1是4株供試菌株在該藥劑下的最高生長(zhǎng)質(zhì)量濃度,因此認(rèn)定在10μg·mL-1質(zhì)量濃度藥劑平板上還能繼續(xù)穩(wěn)定生長(zhǎng)的單菌落為抗藥突變體。
2.5抗藥突變體抗性水平測(cè)定
4株梨火疫抗藥突變體對(duì)四霉素抗性水平測(cè)定結(jié)果見(jiàn)表4。經(jīng)過(guò)室內(nèi)毒力測(cè)定,四霉素對(duì)各親本菌株的EC50值均在1μg·mL-1以下,而對(duì)抗藥突變體的EC50值除RM-TM91外均在2μg·mL-1以上,表明室內(nèi)藥劑馴化有效。RM-AW20、RM-BG25、RM-TM91、RM-AK01的EC50值分別為2.166、2.312、1.352、2.82μg·mL-1,與其親本菌株的EC50值相比,抗性倍數(shù)分別為5.59倍、4.08倍、6.79倍、5.86倍,抗性水平逐步提高,按照1.2.1中的菌株抗藥性劃分標(biāo)準(zhǔn),親本菌株通過(guò)藥劑馴化后的抗藥突變體均已轉(zhuǎn)變?yōu)閷?duì)四霉素產(chǎn)生抗性的低抗菌株(1.13μg·mL-1<抗性水平=15.9μg·mL-1)。
2.6抗藥突變體交互抗藥性測(cè)定
交互抗藥性測(cè)定結(jié)果見(jiàn)圖2,梨火疫抗藥突變體對(duì)四霉素的EC50值與84%噻霉酮和中生菌素之間的EC50值相關(guān)性較高,相關(guān)系數(shù)分別為0.765 8與0.900 7,所有相關(guān)系數(shù)絕對(duì)值均高于0.75。由此可見(jiàn),四霉素與田間常用防治梨火疫藥劑84%噻霉酮、中生菌素之間存在交互抗藥性問(wèn)題,故應(yīng)避免將該三種殺菌劑作為輪換備用農(nóng)藥在田間使用,以免產(chǎn)生交互抗藥性問(wèn)題。
3討論
梨火疫病是危害新疆地區(qū)梨樹(shù)的最主要細(xì)菌性病害,該病害對(duì)梨果的生長(zhǎng)、產(chǎn)量和品質(zhì)影響極大,傳染風(fēng)險(xiǎn)高,因而,對(duì)梨火疫病的防治措施研究一直是科研工作者關(guān)注的熱點(diǎn)[23]。四霉素對(duì)多種植物病原菌具有廣譜的抑制作用[9],且具有高效、低毒的特點(diǎn)[24],在中國(guó)作為對(duì)植物真菌與細(xì)菌均有防治效果的殺菌劑,該藥劑已在各個(gè)作物與田間得到大范圍、大面積的使用[25-28]。目前有關(guān)梨火疫病菌的敏感性檢測(cè)與抗藥性評(píng)價(jià)研究在國(guó)內(nèi)外鮮有報(bào)道,因此筆者在本試驗(yàn)中以100株新疆庫(kù)爾勒梨火疫病菌為供試靶標(biāo)菌株,旨在建立起庫(kù)爾勒梨火疫病菌對(duì)四霉素的敏感基線(xiàn),以4株梨火疫病敏感菌株為供試靶標(biāo)菌株,在室內(nèi)進(jìn)行病原菌的抗藥性評(píng)價(jià)試驗(yàn),旨在為其抗藥性監(jiān)測(cè)及田間科學(xué)用藥提供參考。
在化學(xué)殺菌劑長(zhǎng)期、單一的使用壓力下,病原菌對(duì)殺菌劑將產(chǎn)生較高的抗性風(fēng)險(xiǎn)[29]。故在開(kāi)始使用新型的殺菌劑之前,建立敏感基線(xiàn)對(duì)評(píng)價(jià)其抗藥性與制定其抗藥性治理策略具有重要意義[30]。本研究結(jié)果顯示,四霉素對(duì)所有供試菌株均有室內(nèi)抑制作用,抗藥性表現(xiàn)不一。檢測(cè)到敏感菌株74個(gè),抗性菌株26個(gè),其中低抗菌株26個(gè),未檢測(cè)到中抗、高抗菌株。所有EC50值中,未出現(xiàn)明顯異常值,表明對(duì)四霉素而言,庫(kù)爾勒地區(qū)的梨火疫病菌大部分還處于野生敏感種群階段。敏感性頻率分布呈正態(tài)分布,因此可將(1.59±1.029)μg·mL-1作為新疆地區(qū)梨火疫病菌對(duì)四霉素的敏感基線(xiàn)。從病原菌的角度來(lái)看,該敏感基線(xiàn)可作為觀測(cè)新疆地區(qū)是否出現(xiàn)四霉素抗藥性群體的依據(jù),從防治藥劑角度看,對(duì)避免及延緩抗藥性的產(chǎn)生具有重要意義。但需要注意的是,不同地區(qū)的梨火疫病菌對(duì)四霉素的敏感性可能會(huì)存在差異,這是因?yàn)椴煌貐^(qū)使用四霉素防治該病害的用藥水平存在差異。
不同地區(qū)菌株對(duì)殺菌劑的基本抗性是由藥劑與病原菌本身兩者共同決定的,如防治藥劑篩選、殺菌劑的作用機(jī)制和病原菌本身的代謝方式、抗藥性突變頻率、交互抗性等因素,都受菌株自身的遺傳性、防治藥劑的選擇或環(huán)境因素影響[31-34]。因此,需進(jìn)一步加強(qiáng)對(duì)新藥劑和新防治對(duì)象開(kāi)展抗藥性風(fēng)險(xiǎn)評(píng)估、制定抗藥性管理策略、建立再評(píng)價(jià)機(jī)制等。綜上,明確植物病原菌抗藥性發(fā)生發(fā)展特點(diǎn)并制定科學(xué)合理的抗性治理策略,對(duì)進(jìn)一步開(kāi)展植物病害的科學(xué)防控具有重要的參考價(jià)值[35]。目前在篩選抗藥突變體時(shí),根據(jù)不同的目標(biāo)作物、靶標(biāo)病菌或防治藥劑,會(huì)采用不同的篩選方法,一般采用紫外誘導(dǎo)與藥劑馴化這兩種方法[36-37],如王文橋等[38]在誘導(dǎo)葡萄霜霉病菌與馬鈴薯晚疫病菌對(duì)三種藥劑的抗性突變體時(shí)發(fā)現(xiàn),馬鈴薯晚疫病菌在藥劑馴化條件下,對(duì)惡霜靈容易發(fā)生抗性變異,而對(duì)烯酰嗎啉和霜脲氰不易發(fā)生抗性變異。王藝燁[39]在誘導(dǎo)辣椒疫霉抗突變菌株時(shí),通過(guò)藥劑馴化出6株,而采用游動(dòng)孢子紫外照射僅誘導(dǎo)出2株,紫外照射菌絲塊未誘導(dǎo)出突變菌株,由此說(shuō)明在該致病菌誘導(dǎo)突變體時(shí),藥劑馴化的方法更優(yōu)于紫外照射。筆者在本研究中共獲得4株抗四霉素的抗藥突變體,分別為RM-AW20、RM-BG25、RM-AK01和RM-TM91,因時(shí)間限制,未采用紫外照射的方法誘導(dǎo)抗藥突變體,因此尚待證明通過(guò)不同方法的誘導(dǎo)抗藥突變體的抗性水平是否一致。
由4株抗藥突變體經(jīng)11代繼代培養(yǎng)后,抗性水平值分別為0.275μg·mL-1、0.430μg·mL-1、0.145μg·mL-1和0.564μg·mL-1,均從低抗菌株的抗性水平下降到敏感菌株抗性水平=1.13μg·mL-1的標(biāo)準(zhǔn)范圍內(nèi),說(shuō)明這4株抗藥突變體不具有穩(wěn)定遺傳性。由此推斷,該致病菌對(duì)四霉素不易產(chǎn)生較強(qiáng)抗性,但需要注意,如果在藥劑長(zhǎng)期、單一的選擇壓力條件下,田間一旦產(chǎn)生抗藥突變體,抗性菌株可能很快上升為優(yōu)勢(shì)種群,病害防治問(wèn)題將會(huì)變得尤為棘手。交互抗藥性試驗(yàn)結(jié)果表明,四霉素與中生菌素、噻霉酮等田間常用殺菌劑之間存在交互抗藥性。因此,在四霉素投入生產(chǎn)實(shí)踐中時(shí),不可與上述殺菌劑輪換使用,否則將產(chǎn)生交互抗性問(wèn)題[40]。
除此之外,親本菌株之間的生物學(xué)性狀差異、遺傳多樣性和抗藥突變體的遺傳差異也會(huì)導(dǎo)致抗性水平的變化,所以今后研究目標(biāo)是利用分子生物學(xué)技術(shù)對(duì)抗藥性基因進(jìn)行篩選,深層次地揭示梨火疫病菌抗藥性的產(chǎn)生機(jī)制,分析抗藥性群體的基因型[41-42],進(jìn)一步揭示該病原菌對(duì)四霉素抗藥性的遺傳本質(zhì)。
4結(jié)論
通過(guò)測(cè)定2021—2023年新疆分離的100個(gè)梨火疫病菌對(duì)四霉素藥劑的敏感性,其EC50均值為(1.59±1.029)μg·mL-1,作為新疆地區(qū)梨火疫病菌對(duì)四霉素的敏感基線(xiàn),適用于對(duì)四霉素藥劑敏感性和抗藥性菌株的監(jiān)測(cè)。僅發(fā)現(xiàn)少數(shù)低抗藥性菌株,說(shuō)明目前該藥劑防治梨火疫病的風(fēng)險(xiǎn)低。
參考文獻(xiàn)References:
[1]胡白石.梨火疫病菌的風(fēng)險(xiǎn)分析及檢測(cè)技術(shù)研究[D].南京:南京農(nóng)業(yè)大學(xué),2000.
HU Baishi.Pest risk analysis and detection techniques of Erwin-ia amylovora[D].Nanjing:Nanjing Agricultural University,2000.
[2]ABDOLLAHI H,RUGINI E,RUZZI M,MULEO R.In vitro system for studying the interaction between Erwinia amylovora and genotypes of pear[J].Plant Cell,Tissue and Organ Culture,2004,79(2):203-212.
[3]董歡.梨火疫病檢測(cè)技術(shù)研究與推廣應(yīng)用[J].農(nóng)業(yè)工程技術(shù),2021,41(8):47-48.
DONG Huan.Research and application of detection technology of pear fire blight[J].Agricultural Engineering Technology,2021,41(8):47-48.
[4]ZHAO Y Q,TIAN Y L,WANG L M,GENG G M,ZHAO W J,HU B S,ZHAO Y F.Fire blight disease,a fast-approaching threat to apple and pear production in China[J].Journal of Inte-grative Agriculture,2019,18(4):815-820.
[5]MANSFIELD J,GENIN S,MAGORI S,CITOVSKY V,SRIAR-IYANUM M,RONALD P,DOW M,VERDIER V,BEER S V,MACHADO M A,TOTH I,SALMOND G,F(xiàn)OSTER G D.Top 10 plant pathogenic bacteria in molecular plant pathology[J].Molecular Plant Pathology,2012,13(6):614-629.
[6]張峰,李養(yǎng)義.庫(kù)爾勒香梨產(chǎn)業(yè)發(fā)展現(xiàn)狀與對(duì)策建議[J].西北園藝(綜合),2020(11):3-5.
ZHANG Feng,LI Yangyi.Development status and countermea-sures of Korla pear industry[J].Northwest Horticulture,2020(11):3-5.
[7]CHATTERJEE A.Fire blight:The disease and its causative agent,Erwinia amylovora.edited by J.L.vanneste[J].European Journal of Plant Pathology,2001,107(5):569.
[8]新華社.農(nóng)用鏈霉素已被禁,網(wǎng)售產(chǎn)品均為假藥[J].農(nóng)村百事通,2019(23):20.
XINHUA News Agency.Agricultural streptomycin has been banned,and the products sold online are fake pesticides[J].Ru-ral Know It All,2019(23):20.
[9]韓希軍.生物農(nóng)藥四霉素水劑生產(chǎn)研究與應(yīng)用[Z].沈陽(yáng):遼寧省科學(xué)技術(shù)廳,2014-02-28.
HAN Xijun.Study on production and application of biological pesticide tetramycin aqueous agent[Z].Shenyang:Departmentof Scienceamp;Technology of Liaoning province,2014-02-28.
[10]WANG Q P,ZHANG C,LONG Y H,WU X M,SU Y,LEI Y,AI Q.Bioactivity and control efficacy of the novel antibiotic tet-ramycin against various kiwifruit diseases[J].Antibiotics,2021,10(3):289.
[11]MA D C,ZHU J M,HE L M,CUI K D,MU W,LIU F.Baseline sensitivity and control efficacy of tetramycin against Phytoph-thora capsici isolates in China[J].Plant Disease,2018,102(5):863-868.
[12]鄔劼,王曉琳,黃潔雪,刁春友,閆曉陽(yáng),吉沐祥.7種殺菌劑對(duì)草莓膠孢炭疽菌和灰霉病病菌的室內(nèi)毒力測(cè)定[J].江蘇農(nóng)業(yè)科學(xué),2019,47(20):129-133.
WU Jie,WANG Xiaolin,HUANG Jiexue,DIAO Chunyou,YAN Xiaoyang,JI Muxiang.Determination of indoor virulence of seven fungicides against Colletotrichum gloeosporioides and Botrytis cinerea[J].Jiangsu Agricultural Sciences,2019,47(20):129-133.
[13]陳鵬宇,楊立輝,翟長(zhǎng)蘭,田慧迪,張敏,白慶榮,趙廷昌.辣椒炭疽病菌Colletotrichum nigrum鑒定、生物學(xué)特性及藥劑敏感性研究[J].中國(guó)瓜菜,2023,36(3):27-35.
CHEN Pengyu,YANG Lihui,ZHAI Changlan,TIAN Huidi,ZHANG Min,BAI Qingrong,ZHAO Tingchang.Identification,biological characteristics and fungicide susceptibility of Colleto-trichum nigrum in pepper[J].China Cucurbits and Vegetables,2023,36(3):27-35.
[14]寧楠楠,咸文榮,馬永強(qiáng),郭青云.0.3%四霉素水劑防治馬鈴薯瘡痂病田間藥效試驗(yàn)[J].青海農(nóng)林科技,2020(3):86-88.
NING Nannan,XIAN Wenrong,MA Yongqiang,GUO Qin-gyun.Field efficacy test of 0.3%tetracycline aqueous solution in the control of potato scab[J].Science and Technology of Qin-ghai Agriculture and Forestry,2020(3):86-88.
[15]譙天敏,王麗,朱天輝.核桃細(xì)菌性黑斑病殺菌劑篩選及藥效研究[J].植物保護(hù),2020,46(4):258-263.
QIAO Tianmin,WANG Li,ZHU Tianhui.Screening of bacteri-cides and their control effect against bacterial black spot disease of walnut[J].Plant Protection,2020,46(4):258-263.
[16]蔣冬陽(yáng),陳夕軍,陳銀鳳,陳宸,張治平,魏利輝.茭白葉斑病病原鑒定及其對(duì)5種殺菌劑的敏感性測(cè)定[J].中國(guó)瓜菜,2022,35(10):34-41.
JIANG Dongyang,CHEN Xijun,CHEN Yinfeng,CHEN Chen,ZHANG Zhiping,WEI Lihui.Pathogen identification of cane shoots leaf spot and determination of its sensitivity to five fungi-cides[J].China Cucurbits and Vegetables,2022,35(10):34-41.
[17]李亞萌.北京地區(qū)番茄灰霉病菌對(duì)咯菌腈的抗性風(fēng)險(xiǎn)評(píng)估[D].北京:北京農(nóng)學(xué)院,2020.
LI Yameng.Risk assessment of Botrytis cinerea resistance to fludioxonil in Beijing[D].Beijing:Beijing University of Agricul-ture,2020.
[18]陳曉曉,偉力·肉孜,呂振豪,劉琦,陳晶.10種殺菌劑對(duì)梨火疫病的田間藥效評(píng)價(jià)[J].中國(guó)果樹(shù),2023(7):69-72.
CHEN Xiaoxiao,Weili·Rouzi,LüZhenhao,LIU Qi,CHEN Jing.Field efficacy evaluation of 10 bactericides on pear fire blight[J].China Fruits,2023(7):69-72.
[19]王秋月.辣椒疫霉對(duì)氟吡菌胺的抗藥性風(fēng)險(xiǎn)研究[D].重慶:西南大學(xué),2016.
WANG Qiuyue.Studies on the resistance risk of Phytophthora capsici to fluopicolide[D].Chongqing:Southwest University,2016.
[20]閆磊.黃瓜霜霉病菌對(duì)氟吡菌胺的抗性風(fēng)險(xiǎn)研究[D].保定:河北農(nóng)業(yè)大學(xué),2013.
YAN Lei.Studies on risk of resistance in Pseudoperonospora cubensis to fluopicolide[D].Baoding:Hebei Agricultural Univer-sity,2013.
[21]侯軍.番茄灰霉病菌對(duì)丙烷脒的抗藥性風(fēng)險(xiǎn)研究[D].楊凌:西北農(nóng)林科技大學(xué),2011.
HOU Jun.Studies on the resistance risk of Botrytis cinerea to fungicide propamidine[D].Yangling:Northwest Aamp;F Universi-ty,2011.
[22]王迪,王詩(shī)然,楊明佳,盧寶慧,劉麗萍,高潔.吉林省人參黑斑病菌對(duì)常用藥劑的抗藥性監(jiān)測(cè)及交互抗藥性測(cè)定[J].農(nóng)藥,2018,57(8):603-605.
WANG Di,WANG Shiran,YANG Mingjia,LU Baohui,LIU Liping,GAO Jie.Detection of the resistance of Alternaria panax and cross-resistance on ginseng in Jilin Province[J].Agro-chemicals,2018,57(8):603-605.
[23]葛藝欣.梨火疫病菌對(duì)春雷霉素的抗性機(jī)制以及丁香假單胞菌RsmA蛋白的功能研究[D].南京:南京農(nóng)業(yè)大學(xué),2019.
GE Yixin.Study on mechanism of kasugamycin resistance in Erwinia amylovora and functions of RsmA proteins in Pseudo-monas syringae[D].Nanjing:Nanjing Agricultural University,2019.
[24]殷吉龍.0.3%四霉素水劑對(duì)楊樹(shù)的安全性試驗(yàn)[J].現(xiàn)代農(nóng)村科技,2020(10):77.
YIN Jilong.Safety test of 0.3%tetramycin AS on poplar[J].Modern Rural Science and Technology,2020(10):77.
[25]梁歡,徐進(jìn),王曉寧,張彤,許景升,張昊,馮潔.11種殺菌劑對(duì)馬鈴薯軟腐病的防治效果[J].植物保護(hù),2020,46(5):309-315.
LIANG Huan,XU Jin,WANG Xiaoning,ZHANG Tong,XU Jingsheng,ZHANG Hao,F(xiàn)ENG Jie.Control effects of eleven bactericides on potato soft rot[J].Plant Protection,2020,46(5):309-315.
[26]阮宏椿,石妞妞,田佩玉,杜宜新,陳文樂(lè),陳巧紅,陳鳳平,陳福如.福建省稻瘟病菌對(duì)4種殺菌劑的敏感性分析[J].西北農(nóng)林科技大學(xué)學(xué)報(bào)(自然科學(xué)版),2022,50(2):125-134.
RUAN Hongchun,SHI Niuniu,TIAN Peiyu,DU Yixin,CHEN Wenle,CHEN Qiaohong,CHEN Fengping,CHEN Furu.Sensi-tivity of Magnaporthe oryzae in Fujian to 4 fungicides[J].Jour-nal of Northwest Aamp;F University(Natural Science Edition),2022,50(2):125-134.
[27]朱強(qiáng)興,周小軍,何曉嬋,朱麗燕.多種藥劑防治水稻白葉枯病田間藥效試驗(yàn)[J].上海農(nóng)業(yè)科技,2021(5):109-110.
ZHU Qiangxing,ZHOU Xiaojun,HE Xiaochan,ZHU Liyan.Field efficacy trial of several insecticides against rice bacterial blight[J].Shanghai Agricultural Science and Technology,2021(5):109-110.
[28]PAN H W,HE X S,LUX R,LUAN J,SHI WY.Killing of Esch-erichia coli by Myxococcus xanthus in aqueous environments re-quires exopolysaccharide-dependent physical contact[J].Micro-bial Ecology,2013,66(3):630-638.
[29]URBAN J,LEBEDAA.Fungicide resistance in cucurbit downy mildew-methodological,biological and population aspects[J].Annals of Applied Biology,2006,149(1):63-75.
[30]CHEN Y,YAO J,WANG W X,GAO T C,YANG X,ZHANG A F.Effect of epoxiconazole on rice blast and rice grain yield in China[J].European Journal of Plant Pathology,2013,135(4):675-682.
[31]BASIT M.Status of insecticide resistance in Bemisia tabaci:Re-sistance,cross-resistance,stability of resistance,genetics and fit-ness costs[J].Phytoparasitica,2019,47(2):207-225.
[32]ZHANG X M,JIANG H,HAO J J.Evaluation of the risk of de-velopment of fluopicolide resistance in Phytophthora erythro-septica[J].Plant Disease,2019,103(2):284-288.
[33]BI Q Y,MA Z Q.Sensitivity,resistance stability,and cross-re-sistance of Plasmopara viticola to four different fungicides[J].Crop Protection,2016,89:265-272.
[34]CHEN X D,GILL T A,ASHFAQ M,PELZ-STELINSKI K S,STELINSKI L L.Resistance to commonly used insecticides in Asian citrus psyllid:Stability and relationship to gene expres-sion[J].Journal of Applied Entomology,2018,142(10):967-977.
[35]劉西莉,苗建強(qiáng),張燦.植物病原菌抗藥性及其抗性治理策略[J].農(nóng)藥學(xué)學(xué)報(bào),2022,24(5):921-936.
LIU Xili,MIAO Jianqiang,ZHANG Can.Fungicide resistance and the management strategies[J].Chinese Journal of Pesticide Science,2022,24(5):921-936.
[36]李京,紀(jì)明山,劉煜財(cái),王廣祥,孫中華,郭紅霞,王維靜.遼寧省野慈姑對(duì)氯氟吡啶酯抗性風(fēng)險(xiǎn)評(píng)估[J].農(nóng)藥,2020,59(7):541-546.
LI Jing,JI Mingshan,LIU Yucai,WANG Guangxiang,SUN Zhonghua,GUO Hongxia,WANG Weijing.Risk assessment of resistance to Florpyrauxifen-benzyl in Sagittaria trifolia L.of Li-aoning Province[J].Agrochemicals,2020,59(7):541-546.
[37]CHEN L,ZHU S S,LU X H,PANG Z L,CAI M,LIU X L.As-sessing the risk that Phytophthora melonis can develop a point mutation(V1109L)in CesA3 conferring resistance to carboxylic acid amide fungicides[J].PLoS One,2012,7(7):e42069.
[38]王文橋,劉國(guó)容,張小風(fēng),馬志強(qiáng),韓秀英.葡萄霜霉病菌和馬鈴薯晚疫病菌對(duì)三種殺菌劑的抗藥性風(fēng)險(xiǎn)研究[J].植物病理學(xué)報(bào),2000,30(1):48-52.
WANG Wenqiao,LIU Guorong,ZHANG Xiaofeng,MA Zhi-qiang,HAN Xiuying.Studies on resistance risk to three fungi-cides in Plasmopara viticola and Phytophthora infestans[J].Ac-taPhytopathologica Sinica,2000,30(1):48-52.
[39]王藝燁.辣椒疫霉對(duì)甲霜靈的抗性監(jiān)測(cè)及誘變研究[D].合肥:安徽農(nóng)業(yè)大學(xué),2019.
WANG Yiye.Resistance monitoring and mutagenesis of Phy-tophthora capsici to metalaxyl[D].Hefei:Anhui Agricultural University,2019.
[40]陳曉曉,艾尼賽·賽米,粟神強(qiáng),賈玉鳳,劉琦,陳晶.梨火疫病病原菌的分離鑒定及室內(nèi)抑菌藥劑篩選[J].西北農(nóng)業(yè)學(xué)報(bào),2023,32(3):468-478.
CHEN Xiaoxiao,Anisa·Saimi,SU Shenqiang,JIA Yufeng,LIU Qi,CHEN Jing.Separation and identification of pear fire blight pathogens and indoor screening of bactericides[J].Acta Agricul-turae Boreali-occidentalis Sinica,2023,32(3):468-478.
[41]郭爽,黃貞,常紹東,劉玉平,曹翠文.利用分子標(biāo)記鑒定辣椒抗疫病材料[J].中國(guó)農(nóng)學(xué)通報(bào),2012,28(13):163-166.
GUO Shuang,HUANG Zhen,CHANG Shaodong,LIU Yuping,CAO Cuiwen.Identification of resistance to Phytophthora blight in hot pepper using molecular marker[J].Chinese Agricul-tural Science Bulletin,2012,28(13):163-166.
[42]羅德旭,鞏振輝,李大偉.辣椒疫病抗病性分子鑒定技術(shù)研究[J].西北農(nóng)業(yè)學(xué)報(bào),2008,17(5):76-80.
LUO Dexu,GONG Zhenhui,LI Dawei.Study on molecular identification technology of pepper resistance to Phytophthora blight[J].Acta Agriculturae Boreali-Occidentalis Sinica,2008,17(5):76-80.