摘要:【目的】PISTILLATA(PI)基因作為控制花器官發(fā)育的B類功能基因中的一員,在花器官發(fā)育中起到重要的作用。為探究PI基因在板栗花發(fā)育中的功能,對板栗花器官B類基因PISTILLATA(PI)進行鑒定和功能分析?!痉椒ā吭诎謇趸蚪M數(shù)據(jù)中檢索PI同源基因CmPI,并克隆編碼區(qū)序列。利用在線工具對CmPI進行生物信息學(xué)分析。通過熒光定量PCR分析CmPI在板栗不同組織及不同花發(fā)育時期的時空表達模式。構(gòu)建35S::CmPI-GFP融合載體,瞬時轉(zhuǎn)化煙草葉片,進行基因表達的亞細胞定位分析。將過表達載體35S::CmPI轉(zhuǎn)入野生型擬南芥獲得過表達植株,驗證CmPI在花發(fā)育中的功能?!窘Y(jié)果】克隆到的板栗CmPI基因開放閱讀框長度630bp,編碼209個氨基酸,有高度保守的MADS域(MADS-box)和K域(K-box),屬MADS的Ⅱ型亞家族轉(zhuǎn)錄因子,定位于細胞核。CmPI主要在板栗雄花中表達。在擬南芥中過表達CmPI導(dǎo)致萼片轉(zhuǎn)變?yōu)榛ò陿咏M織。熒光定量PCR結(jié)果表明,CmPI過表達擬南芥中除C類基因AtAG表達量顯著高于野生型外,其他A類、B類、E類基因的表達量均低于野生型擬南芥?!窘Y(jié)論】鑒定到的MADS-box基因CmPI為板栗花發(fā)育B類基因,可導(dǎo)致萼片花瓣化,可能是抑制雌花苞片進一步發(fā)育的關(guān)鍵基因。
關(guān)鍵詞:板栗;花器官;B類基因;基因功能驗證;PISTILLATA
中圖分類號:S664.2文獻標(biāo)志碼:A文章編號:1009-9980(2024)07-1322-10
Cloning and functional analysis of CmPI,a class B flower development gene in Chinese chestnut
GUO Xiaomeng1,2,3,YANG Qianyu3,CHENG Lili1,2,HU Guanglong1,2,LIU Zhao4,ZHOU Guangzhu3,LAN Yanping1,2*,CHENG Yunhe1,2*
(1Institute of Forestry and Pomology,Beijing Academy of Agriculture and Forestry Sciences,Beijing 100093,China;2Chestnut Engineer-ing Technology Research Center,National Forestry and Grassland Administration,Beijing 100093,China;3College of Forestry,Shenyang Agricultural University,Shenyang 110086,Liaoning,China;4Beijing University of Agriculture,Beijing 102200,China)
Abstract:【Objective】A complete flower consists of four floral organs,including sepals,petals,sta-mens,and carpels from the outside to the inside.In the ABC(D)E flower development regulation model,each roundofflower organ development is specifically regulated by corresponding genes.The variation of plant flowers in the process of evolution has produced a different four ring flower organ structure from the classic one.Such as chestnut,poplar,walnut,jatropha,birch are catkins,their flowers are uni-sexual,and do not have petals and sepals.In these plants,the petals and sepals are replaced by the bracts.The development of bracts may be co-regulated by A,B and E genes.As a typical representative of Fagaceae plants,the female and male flowers of chestnut differ greatly in morphology.The male bracts of chestnut are small and thin,and the stamens are easy to extend out during flowering.The fe-male flowers of chestnut are usually 3 to 5 grouped together in clusters at the base of the mixed inflores-cences.The female flower cluster is surrounded by numerous bracts.After the female flower is fertil-ized,the bracts develop into epicarp.The sexual dimorphism of chestnut bracts may also be regulated by MADS-box gene.PI gene is one of class B genes,which is involved in the development regulation of petals and stamens,and is one of the ideal genes for studying the development regulation of chestnut bracts.In this study,the Castanea mollissima variety‘Yanshan Hongli’was used as experimental mate-rial.Homology cloning,evolutionary analysis,spatio-temporal expression analysis and functional verifi-cation of the Class B flower organ development gene CmPI of C.mollissima were used to lay a founda-tion for the molecular regulation of bracteal dimorphism of C.mollissima.【Methods】The PI homolo-gous gene CmPI was retrieved from the genome data of Chinese chestnut.The coding region sequence was cloned by RT-PCR.Bioinformatics analysis of the CmPI was performed using online tools.The temporal and spatial expression patterns of the CmPI in different tissues and flower development stages of Chinese chestnut were analyzed by fluorescence quantitative PCR(qRT-PCR).The 35S::CmPI-GFP fusion vector was constructed to transform tobacco leaves instantaneously for subcellular localization analysis.The overexpression vector 35S::CmPI was transferred into wild Arabidopsis thaliana to obtain overexpression plants for detecting the function of the CmPI in flower development.The expressions level of flower development genes of A.thaliana were analyzed.【Results】The coding sequence of the CmPI was 630 bp long,encoded 209 amino acids.The CmPI protein was a hydrophilic protein with a theoretical molecular weight of 82 015.9 Da and an isoelectric point of 5.1.The MEGAX was used to construct the phylogenetic tree of the PI homologous proteins of C.mollissima,Glycine max,Cucumis sativus,Vitis vinifera,Betaulaplatyphylla,Helianthus annuus,Liriodendron chinense,Salix purpurea,Nymphaea tetragona,Chenopodium quinoa and A.thaliana.The results showed that the CmPI had the closest relationship with that of B.platyphylla,followed by G.max,C.sativus and V.vinifera.The Cm-PI had conserved MADS domain(MADs-box)and K domain(K-box),and belonged to the typeⅡsub-family of MADS transcription factors.The CmPI was mainly expressed in the male flowers of Chinese chestnut.The expression of the CmPI in C.mollissima male flower kept increasing until 31th May.The constructed 35S::CmPI-GFP vector and 35S::GFP empty vector were infected by Agrobacterium-medi-ated method to carry out instantaneous expression.The fluorescence signals of empty carriers were dis-tributed on the cell membrane,cytoplasm and nucleus,while the fluorescence signals of the 35S::CmPI-GFP were only distributed on the nucleus,indicating that the CmPI gene was localized in the nucleus.In early flower development of A.thaliana plants with overexpression of the CmPI,the sepals become narrow and there were gaps between the sepals,which could not wrap the internal flower organ struc-ture.After flowering of the A.thaliana plants with overexpression of the CmPI,the sepals and petaliza-tion were scattered.The measurement results showed that the sepal width of the CmPI transgenic plants was 0.59 mm,which was significantly lower than that of the wild A.thaliana.The length of the sepal was 2.49 mm,which was significantly higher than that of the wild Arabidopsis.There was no signifi-cant difference in petal length between the CmPI transgenic plants and the wild individuals.The gene expression analysis of A,B,C and E genes related to the regulation of the sepals and petals in the trans-geniclines and the wild type individuals showed that the class C gene AtAG was significantly higher in the CmPI-OE lines than the wild type Arabidopsis.And the expression levels of the class A gene AtAP1 and the class B gene AtAP3/AtPI,E class genes AtSEP1/AtSEP2/AtSEP3/AtSEP4 were lower that those of the wild type Arabidopsis.【Conclusion】The MADS-box gene CmPI is a B class gene in Chinese chestnut,which can lead to the petalization of the sepals and may be a key gene in inhibiting the further development of the bracts of the female flower.
Keywords:Castanea mollissima;Flower organs;Class B genes;Gene function verification;PISTILLA-TA
在植物發(fā)育過程中,莖尖分生組織首先產(chǎn)生葉片等營養(yǎng)器官,植株發(fā)育到特定階段后,在外界環(huán)境和內(nèi)源激素等因素的共同影響下,開始由營養(yǎng)生長轉(zhuǎn)向生殖生長。此時,莖尖分生組織分化出花序或花原基,最終發(fā)育為花[1]。一朵完全花由四輪花器官組成,由外到內(nèi)依次為萼片、花瓣、雄蕊和心皮[2]。在“ABC(D)E”花發(fā)育調(diào)控模型中,每一輪花器官的發(fā)育都由相應(yīng)的基因特異性調(diào)控,其中A(AP1和AP2)+E(SEP)類基因決定萼片身份,A+B(AP3和PI)+E類基因共同控制花瓣身份,B+C(AG)+E類基因共同控制雄蕊的生長發(fā)育,C+E類基因確定心皮的身份[3-4]。
植物花在進化過程中的變異,產(chǎn)生了不同于經(jīng)典的四輪花器官結(jié)構(gòu)。如板栗、楊樹、核桃、小桐子、白樺樹等植物為柔荑花序,花單性,無花瓣和萼片。在這些植物中,花瓣和萼片由苞片替代[5]。苞片的發(fā)育可能同時受A、B、E基因的共同調(diào)控[6]。板栗作為殼斗科植物的典型代表,雌花和雄花形態(tài)差異較大。板栗雄花苞片小而薄,花期易于雄蕊伸出。板栗雌花通常3~5朵聚合為雌花簇,著生于混合花序基部,雌花簇由大量苞片包圍。板栗雌花受精后,苞片發(fā)育為殼斗。板栗苞片的性二態(tài)發(fā)育可能同樣受MADS-box基因調(diào)控。目前已有研究在板栗和歐洲栗基因組中對MADS-box基因進行了鑒定和表達分析,但未進行生物學(xué)功能驗證[7]。PI基因是B類花發(fā)育基因之一,參與花瓣和雄蕊的發(fā)育調(diào)控,是研究板栗苞片發(fā)育調(diào)控機制的理想基因之一。筆者以板栗(Castanea mollissima)品種燕山紅栗為試驗材料,通過對板栗B類花器官發(fā)育基因CmPI的同源克隆、進化分析、時空表達分析和功能驗證,為解析板栗苞片性二態(tài)發(fā)育的分子調(diào)控機制奠定基礎(chǔ)。
1材料和方法
1.1試驗材料
以板栗品種燕山紅栗為材料,分別取雄花、雌花、胚、葉芽、花芽、莖尖及葉片,雄花從5月11日始,每隔7d取樣1次,共取樣5次,樣品經(jīng)液氮速凍后置于-80℃冰箱保存。
課題組實驗室保存的Columbia野生型擬南芥(Arabidopsis thaliana)用于目的基因的異源過表達驗證,本氏煙草(Nicotiana benthamiana)用于亞細胞定位融合載體的瞬時轉(zhuǎn)化。
1.2試驗方法
1.2.1總RNA提取與反轉(zhuǎn)錄取液氮速凍后存于-80℃冰箱的100 mg植物組織進行RNA提取。按照TaKaRa公司植物RNA提取試劑盒(TaKaRa MiniBEST Universal RNA Extraction Kit,9769)說明書提取總RNA。提取完成后檢測總RNA的濃度和純度,再用1.5%瓊脂糖凝膠電泳進一步檢測總RNA的完整性。利用TaKaRa公司的反轉(zhuǎn)錄試劑盒(PrimeScript?RT reagent Kit with gDNA Eraser,RR047Q),按照其說明書合成cDNA第一鏈,反轉(zhuǎn)錄產(chǎn)物存放于-20℃冰箱。
1.2.2板栗PI基因克隆根據(jù)板栗基因組測序數(shù)據(jù)(http://chestnutgenome.cn)利用DNAMAN軟件設(shè)計板栗CmPI編碼區(qū)序列(CDS)全長引物(表1)。以反轉(zhuǎn)錄產(chǎn)物為模板進行CmPI基因的CDS擴增。PCR產(chǎn)物經(jīng)1.5%瓊脂糖凝膠電泳檢測后,利用TA-KARA膠回收試劑盒(TaKaRa MiniBEST DNA Fragment Purification Kit Ver.4.0,9761)回收目的條帶。將回收產(chǎn)物連接pBM21(pBM21 Topsmart Cloning Kit)載體上,轉(zhuǎn)化大腸桿菌DH5“,在含氨芐霉素的LB培養(yǎng)基上,放置37℃恒溫培養(yǎng)16h,送至生工生物工程(上海)股份有限公司測序。
1.2.3生物信息學(xué)分析利用EXPACY網(wǎng)站(http://www.expacy.org/)預(yù)測其編碼蛋白的等電點和分子質(zhì)量大小及其親/疏水性;在NCBI數(shù)據(jù)庫(http://blast.ncbi.nlm.nih.gov/)中通過Conserved Domains進行CmPI基因的保守域預(yù)測。從NCBI數(shù)據(jù)庫下載大豆(Glycine max)、黃瓜(Cucumis sativus)、葡萄(Vitis vinifera)、白樺(Betula platyphylla)、向日葵(Helianthus annuus)、鵝掌楸(Liriodendron chi-nense)、紅皮柳(Salix purpurea)、睡蓮(Nymphaea te-tragona)、藜麥(Chenopodium quinoa)、擬南芥(Ara-bidopsis thaliana)的PI氨基酸序列并與CmPI借助MEGAX軟件,用鄰接法(Neighbor-Joining)構(gòu)建進化樹,校驗參數(shù)為bootsrap=1000。
1.2.4 CmPI在板栗中的時空表達模式分析以不同組織和不同發(fā)育時期雄花RNA反轉(zhuǎn)錄產(chǎn)物為模板,進行實時熒光定量PCR。利用DNAMAN設(shè)計特異引物。以CmActin基因為內(nèi)參基因(表1)[8]。具體步驟參照TaKaRa試劑盒(TB Green?Premix Ex Taq?Ⅱ,RR820A)說明書。反應(yīng)程序為:95℃預(yù)變性30 s,95℃變性5 s,60℃延伸30 s,40個循環(huán)。試驗設(shè)置3個重復(fù),并采用2???Ct法計算基因的相對表達量。通過GraphPad Prism8軟件對基因的表達量進行差異分析。
1.2.5載體構(gòu)建根據(jù)試劑盒(Life technologies,Carlsbad,CA,USA)說明書分別設(shè)計亞細胞定位載體和過表達載體引物(表1)。利用PCR擴增得到含有載體接頭的CmPI基因,并將其克隆至pE-GOEP35S中間載體上。將中間載體上不含終止密碼子CmPI-GFP基因和完整CmPI-GFP基因分別重組至pVS1 RepA和pVS1 StaA載體上,得到含35S::CmPI-GFP亞細胞定位載體和35S::CmPI過表達載體。
1.2.6亞細胞定位利用凍融法,將35S::CmPI-GFP亞細胞定位載體質(zhì)粒轉(zhuǎn)化到農(nóng)桿菌中。參照楊國棟[9]的方法侵染本氏煙草葉片,將pEGOEP35S-H-GFP空載作為對照。煙草侵染2~3 d后,用激光共聚焦顯微鏡(Leica TCS SPII)觀察葉片細胞中熒光的分布情況。
1.2.7板栗CmPI過表達轉(zhuǎn)基因擬南芥的獲取及表型分析將含有目的基因的過表達載體通過凍融法轉(zhuǎn)入GV31001農(nóng)桿菌感受態(tài)細胞。參照Clough等[10]報道的花粉管侵染法轉(zhuǎn)化擬南芥。用50 mg·L-1的潮霉素篩選抗性植株。將長出真葉的擬南芥幼苗移栽到花盆中置于光照培養(yǎng)箱培養(yǎng),培養(yǎng)條件為光照16 h(24℃),黑暗8 h(20℃)。選擇表型變化明顯的5個株系繼續(xù)培養(yǎng)至T2代。挑選目的基因表達量較高的3個轉(zhuǎn)基因株系及野生型株系分別移栽10株至氣候箱,對其進行定期觀察,待進入盛花期后,在頂部花序中,每株隨機選取5朵處于第六階段的擬南芥花,分別測量其花瓣與萼片的長度,對測量結(jié)果利用GraphPad Prism8軟件進行分析[11]。
1.2.8 CmPI過表達擬南芥中ABCE類花發(fā)育基因表達分析取5株CmPI-OE擬南芥,以CmPI-OE擬南芥花RNA反轉(zhuǎn)錄產(chǎn)物為模板,進行實時熒光定量PCR?;òl(fā)育基因AtAP1、AtAP3、AtPI、AtAG、At-SEP1、AtSEP2、AtSEP3、AtSEP4及內(nèi)參基因AtACTIN引物參考https://biodb.swu.edu.cn/qprimerdb/(表1)。具體步驟參照TaKaRa試劑盒(TB Green?Premix Ex Taq?Ⅰ,RR820A)說明書進行。反應(yīng)程序為:95℃預(yù)變性30 s;95℃變性5 s,60℃延伸30 s,40個循環(huán)。試驗設(shè)置3個重復(fù),并采用2???Ct法計算基因的相對表達量。通過GraphPad Prism8軟件對基因的表達量進行差異分析。
2結(jié)果與分析
2.1板栗CmPI基因克隆及生物信息學(xué)分析
以板栗雄花的cDNA為模板,通過RT-PCR克隆板栗CmPI(圖1-A)??寺〉降陌謇魿mPI編碼區(qū)序列長度為630bp,編碼209個氨基酸。NCBI分析表明,CmPI蛋白理論分子質(zhì)量為82 015.9 Da,等電點為5.1,為親水性蛋白。
在NCBI數(shù)據(jù)庫中通過Conserved Domains進行基因的保守域預(yù)測,結(jié)果(圖1-B)表明,PI蛋白在2~75 aa處含有高度保守的MADS域(MADS-box),在84~165 aa處含有K域(K-box),為MADS的Ⅱ型亞家族成員。
在NCBI庫中用Blast對CmPI蛋白序列進行相似性比對分析(圖1-C)。利用MEGAX構(gòu)建板栗與大豆、黃瓜、葡萄、白樺、向日葵、鵝掌楸、紫柳、睡蓮、藜麥、擬南芥PI同源蛋白的系統(tǒng)進化樹(圖2)。結(jié)果表明,板栗與白樺PI蛋白親緣關(guān)系最近,大豆、黃瓜和葡萄次之。
2.2 CmPI在板栗中的時空表達模式分析
以板栗雄花、雌花、葉片、葉芽、花芽、胚、莖尖7個不同植物組織為材料,進行實時熒光定量PCR分析,結(jié)果(圖3)表明,CmPI主要在雄花中表達。以
板栗不同時期雄花為材料,進行實時熒光定量PCR分析,結(jié)果(圖4)表明,CmPI基因的表達水平在雄花發(fā)育過程中逐漸升高,并在5月31日(盛花期)達到最大值,然后開始降低。
2.3亞細胞定位分析
將構(gòu)建好的pEGOEP35S::CmPI-GFP載體和pEGOEP35S::GFP空載體通過農(nóng)桿菌介導(dǎo)法侵染本氏煙草葉片,進行瞬時表達,觀察GFP熒光信號。結(jié)果如圖5所示,空載體的熒光信號分布在細胞膜、細胞質(zhì)和細胞核上,而pEGOEP35S::CmPI-GFP的熒光信號只分布在細胞核上,表明CmPI基因定位于細胞核。
2.4過表達CmPI影響花器官發(fā)育及相關(guān)基因的表達
為進一步研究CmPI的生物學(xué)功能,筆者構(gòu)建了CmPI過表達載體,并轉(zhuǎn)入擬南芥獲取了轉(zhuǎn)基因植株。通過表型觀察發(fā)現(xiàn),CmPI過表達擬南芥植株花發(fā)育早期,萼片變窄,萼片間出現(xiàn)縫隙,無法包裹內(nèi)部花器官結(jié)構(gòu)。CmPI過表達擬南芥植株花開放后,萼片和花瓣呈離散狀(圖6-A~B)。測量結(jié)果表明,CmPI轉(zhuǎn)基因植株萼片寬度為0.59 mm,顯著低于野生型擬南芥(圖6-C);萼片長度為2.49 mm,顯著高于野生型擬南芥(圖6-D)。而CmPI轉(zhuǎn)基因植株花瓣長度與野生型擬南芥相比,無顯著差異(圖6-E)。對轉(zhuǎn)基因株系和野生型擬南芥調(diào)控萼片和花瓣的相關(guān)A、B、C、E基因進行表達分析,結(jié)果表明,C類基因AtAG在CmPI過表達擬南芥中的表達量極顯著高于野生型,而A類基因AtAP1、B類基因AtAP3/PI、E類基因AtSEP1/AtSEP2/AtSEP3/AtSEP4在CmPI過表達擬南芥中的表達量顯著低于野生型(圖7)。
3討論
MADS-box基因調(diào)控花果發(fā)育的功能備受關(guān)注。PI屬于ABCDE花發(fā)育模型中的B類MADS-box功能基因,在花發(fā)育過程中參與花瓣和雄蕊的發(fā)育[12]。筆者克隆的板栗花發(fā)育B類基因CmPI有高度保守的MADS域(MADS-box)和K域(K-box),屬MADS的Ⅱ型亞家族轉(zhuǎn)錄因子[13-14]。板栗、白樺、向日葵、葡萄等8個物種的PI同源基因編碼134~186個氨基酸,相似度58.7%。該結(jié)果表明PI在不同物種中蛋白結(jié)構(gòu)高度保守,可能具有相似的生物學(xué)功能。CmPI定位于細胞核,符合其轉(zhuǎn)錄因子的定位特征。值得注意的是,本研究中的進化分析結(jié)果表明,板栗與白樺的PI基因關(guān)系最近,這可能與兩者均是柔荑花序木本植物有關(guān)。該結(jié)果暗示柔荑花序植物的PI基因在進化中發(fā)生了區(qū)別于其他類型花序的變異。
基因的時空表達模式是其發(fā)揮生物學(xué)功能的關(guān)鍵因素之一。在筆者的研究中,CmPI主要在雄花中表達,莖尖、葉片、根等組織中幾乎不表達,且CmPI在雄花中的表達量隨雄花發(fā)育進程不斷升高。這與Liu等[7]對CmPI在板栗不同組織中的表達分析結(jié)果一致。該結(jié)果暗示CmPI是參與板栗雄花發(fā)育的關(guān)鍵基因。在擬南芥[15]、辣椒(Capsicum annuum)[16]、煙草[17]、摩洛哥堅果樹(Arganiaspinosa)[7]、蒲公英(Taraxacum mongolicum)[18]等完全花植物中,PI主要在第二輪和第三輪花器官中表達。但板栗花為不完全花,其花的第一輪和第二輪器官被合生苞片取代。雄花主要由苞片和雄蕊組成,雌花則由苞片和雌蕊組成。CmPI在板栗苞片、雌蕊、雄蕊中的表達模式需要進一步研究,以揭示其時空表達模式在調(diào)控花器官發(fā)育中的作用。
為進一步驗證CmPI的生物學(xué)功能,筆者將CmPI過表達載體轉(zhuǎn)入野生型擬南芥,結(jié)果表明,CmPI過表達轉(zhuǎn)基因擬南芥的萼片發(fā)育為花瓣狀組織。夏堇(Torenia fournieri)TfPI基因在擬南芥中過表達導(dǎo)致萼片轉(zhuǎn)變?yōu)榛ò杲M織[19]。將蝴蝶蘭(Phalaenopsis aphrodite Rchb.)PI-like基因PeMADS6在擬南芥中過表達會導(dǎo)致萼片膨大、伸長,并在近軸側(cè)沿邊緣呈現(xiàn)花瓣狀結(jié)構(gòu)[20]。在麝香百合(Lilium longiflorum Thumb.)中將LMADS8/9的異位表達可以挽救擬南芥pi-1突變體第二輪花瓣的發(fā)育,并使部分萼片轉(zhuǎn)化為花瓣狀組織[21-22]。上述研究表明不同物種PI基因具有保守的抑制萼片發(fā)育,而促進花瓣發(fā)育的生物學(xué)功能。De Craene[5]認為苞片與萼片和花瓣由同一器官進化而來,而苞片在板栗雌花和雄花中進一步進化為形態(tài)差異的器官。CmPI在板栗雌花中的表達量顯著低于雄花,暗示了其能夠抑制苞片發(fā)育為殼斗。
PI通過與其他MADS-box蛋白形成二聚體來調(diào)控花器官發(fā)育[23-24]。AP1可激活A(yù)P3和PI[23]。PI則直接與AP1的啟動子結(jié)合,進行負反饋調(diào)節(jié)[25]。在筆者的研究中,CmPI過表達擬南芥株系中A、B和E三類基因的表達量均顯著低于野生型擬南芥。這可能是因為CmPI與擬南芥PI具有相似的結(jié)構(gòu)域,均能結(jié)合AP1的啟動子,抑制其轉(zhuǎn)錄激活[26]。而AP3和PI的轉(zhuǎn)錄激活依賴于AP1,進而表達受到抑制。值得注意的是,CmPI過表達擬南芥中C類基因AG的表達水平顯著高于野生型擬南芥。AG基因主要調(diào)控雄蕊和心皮的發(fā)育,但本研究中轉(zhuǎn)基因株系的雄蕊和心皮形態(tài)均未發(fā)生異常?;ㄆ鞴俚陌l(fā)育調(diào)控網(wǎng)絡(luò)復(fù)雜,是多基因與多因素共同作用的結(jié)果。板栗CmPI在花發(fā)育中的生物學(xué)功能及其分子機制尚需進一步研究。
4結(jié)論
板栗與其他物種相同,均具有結(jié)構(gòu)高度保守的B類開花基因CmPI。CmPI為核定位基因,主要在雄花中表達。CmPI在野生型擬南芥中過表達可促進萼片轉(zhuǎn)變?yōu)榛ò杲M織,可能是板栗苞片進一步發(fā)育的抑制基因。
參考文獻References:
[1]HU T Q,LI X H,DU L R,MANUELA D,XU M L.Leafy and apetala 1 down-regulate zinc finger protein 1 and 8 to release their repression on class B and C floral homeotic genes[J].Pro-ceedings of the National Academy of Sciences of the United States of America,2023,120(22):e2221181120.
[2]馬小杰,閆先喜,張憲省.高等植物花發(fā)育的基因調(diào)控[J].山東農(nóng)業(yè)大學(xué)學(xué)報,1995,26(2):263-272.
MA Xiaojie,YAN Xianxi,ZHANG Xiansheng.Gene-regulated flower development in higher plants[J].Journal of Shandong Ag-ricultural University,1995,26(2):263-272.
[3]馮獻忠,楊素欣,郭藹光.高等植物花發(fā)育的研究進展[J].西北農(nóng)業(yè)大學(xué)學(xué)報,1998,26(3):94-99.
FENG Xianzhong,YANG Suxin,GUO Aiguang.Progress of flower development in higher plants[J].Acta Universitatis Agri-culturalis Boreali Occidentalis,1998,26(3):94-99.
[4]PELAZ S,DITTA G S,BAUMANN E,WISMAN E,YANOF-SKY M F.B and C floral organ identity functions require SE-PALLATA MADS-box genes[J].Nature,2000,405(6783):200-203.
[5]DE CRAENE L P R.Are petals sterile stamens or bracts?The or-igin and evolution of petals in the core eudicots[J].Annals of Botany,2007,100(3):621-630.
[6]ZHAO Y H,ZHANG X M,LI D Z.Development of the petaloid bracts of a paleoherb species,Saururus chinensis[J].PLoS One,2021,16(9):e0255679.
[7]LIU Y,CHEN G S,GAO Y R,F(xiàn)ANG K F,ZHANG Q,CAO Q Q,QIN L,XING Y,SU S C.Identification and characterization of MADS-box genes involved in floral organ development in Chinese chestnut(Castanea mollissima Blume)[J].Horticultural Science and Technology,2021,39(4):482-496.
[8]程運河,程麗莉,胡廣隆,楊前宇,韓笑,蘭彥平.板栗CmFT基因的克隆及功能分析[J].果樹學(xué)報,2022,39(6):935-944.
CHENG Yunhe,CHENG Lili,HU Guanglong,YANG Qianyu,HAN Xiao,LAN Yanping.Cloning and functional analysis of CmFT in Chinese chestnut[J].Journal of Fruit Science,2022,39(6):935-944.
[9]楊國棟.棉花耐鹽基因GhNHX1啟動子的克隆及功能分析[D].泰安:山東農(nóng)業(yè)大學(xué),2007.
YANG Guodong.Isolation and characterization of a salt induc-ible GhNHX1 promoter from Gossypium hirsutum[D].Tai’an:Shandong Agricultural University,2007.
[10]CLOUGH SJ,BENTAF.Floral dip:AsimplifiedmethodforAgro-bacterium-mediated transformation of Arabidopsis thaliana[J].The Plant Journal,1998,16(6):735-743.
[11]SMYTH D R,BOWMAN J L,MEYEROWITZ E M.Early flower development in Arabidopsis[J].The Plant Cell,1990,2(8):755-767.
[12]徐啟江,丁一,黃赫,王勇,崔成日,梁毅.洋蔥花發(fā)育B類MADS-box基因AcDEF的克隆與表達分析[J].園藝學(xué)報,2013,40(6):1090-1100.
XU Qijiang,DINGYi,HUANG He,WANG Yong,CUI Chengri,LIANG Yi.Cloning and expression analysis of B class MADS-box gene AcDEF associated with floral development in onion[J].Acta Horticulturae Sinica,2013,40(6):1090-1100.
[13]KIM S,YOO M J,ALBERT V A,F(xiàn)ARRIS J S,SOLTIS P S,SOLTIS D E.Phylogeny and diversification of B-function MADS-box genes in angiosperms:Evolutionary and functional implications of a 260-million-year-old duplication[J].American Journal of Botany,2004,91(12):2102-2118.
[14]陳磊,翟笑雨,徐啟江.B類MADS-Box基因的系統(tǒng)發(fā)育與功能演化[J].植物生理學(xué)報,2015,51(9):1359-1372.
CHEN Lei,ZHAI Xiaoyu,XU Qijiang.The phylogeny and func-tional evolution of B-class MADS-Box genes[J].Plant Physiolo-gy Journal,2015,51(9):1359-1372.
[15]GOTO K,MEYEROWITZ E M.Function and regulation of the Arabidopsis floral homeotic gene PISTILLATA[J].Genesamp;De-velopment,1994,8(13):1548-1560.
[16]廖銘宇,肖佳林,李麗緣,宋鈺,黃湖榮,楊博智.辣椒雄性不育系和保持系CaMADS6基因克隆及表達分析[J].華北農(nóng)學(xué)報,2023,38(1):46-52.
LIAO Mingyu,XIAO Jialin,LI Liyuan,SONG Yu,HUANG Hu-rong,YANG Bozhi.Cloning and expression analysis of Ca-MADS6 in cytoplasmic male sterile line and maintainer line of pepper[J].Acta Agriculturae Boreali-Sinica,2023,38(1):46-52.
[17]HANSEN G,ESTRUCH J J,SOMMER H,SPENA A.NTGLO:A tobacco homologue of the GLOBOSA floral homeotic gene of Antirrhinum majus:cDNA sequence and expression pattern[J].Molecularamp;General Genetics,1993,239(1/2):310-312.
[18]VIJVERBERG K,WELTEN M,KRAAIJ M,VAN HEUVEN B J,SMETS E,GRAVENDEEL B.Sepal identity of the pappus and floral organ development in the common dandelion(Taraxa-cum officinale;Asteraceae)[J].Plants,2021,10(8):1682.
[19]SASAKI K,YAMAGUCHI H,NAKAYAMA M,AIDAR,OHT-SUBO N.Co-modification of class B genes TfDEF and TfGLO in Torenia fournieri Lind.alters both flower morphology and in-florescence architecture[J].Plant Molecular Biology,2014,86(3):319-334.
[20]TSAI W C,LEE P F,CHEN H I,HSIAO YY,WEI W J,PAN Z J,CHUANG M H,KUOH C S,CHEN W H,CHEN H H.PeMADS6,a GLOBOSA/PISTILLATA-like gene in Phalaenop-sis equestris involved in petaloid formation,and correlated with flower longevity and ovary development[J].Plantamp;Cell Physi-ology,2005,46(7):1125-1139.
[21]CHEN M K,HSIEH W P,YANG C H.Functional analysis re-veals the possible role of the C-terminal sequences and PI motif in the function of lily(Lilium longiflorum)PISTILLATA(PI)or-thologues[J].Journal of Experimental Botany,2012,63(2):941-961.
[22]MAO W T,HSU H F,HSU W H,LI J Y,LEE Y I,YANG C H.The C-terminal sequence and PI motif of the orchid(Oncidium Gower Ramsey)PISTILLATA(PI)ortholog determine its ability to bind AP3 orthologs and enter the nucleus to regulate down-stream genes controlling petal and stamen formation[J].Plantamp;Cell Physiology,2015,56(11):2079-2099.
[23]NG M,YANOFSKY M F.Activation of the Arabidopsis B class homeotic genes by APETALA1[J].The Plant Cell,2001,13(4):739-753.
[24]杜朝金,張漢堯,羅心平,宋云連,畢玨,王躍全,張惠云.基因調(diào)控植物花器官發(fā)育的研究進展[J].植物遺傳資源學(xué)報,2024,25(2):151-161.
DU Chaojin,ZHANG Hanyao,LUO Xinping,SONG Yunlian,BI Jue,WANG Yuequan,ZHANG Huiyun.Progress in gene reg-ulation of plant floral organ development[J].Journal of Plant Ge-netic Resources,2024,25(2):151-161.
[25]SUNDSTR?M J F,NAKAYAMA N,GLIMELIUS K,IRISH V F.Direct regulation of the floral homeotic APETALA1 gene by APETALA3 and PISTILLATA in Arabidopsis[J].The Plant Jour-nal,2006,46(4):593-600.
[26]WANG S,HUANG H J,HAN R,LIU C Y,QIU Z N,LIU G F,CHEN S,JIANG J.Negative feedback loop between BpAP1 and BpPI/BpDEF heterodimer in Betula platyphylla×B.pendula[J].Plant Science,2019,289:110280.