摘要:【目的】探明日灼對石榴果皮蠟質結構及其組分的影響,明晰石榴果皮蠟質響應日灼脅迫的生理機制?!痉椒ā恳匀兆埔赘衅贩N紅玉石籽為材料,采用掃描電鏡觀察受不同程度日灼影響的果實表面蠟質結構;采用氣相色譜-質譜聯(lián)用技術(GC-MS)測定果實表面蠟質組分及含量?!窘Y果】日灼引起石榴果皮蠟質結構的改變,根據日灼程度不同表現(xiàn)出蠟質層不平整、起砂或片狀脫落等現(xiàn)象;石榴果皮中共檢測出67種蠟質成分,主要包括超長鏈脂肪族化合物(26.36μg·cm-2,占總量的74.95%)和萜類化合物(8.81μg·cm-2,占總量的25.05%),超長鏈脂肪族化合物主要由烷烴、脂肪酸、烯烴、醇類和酯類物質組成。日灼顯著提高了石榴果皮蠟質總量,尤其提高了酯類和醇類含量,但顯著降低了萜類物質的含量,并且影響各個蠟質組分的含量?!窘Y論】日灼改變石榴果皮蠟質的結構和組分,石榴果皮通過提高蠟質含量尤其是酯類和醇類含量來響應日灼脅迫。
關鍵詞:石榴;果皮蠟質;日灼
中圖分類號:S665.4文獻標志碼:A文章編號:1009-9980(2024)07-1378-09
Effects of sunburn on the structure and component changes in pomegran-ate cuticular wax
LIU Chunyan,YANG Zhi,LI Jiyu,CAO Zhen,LIU Xin,QIN Gaihua*
(Institute of Horticulture,Anhui Academy of Agricultural Sciences/Key Laboratory of Horticultural Crop Germplasma Innovation and Utilisation(Co-Construction by Ministry and Province)/Anhui Key Laboratory of Genetic Improvement and Eco-Physiology of Horticul-tural Crops,Hefei 230001,Anhui,China)
Abstract:【Objective】Cuticular wax acts as a protective barrier that covers the surface cells of leaves,stems,flowers,and fruits,playing a crucial role in resisting heat and UV radiation damage.Pomegran-ate fruits sensitive to sunburn can easily suffer from sunburn when exposed to intense sunlight and high temperatures from July to September.This study investigated the effects of sunburn on the structure and components of cuticular wax in the Hongyushizi pomegranate variety,known for its susceptibility to sunburn.The aim of this research is to elucidate the physiological mechanisms underlying the response of cuticular wax to sunburn and to establish a theoretical framework for breeding sunburn-resistant pomegranate varieties.【Methods】The sunburn-susceptible variety Hongyushizi was used as the materi-alto study the wax structure of fruits at different sunburn degrees using scanning electron microscopy.The wax content was determined using gas chromatography-mass spectrometry(GC-MS).【Results】(1)Scanning electron microscopy revealed sunburn caused changes in the wax structure in pomegranate fruit,leading to irregular wax layer,sanding,or flaking depending on the degree of sunburn.(2)A total of 67 wax compounds were detected,mainly including very-long-chain aliphatics(26.36μg·cm-2,ac-counting for 74.95%of the total)and terpenoid(8.81μg·cm-2,accounting for 25.05%of the total).The very-long-chain aliphatics were mainly composed of alkanes(19.70μg·cm-2),fatty acids(2.49μg·cm-2),olefin(0.19μg·cm-2),alcohols(3.78μg·cm-2),and esters(0.20μg·cm-2).Sunburn significantly in-creased the total wax content(by 6.96%),especially increasing the contents of esters(by 82.78%)and alcohols(by 64.71%).However,it decreased the content of terpenoid by 27.48%compared to the con-trol.(3)Atotal of 7 terpenoid compounds were detected in the pomegranate pericarp,namely ursolic ac-id,“-tocopherol,β-sitosterol,β-amyrin,ginkgolide,β-tocopheroland betulin.The total amount of terpe-noid in the healthy Hongyushizi pomegranate pericarp was 8.81μg·cm-2,with ursolic acid being the most abundant at 8.66μg·cm-2(98.30%of the total).Sunburn significantly reduced the total amount of terpenoids,which was 6.39μg·cm-2 in the sunburned Hongyushizi pericarp(SB2)being a decrease of 26.21%compared to the healthy fruit.The content of ursolic acid was significantly reduced(by 29.00%)in the sunburned pericarp.However,sunburn increased the content of“-tocopherol,β-sitoster-ol,β-amyrin,ginkgolide,β-tocopherol,and betulin,but the differences were not significant.(4)A total of 20 alkanes compounds were detected in the Hongyushizi fruit pericarp.The healthy pericarp had a to-tal amount of 19.70μg·cm-2,including C29(7.32μg·cm-2),C31(6.70μg·cm-2)and C40(4.24μg·cm2),which accounted for 92.69%of the total alkanes.Sunburn increased the alkanes content to 22.53μg·cm-2.Additionally,12 alcohol compounds were detected in Hongyushizi fruit pericarp,primarily C30,which accounted for 81.04%of the total alcohol compounds.Sunburn significantly increased the alcohol com-pound content from 3.78μg·cm-2 to 6.34μg·cm-2,with the C30 content increasing by 49.15%.The fruit pericarp also contained 11 fatty acids,mainly C16 and C18,which accounted for 50.22%and 42.79%of the total fatty acid content,respectively.The content of fatty acids in healthy fruit was 2.49μg·cm-2,and decreased to 2.13μg·cm-2 under sunburn stress.Furthermore,14 lipid compounds were detected,mainly C19,C34,C22,C10,and C12,which accounted for 30.36%,11.33%,10.11%,9.64%,and 8.89%of the total lipid content,respectively.Sunburn increased the lipid content from 0.20μg·cm-2 to 0.37μg·cm-2.Lastly,3 olefin compounds with C17 having the highest content of lipid(0.18μg·cm-2),constituting 95.03%of the total olefins.Sunburn decreased the lipid content,particularly C17(by 19.20%),while significantly increased the content of C30.【Conclusion】The cuticular wax of pome-granate pericarp contains alkanes,terpenoids,fatty acids,olefins,alcohols,and lipids,with alkanes and terpenoids being the main compounds.Sunburn results in changes in the structure and total amount of wax in the pomegranate pericarp,with a significant increase in the content of lipids and alcohols,but a significant decrease in the content of terpenoids.Pomegranate pericarps can respond to sunburn stress by altering the wax structure and the contents of its components.The research provides a theoretical ba-sis for further understanding the mechanism of the response of the cuticular wax to sunburn stress.
Keywords:Pomegranate;Cuticular wax;Sunburn
植物表皮蠟質是葉片、莖、花和果實表面細胞覆蓋的一道疏水層,具有抵抗外界環(huán)境生物和非生物脅迫的作用,如抵抗病蟲害、減少非氣孔失水、降低高溫及紫外線輻射等[1]。植物表皮蠟質主要由脂肪族化合物、環(huán)狀化合物以及甾醇類化合物構成[2],其中脂肪族化合物包括長鏈脂肪酸,以及衍生而來的烷烴、醇、醛、酮、酯等。
表皮蠟質含量、結構和組分會隨著品種、發(fā)育時期和栽培環(huán)境的變化而改變,尤其是遭遇外界環(huán)境的變化時,植物會通過改變蠟質晶體的微結構形態(tài)、調節(jié)蠟質含量等適應脅迫。其中高溫和光直接改變植物表皮蠟質的形態(tài)和性質[3]。據報道,連續(xù)的高溫可以提高葡萄果實采收時的蠟質總量和萜類化合物含量,并通過增加齊墩果酸與熊果酸的比值來抑制蒸騰作用,減輕高溫損傷[4]。小麥葉片蠟質含量在高溫脅迫下也顯著增加,蠟質的增加可反射輻射,降低氣孔導度以減少蒸騰[5]。但是,高溫脅迫下韭蔥葉表皮蠟質含量明顯減少[6]。此外,不同的光照輻射也可改變番茄[7]、櫻桃番茄[8]、蘋果[9]、黃瓜[10]、大麥[10]、蠶豆[10]的蠟質組分和含量??梢?,高溫和光會改變蠟質含量和組分,但是不同物種的響應方式不同。
石榴是古老的保健水果,富含花青苷、黃酮、安石榴苷等多酚物質,是國家特色經濟林樹種之一[11]。石榴成熟期一般在9—10月,果實在7—9月暴露于強烈的太陽輻射和高溫中,容易發(fā)生日灼。據不完全統(tǒng)計,石榴果實日灼發(fā)生率為40%~50%,成為危害石榴生產的主要生理性病害之一[12]。目前關于石榴果皮蠟質的研究主要集中在采后儲藏方面[13],而關于果皮蠟質對日灼的響應研究較少。筆者以易感日灼的石榴品種紅玉石籽為材料,研究日灼對石榴果皮的蠟質含量、形態(tài)變化以及組分的影響,以揭示果皮蠟質響應日灼的生理機制,為抗日灼石榴品種選育提供理論依據。
1材料和方法
1.1材料
試驗所用材料為日灼易感品種紅玉石籽[14],該品種種植在安徽省農業(yè)科學院崗集示范基地,樹齡為8年生。選擇生長勢和結果量均勻一致的石榴樹,設置3次重復,每次重復選取10個果實。按照Liu等[15]制定的石榴日灼分級標準,將果實分為無日灼果實(CK)、輕微日灼果實(SB1)、中度日灼果實(SB2)和重度日灼果實(SB3),取向陽面果皮,用錫箔紙包裹并置于-80℃超低溫冰箱中冷凍保存?zhèn)溆谩?/p>
1.2果皮蠟質的掃描電子顯微鏡觀察
試驗材料為商熟期果實,每個處理3個果實,取向陽面果皮,將取下的果皮用解剖刀切成0.5 cm×0.5 cm的小塊,放入4%戊二醛的溶液中,用真空泵抽出溶液中的空氣,4℃固定。掃描電鏡樣品的制備參考Lufu等[13]方法,略有改動,將4%戊二醛固定好的樣品用pH 6.8的磷酸緩沖液(PBS)沖洗7~8次,每次20 min,沖洗后經梯度乙醇(30%、50%、70%、80%、90%、100%)脫水,每梯度30 min,再經100%丙酮脫水2次(每次30min),乙酸異戊酯置換2次(每次15min)。處理好的樣品進行臨界點干燥后粘臺,鍍膜,采用JEM 6360LV(JEOL)掃描電鏡在15 kV條件下觀察15次,并拍照記錄。
1.3果皮蠟質組分的測定
用內徑為1.9 cm的圓形打孔器在果實赤道部位向陽面打孔,去除果皮圓片的白皮層。每個樣品取10個果皮樣本稱質量,加入10 mL氯仿萃取,在60℃萃取5min。使用玻璃瓶分多次轉移,每次轉移2 mL,共轉移10 mL萃取液,進行氮氣吹干。氮氣吹干后的樣本置于干燥環(huán)境下進行衍生化處理,先加入1 mL氯仿復溶,渦旋1 min,超聲5 min;再使用0.22μm的有機相針孔過濾器過濾,取500μL上清液轉移至進樣瓶中,加入80μL BSTFA試劑(含1%TMCS試劑),置于70℃環(huán)境中,反應1 h。衍生化結束后,常溫靜置30min,進行GC-MS代謝組學分析。正構烷烴(C7-C40)混標質量濃度20μg·mL-1,100μL質譜上機。
采用氣相色譜-質譜聯(lián)用技術(GC-MS)分析果實果皮蠟質的化學組成成分。色譜條件:DB-5MS毛細管柱(30 m×0.25 mm×0.25μm,Agilent Jamp;W Scientific,F(xiàn)olsom,CA,USA),載氣為高純氦氣(純度>99.999%),流速1.0 mL·min-1,進樣口的溫度為260°C。進樣量1μL。程序升溫:柱溫箱的初始溫度為80°C,保持2 min;以15°C·min-1程序升溫至260°C,保持10 min;5°C·min-1升溫至315°C保持10 min。質譜條件:電子轟擊離子源(EI),離子源溫度230°C,四極桿溫度150°C,電子能量70 eV。掃描方式為全掃描模式,質量掃描范圍為50~500 m/z。
定性與定量分析方法:利用NIST08譜庫(https://webbook.nist.gov/chemistry/)進行匹配,并結合人工圖譜解析、標樣鑒定及資料分析進行定性。應用歸一法進行定量。蠟質含量以μg·cm-2表示。
1.4數據統(tǒng)計分析
運用SPSS進行顯著性分析,并利用T-test進行對照和處理間的比較,作圖軟件使用GraphPad Prism。
2結果與分析
2.1日灼對石榴果皮蠟質結構的影響
石榴果皮掃描電子顯微鏡觀測結果表明,日灼果實與正常果實相比蠟質結構存在顯著差異(圖1)。正常果實(CK)果皮蠟被均勻、致密;輕微日灼(SB1)果實表面明顯變得粗糙、不平整,局部區(qū)域蠟被凝聚;中度日灼(SB2)果實表面蠟質進一步顯著粗糙化,起砂嚴重;嚴重日灼(SB3)果實表面凹凸不平,果皮蠟質層呈片狀剝落。
2.2日灼對石榴果皮蠟質組分及含量的影響
為了進一步探明日灼對紅玉石籽石榴果皮蠟質的影響,選擇紅玉石籽中度日灼(SB2)和正常果實(CK)的果皮進行蠟質組分及含量的測定。石榴正常果皮中共檢測出67種蠟質成分,主要包括超長鏈脂肪族化合物(含量26.36μg·cm-2,占總量的74.95%)和萜類化合物(含量8.81μg·cm-2,占總量的25.05%),超長鏈脂肪族化合物主要由烷烴(19.70μg·cm-2)、脂肪酸(2.49μg·cm-2)、烯烴(0.19μg·cm-2)、醇類(3.78μg·cm-2)和酯類(0.20μg·cm-2)物質組成。日灼顯著提高了蠟質總量(提高了6.96%),尤其是酯類和醇類含量,分別顯著提高82.78%和64.71%,但顯著降低了萜類物質含量(降低了27.48%)(圖2)。
2.3日灼對石榴果皮萜類化合物含量的影響
石榴果皮中共檢測到7種萜類化合物,分別是熊果酸、“-生育酚、β-谷甾醇、β-香樹脂醇、銀杏內酯、β-生育酚和白樺脂醇(圖3)。正常紅玉石籽石榴果皮中萜類化合物的總量為8.81μg·cm-2,其中熊果酸含量最多,為8.66μg·cm-2(占總量的98.30%),其次為“-生育酚(含量0.13μg·cm-2,占總量的1.48%),其余萜類化合物含量較低。果實日灼降低了萜類化合物總量,紅玉石籽日灼果皮(SB2)中萜類總量為6.39μg·cm-2,比正常果實下降了26.21%,其中熊果酸的含量顯著降低29.00%。日灼提高了“-生育酚、β-谷甾醇、β-香脂素、銀杏內酯、β-生育酚和白樺脂素含量,但差異不顯著。
2.4日灼對石榴果皮超長鏈脂肪族化合物含量及碳鏈分布的影響
紅玉石籽果皮中檢測出20種C鏈長度的烷烴類化合物(圖4),正常果皮總量為19.70μg·cm-2,主要為C29(二十九烷,含量7.32μg·cm-2)、C31(三十一烷,含量6.70μg·cm-2)和C40(四十烷,含量4.24μg·cm-2),三者占烷烴總量的92.69%。日灼使烷烴含量提高至22.53μg·cm-2,其主要物質C29、C31和C40的含量分別提高了17.98%、13.69%和10.27%。紅玉石籽果皮中檢測出12種C鏈長度的醇類物質,主要為C30(1-三十烷醇,含量3.06μg·cm-2),占醇類物質總量的81.04%。日灼使醇類物質含量提高,由3.78μg·cm-2提高至6.34μg·cm-2,其主要碳鏈長度的C30含量顯著提高了49.15%。紅玉石籽果皮中脂肪酸的C鏈長度有11種,主要為C16(棕櫚酸、9-十六碳烯酸)和C18(硬脂酸、亞油酸、異油酸),分別占總脂肪酸含量的50.22%和42.79%,正常果皮總量為2.49μg·cm-2。日灼降低了脂肪酸的含量至2.13μg·cm-2(下降了14.46%),其主要物質C16和C18的含量分別下降15.23%和23.36%,相反C14、C19、C20、C22的含量卻顯著上升。紅玉石籽果皮中檢測出14種C鏈長度的酯類物質,主要為C19、C34、C22、C10、C12,分別占酯類物質總量的30.36%、11.33%、10.11%、9.64%、8.89%。日灼提高了酯類物質的含量,由0.20μg·cm-2提高至0.37μg·cm-2,尤其是C16、C19、C22和C29,分別顯著提高了162.21%、183.53%、66.54%、135.02%。紅玉石籽果皮中檢測出3種C鏈長度的烯烴,分別是C17(8-十七碳烯)、C30(反式角鯊烯)和C35(17-戊三烯),C17含量最高(0.18μg·cm-2),占烯烴總量的95.03%。日灼降低了酯類物質的含量,尤其是C17,顯著降低了19.20%,但C30的含量顯著提高了100.98%(圖4)。
3討論
果皮蠟質是果實與外界接觸的第一道屏障,在果實生長和貯藏過程中有十分重要的作用。本研究中紅玉石籽石榴果皮蠟質總量(35.17μg·cm-2),遠低于砂糖橘[16]、藍莓[17]、梨[18]、蘋果[19]等水果,與番茄表皮蠟質含量相當[20]。石榴果實中的主要蠟質組分是烷烴,在瓦倫西亞的黃金帥蘋果[19]、Fortune橘[21]、檸檬[22]、庫爾勒香梨[18]果皮中的主要蠟質組分也是烷烴。但是紅元帥主要的蠟質組分是脂肪醇[19],藍莓中主要的蠟質組分是萜類化合物[17],砂糖橘中主要的蠟質組分是長鏈脂肪醛[16]。由此可見,蠟質的化學組成復雜,且組成成分及含量在不同物種中差異較大。
萜類尤其五環(huán)三萜類化合物是表皮蠟質主要的生物活性物質,其化合物的種類及含量在不同植物中也呈現(xiàn)出多樣性。藍莓果皮中主要的萜類物質是熊果酸[17],椪柑中主要是羽扇豆醇[23],檸檬中主要是角鯊烯[23],在庫爾勒香梨中主要是δ-生育酚,雪花梨中主要是α香樹脂醇,玉露香梨中主要是乙酸羽扇醇酯[18]。本研究中的紅玉石籽中主要的萜類物質是熊果酸,占萜類化合物總量的98.30%,也是表皮蠟質中含量最多的一種物質。熊果酸是植物中一種普遍存在的五環(huán)三萜,是石榴、山楂、枇杷等植物中主要的萜類化合物,具有抗氧化、抗菌等重要功能而備受關注[24]。日灼顯著降低石榴果皮中熊果酸含量,推測其可能作為抗氧化劑清除日灼脅迫產生的自由基,降低日灼損傷[25]。
日灼是果實在高溫和強光條件下引起的一種生理失調癥[26],果皮蠟質可以保護果實免受光和熱的脅迫。通過對10個白色葡萄品種的表皮去蠟試驗,結果表明,去除表皮蠟質加速了日灼的發(fā)生[27],表皮蠟質主要是作為保護層發(fā)揮運輸屏障的功能,此外,蠟質還可以通過散射、反射甚至吸收PAR和UV輻射,起保護作用,從而降低組織的暴露水平。蠟質對光的散射能力取決于蠟質晶體的大小、分布和方向。片狀蠟晶體比無定形蠟反射和散射光的比例更高,同時還可以促進蒸騰作用。當日灼出現(xiàn)時,葡萄表皮蠟質失去了晶體結構,變得相對無定形[28]。本研究中隨著日灼程度的加深,石榴表皮的蠟質結構受損也越來越嚴重,并且脫落,使得其對光和熱脅迫的防護作用減弱。
高溫和強光不僅改變蠟質的結構,也影響蠟質的組分和含量。在增強光照或UV-B紫外輻射的試驗中,大部分物種的蠟質含量會隨著光照度的增加而增加,如葡萄[4]、小麥[6]。蠟質的增加將有利于反射輻射,降低氣孔導度以減少蒸騰。但是,高溫條件下敖漢紫花苜蓿的蠟質含量下降,三得利苜蓿蠟質含量無顯著變化[29];同樣在高溫脅迫下,韭蔥葉表皮蠟質含量也明顯減少[5],在反光膜增強宮川溫州蜜柑反射光后,蠟質總量并沒有出現(xiàn)顯著變化[30]??梢姽庹蘸透邷貙ο炠|影響存在物種差異性,可能與植物對光輻射和溫度的敏感性以及物種自身生理差異有關[30-31]。
蠟質合成是一個復雜的過程,碳原子數為16或18的脂肪酸在多種酶的催化作用下,延伸為碳原子數為20~34的超長鏈脂肪酸,接著長鏈脂肪酸作為蠟質合成的前體物質進入到脫碳基途徑和酰基還原途徑,在內質網中進行蠟質的合成[3]。據報道,UV-B處理改變了豌豆葉片正面蠟的組成,如醇類轉化為酯類和其他碳氫化合物,短鏈烷基酯與長鏈烷基酯同源物的比例增大[32]。同樣,UV-B的增加導致糖楓中蠟烷烴含量增加,表明UV-B誘導了脫碳途徑而不是還原途徑[33]。本研究中日灼加速了超長鏈脂肪酸的延伸,以C16和C18為主的脂肪酸含量受日灼的影響下降,導致C20和C22的脂肪酸含量顯著上升,并且進一步導致烷烴、酯類和醇類的含量上升,但是降低了脂肪酸、烯烴以及萜類物質的含量,表明石榴可通過改變特定蠟質組分的含量來響應日灼脅迫。
4結論
石榴表皮蠟質有烷烴、萜類、脂肪酸、烯烴、醇類、酯類,以烷烴和萜類化合物為主。日灼導致石榴表皮蠟質結構改變和蠟質總量增加,其中烷烴、酯類和醇類的含量上升,但是降低了脂肪酸、烯烴以及萜類物質的含量。石榴可以通過改變蠟質結構、組分的含量來響應日灼脅迫。研究結果為進一步明晰表皮蠟質響應日灼脅迫的機制提供了理論依據。
參考文獻References:
[1]KUNST L,SAMUELS L.Plant cuticles shine:Advances in wax biosynthesis and export[J].Current Opinion in Plant Biology,2009,12(6):721-727.
[2]WEN M,JETTER R.Composition of secondary alcohols,ke-tones,alkanediols,and ketols in Arabidopsis thaliana cuticular waxes[J].Journal of Experimental Botany,2009,60(6):1811-1821.
[3]SHEPHERD T,GRIFFITHS D W.The effects of stress on plant cuticular waxes[J].The New Phytologist,2006,171(3):469-499.
[4]VANDERWEIDE J,YAN Y F,ZANDBERG W F,CASTELLA-RIN S D.Modulation of grape cuticular wax composition fol-lowing multiple heatwaves influences grape transpiration[J].En-vironmental and Experimental Botany,2022,202:105036.
[5]HUGGINS T D,MOHAMMED S,SENGODON P,IBRAHIM A M H,TILLEY M,HAYS D B.Changes in leaf epicuticular wax load and its effect on leaf temperature and physiological traits in wheat cultivars(Triticum aestivum L.)exposed to high temperatures during anthesis[J].Journal of Agronomy and Crop Science,2018,204(1):49-61.
[6]GABRIELA-ANCA MAIER C,POST-BEITTENMILLER D.Epicuticular wax on leek in vitro developmental stages and seed-lings under varied growth conditions[J].Plant Science,1998,134(1):53-67.
[7]COZMUTA A M,COZMUTA L M,PETER A,NICULA C,VOSGAN Z,GIURGIULESCU L,VULPOI A,BAIA M.Effect of monochromatic Far-Red light on physical-nutritional-microbi-ological attributes of red tomatoes during storage[J].Scientia Horticulturae,2016,211:220-230.
[8]CHOI D S,PARK S H,CHOI S R,KIM J S,CHUN H H.The combined effects of ultraviolet-C irradiation and modified atmo-sphere packaging for inactivating Salmonella enterica serovar Typhimurium and extending the shelf life of cherry tomatoes during cold storage[J].Food Packaging and Shelf Life,2015,3:19-30.
[9]BRINGE K,HUNSCHE M,SCHMITZ-EIBERGER M,NOGA G.Retention and rainfastness of mancozeb as affected by physi-cochemical characteristics of adaxial apple leaf surface after en-hanced UV-B radiation[J].Journal of Environmental Science and Health.Part.B,Pesticides,F(xiàn)ood Contaminants,and Agricul-tural Wastes,2007,42(2):133-141.
[10]STEINMüLLER D,TEVINI M.UV-B-induced effects upon cu-ticular waxes of cucumber,bean,and barley leaves[C]//Strato-spheric Ozone Reduction,Solar Ultraviolet Radiation and Plant Life.Berlin,Heidelberg:Springer,1986:261-269.
[11]苑兆和.石榴分子生物學研究進展[J].落葉果樹,2016,48(5):1-8.
YUAN Zhaohe.Research progress in molecular biology of pomegranate[J].Deciduous Fruits,2016,48(5):1-8.
[12]YAZICI K,ERCI?LI S.Characterization of hybrid pomegranate genotypes based on sunburn and cracking traits related tomatu-ration time[J].Journal of Applied Botany and Food Quality,2017,90:132-139.
[13]LUFUR,AMBAWA,OPARAUL.Functional characterisation of lenticels,micro-cracks,wax patterns,peel tissue fractions and wa-ter loss of pomegranate fruit(cv.Wonderful)during storage[J].Postharvest Biology and Technology,2021,178:111539.
[14]蘇穎,劉春燕,張虎平,賈波濤,黎積譽,于晴,楊圓,曹榛,秦改花.120份石榴種質果實的抗日灼能力評價及抗日灼指標篩選[J].果樹學報,2021,38(10):1725-1735.
SU Ying,LIU Chunyan,ZHANG Huping,JIA Botao,LI Jiyu,YU Qing,YANG Yuan,CAO Zhen,QIN Gaihua.Evaluation of sunburn resistance and screening of physiological indexes relat-ed to sunburn of the fruits in 120 pomegranate accessions[J].Journal of Fruit Science,2021,38(10):1725-1735.
[15]LIU C Y,SU Y,LI J Y,JIA B T,CAO Z,QIN G H.Physiologi-cal adjustment of pomegranate pericarp responding to sunburn and its underlying molecular mechanisms[J].BMC Plant Biolo-gy,2022,22(1):169.
[16]徐呈祥,吳秀蘭,馬艷萍,鄭福慶,葉思敏,陳小婷.貯藏溫度對砂糖橘果皮表面結構及蠟質的影響[J].園藝學報,2019,46(6):1057-1067.
XU Chengxiang,WU Xiulan,MA Yanping,ZHENG Fuqing,YE Simin,CHEN Xiaoting.Effect of storage temperature on the peel surface structure and wax content of‘Shatangju’mandarin(Citrus reticulata)fruit[J].Acta Horticulturae Sinica,2019,46(6):1057-1067.
[17]CHU W J,GAO H Y,CAO S F,F(xiàn)ANG X J,CHEN H J,XIAO S Y.Composition and morphology of cuticular wax in blueberry(Vaccinium spp.)fruits[J].Food Chemistry,2017,219:436-442.
[18]WU X,YIN H,CHEN Y Y,LI L,WANG Y Z,HAO P P,CAO P,QI K J,ZHANG S L.Chemical composition,crystal morphol-ogy and key gene expression of cuticular waxes of Asian pears at harvest and after storage[J].Postharvest Biology and Technol-ogy,2017,132:71-80.
[19]WANG Y X,WANG X J,CAO Y,ZHONG M S,ZHANG J,YU K,LI Z W,YOU C X,LI Y Y.Chemical composition and morphology of apple cuticular wax during fruit growth and de-velopment[J].Fruit Research,2022,2(1):1-11.
[20]BAUER S,SCHULTE E,THIER H P.Composition of the sur-face wax from tomatoes:II.Quantification of the components at the ripe red stage and during ripening[J].European Food Re-search and Technology,2004,219(5):487-491.
[21]SALA J M.Content,chemical composition and morphology ofepicuticular wax of Fortune mandarin fruits in relation to peel pitting[J].Journal of the Science of Food and Agriculture,2000,80(13):1887-1894.
[22]王敏力,劉德春,楊莉,曾瓊,王玥辰,吳啟,劉山蓓,劉勇.不同種類柑橘的蠟質結構與成分比較[J].園藝學報,2014,41(8):1545-1553.
WANG Minli,LIU Dechun,YANG Li,ZENG Qiong,WANG Yuechen,WU Qi,LIU Shanbei,LIU Yong.Comparative analy-sis of different citrus wax morphological structure and composi-tion[J].Acta Horticulturae Sinica,2014,41(8):1545-1553.
[23]王金秋,何義仲,徐坤洋,羅懌,盛玲,羅燾,劉歡,程運江.三種類型柑橘成熟果實表面蠟質分析[J].中國農業(yè)科學,2016,49(10):1936-1945.
WANG Jinqiu,HE Yizhong,XU Kunyang,LUO Yi,SHENG Ling,LUO Tao,LIU Huan,CHENG Yunjiang.Characterizationof mature fruit surface waxes of three cultivated citrus species[J].Scientia Agricultura Sinica,2016,49(10):1936-1945.
[24]LóPEZ-HORTAS L,PéREZ-LARRáN P,GONZáLEZ-MU?OZ M J,F(xiàn)ALQUéE,DOMíNGUEZ H.Recent develop-ments on the extraction and application of ursolic acid:A re-view[J].Food Research International,2018,103:130-149.
[25]楊艷.獼猴桃根中熊果酸的提取及其抗氧化和抑菌性研究[D].楊凌:西北農林科技大學,2013.
YANG Yan.Extraction of ursolic acid from the roots of Actinid-ia chinensis and the antioxidant and antimicrobial activity stud-ies[D].Yangling:Northwest Aamp;F University,2013.
[26]MUNNé-BOSCH S,VINCENT C.Physiological mechanisms underlying fruit sunburn[J].Critical Reviews in Plant Sciences,2019,38(2):140-157.
[27]DOMANDA C,PARADISO V M,MIGLIARO D,PAPPACCO-GLI G,F(xiàn)AILLA O,RUSTIONI L.Epicuticular waxes:A natu-ral packaging to deal with sunburn browning in white grapes[J].Scientia Horticulturae,2024,328:112856.
[28]GREER D H,ROGIERS S Y,STEEL C C.Susceptibility of Chardonnay grapes to sunburn[J].Vitis,2006,45(3):147-148.
[29]郭彥軍,倪郁,郭蕓江,韓龍,唐華,玉永雄.水熱脅迫對紫花苜蓿葉表皮蠟質組分及生理指標的影響[J].作物學報,2011,37(5):911-917.
GUO Yanjun,NI Yu,GUO Yunjiang,HAN Long,TANG Hua,YU Yongxiong.Effect of soil water deficit and high temperature on leaf cuticular waxes and physiological indices in alfalfa(Medicago sativa)leaf[J].ActaAgronomica Sinica,2011,37(5):911-917.
[30]付沃興,劉德春,匡柳青,蒙志鑫,劉勇,胡威,楊莉.透濕性反光膜對柑橘果皮蠟質晶體結構和組成成分的影響[J].江蘇農業(yè)學報,2022,38(4):1062-1069.
FU Woxing,LIU Dechun,KUANG Liuqing,MENG Zhixin,LIU Yong,HU Wei,YANG Li.Effects of vapor-permeable reflective film on cuticular wax structure and composition of citrus[J].Jiang-su Journal of Agricultural Sciences,2022,38(4):1062-1069.
[31]李永才,尹燕,陳松江,畢陽,葛永紅.采前套袋對蘋果梨表皮蠟質結構和化學組分的影響[J].中國農業(yè)科學,2012,45(17):3661-3668.
LI Yongcai,YIN Yan,CHEN Songjiang,BI Yang,GE Yong-hong.Effects of preharvest bagging treatment on the micro-structure and chemical composition of cuticular wax in Pingguo-li pear fruit[J].Scientia Agricultura Sinica,2012,45(17):3661-3668.
[32]GONZALEZ R,PAUL N D,PERCY K,AMBROSE M,MCLAUGHLIN C K,BARNES J D,ARESES M,WELL-BURN A R.Responses to ultraviolet-B radiation(280-315 nm)of pea(Pisum sativum)lines differing in leaf surface wax[J].Physiologia Plantarum,1996,98(4):852-860.
[33]GORDON D C,PERCY K E,RIDING R T.Effect of enhanced UV-B radiation on adaxial leaf surface micromorphology and epicuticular wax biosynthesis of sugar maple[J].Chemosphere,1998,36(4/5):853-858.