摘要:【目的】探究歐洲葡萄基因VvEXO11在山葡萄中的同源基因VaEXO11的表達(dá)及功能,為揭示葡萄抗寒分子通路、培育新的抗寒葡萄品種提供理論依據(jù)?!痉椒ā靠寺〔⒎治鯲aEXO11及其啟動(dòng)子PVaEXO11序列,通過(guò)瞬時(shí)轉(zhuǎn)化煙草探究PVaEXO11與低溫脅迫的關(guān)系?!窘Y(jié)果】從VaEXO11克隆到的cDNA序列全長(zhǎng)為957bp,其中ORF為957bp,編碼318個(gè)氨基酸。該基因僅由1個(gè)外顯子構(gòu)成,其蛋白含有一個(gè)高度保守的Phi_1結(jié)構(gòu)域和一個(gè)信號(hào)肽,絲氨酸含量豐富,經(jīng)預(yù)測(cè)為疏水脂溶性蛋白。對(duì)克隆到的PVaEXO11進(jìn)行順式作用元件預(yù)測(cè),分析結(jié)果表明,PVaEXO11不僅含有CAAT-box、TATA-box等核心啟動(dòng)子元件,還具備參與干旱脅迫、晝夜節(jié)律調(diào)控和創(chuàng)傷響應(yīng)等功能響應(yīng)元件。瞬時(shí)轉(zhuǎn)化結(jié)果表明,低溫激活PVaEXO11的活性,VaEXO11的相對(duì)表達(dá)量迅速上升,直接或間接促進(jìn)細(xì)胞內(nèi)抗氧化酶的產(chǎn)生?!窘Y(jié)論】VaEXO11除了參與低溫調(diào)控,還可能參與多種逆境相關(guān)的調(diào)控,從而響應(yīng)多種生物與非生物脅迫。
關(guān)鍵詞:山葡萄;VaEXO11;啟動(dòng)子;序列分析
中圖分類號(hào):S663.1文獻(xiàn)標(biāo)志碼:A文章編號(hào):1009-9980(2024)07-1285-12
Cloning and sequence analysis of VaEXO11 and its promoter in Vitis amu-rensis
YIN Xiao,XU Wendi,LI Juan,MADenghui,LIU Chengmin,SHAN Shouming*
(College of Enology and Horticulture,Ningxia University,Yinchuan 750021,Ningxia,China)
Abstract:【Objective】Low temperature is one of the important climatic factors affecting crop yield and quality.It is urgent to study the mechanisms of low temperature at the molecular and genetic levels and to find ways to improve plant cold resistance.According to the previous transcriptome analysis,it was found that six members of the VvEXO family in Muscat were up-regulated under low temperature conditions,among which VvEXO11 was found to be the most significantly up-regulated.The analysis of the expression profile of VvEXO showed that VvEXO11 responded to low temperature stress in grape-vines at early stage,and its role in the response to low temperature stress needed to be further studied.Vitis amurensis has been widely studied in cold resistance breeding.In this study,VvEXO11 and its pro-moter sequence in V.amurensis were cloned and analyzed by bioinformatics methods,and the function of VaEXO11 was preliminarily predicted,thus providing clues for further gene function verification,and revealing the new cold-resistant grape varieties.【Methods】Using V.amurensis as the test material,DNA and total RNA were extracted using DNAsecure novel plant genomic DNA extraction kit and RNAprep Pure polysaccharide and polyphenol plant total RNA extraction kit produced by Tiangen Bio-chemical Technology Co.The total RNA and DNA were extracted according to the product instructions.Using qualified total RNA as template,TransScript one-step gDNA removal and cDNA synthesis kit was used to reverse-transcribe the RNA into cDNA according to the instructions.The cDNA obtained by reverse transcription of V.amurensis RNA and extracted V.amurensis DNA were used as templates,respectively,based on the EXORDIUM sequence fragments obtained by sequencing the V.amurensis transcriptome and combined with the design of primers VaEXO11-F/VaEXO11-R,PVaEXO11-F/PVaEXO11-R for the amplification of ORF and promoter of the target gene.The PCR amplification products were de-tected by 1.2%agarose gel electrophoresis and DNA Marker DL2000.The amplified DNA fragments were recovered and ligated to the cloning vector,and then the connected products were transformed into the receptor state of DH5“Escherichia coli by heat shock method.After antibiotic screening and colo-ny PCR detection,positive clones were selected for sequencing.The promoter sequence of VaEXO11 gene in grape was firstly cloned and then analyzed by the Plant CARE(http://bioinformatics.psb.ugent.be/webtools/plantcare/html/)to predict promoter cis element.The relationship between promoter PVaEXO11 and low temperature stress was investigated by transient transformation of tobacco.【Results】The cD-NA sequence of VaEXO11 gene cloned from the grapevine was 957 bp,and its open reading frame was 957 bp,encoding 318 amino acids.DNA sequence analysis of VaEXO11 revealed that VaEXO11 consist-ed of only one exon,which had only 6 nucleotides different from VvEXO11.The conserved domain analysis of VaEXO11 protein showed that VaEXO11 protein contained only one conserved domain,Phi_1 domain.VaEXO11 and VvEXO11 protein sequence comparison revealed that there were only 3 amino ac-id differences between them.The basic physical and chemical properties of VaEXO11 protein were ana-lyzed by Protparam.The molecular weight of VAEXO11 protein was 33855.58 Da and the theoretical isoelectric point(pI)was 9.15.In amino acid composition,serine(Ser)content was the highest,reach-ing 12.3%,followed by leucine(Leu)and glycine(Gly),which were 11.3%and 8.8%,respectively.The instability index(Ⅱ)was 31.75,indicating that the protein was stable.The Grand average of hydropath-icity(GRAVY)is-0.082 and the Aliphatic index is 85.03,indicating that it was a hydrophobic fat-solu-ble protein.Analysis of grape genome data showed that EXL11 was present on the 18th chromosome of grape.Grape PVaEXO11 promoter contained multiple action elements.In addition to core promoters like CAAT-box and TATA-box,some functional response elements were also found,including hormone re-sponse elements,action elements involved in drought stress,circadian rhythm regulation and trauma re-sponse elements.Phylogenetic analysis showed that besides V.vinifera and V.riparia,Tripterygium wil-fordii was closely related to VaEXO11.Transient transformation result in tobacco showed that low-tem-peratureactivation of promoter activity induced a rapid increase in the relative expression of VaEXO11,directly or indirectly promoting the production of intracellular antioxidant enzymes,thereby reducing the damage of low-temperature to cells and improving cold resistance.【Conclusion】In this study,VaEXO11 gene was cloned from V.amurensis.The similarity of VaEXO11 sequence with VvEXO11 se-quence in Pinot Noir was 99.37%,and the similarity of protein sequence with VvEXO11 sequence was 98.75%.The protein contained a highly conserved Phi_1 domain and a signal peptide,which was pre-dicted to be a hydrophobic fat-soluble protein.The cis-acting elements was predicted in cloned promot-er sequence,and it was found that the promoter region contained a variety of elements related to stress,indicating that the gene may participate in response to a variety of biological and abiotic stresses.Then,the relationship between VaEXO11 and low temperature was explored,and it was preliminarily speculat-ed that low temperature could activate the promoter activity and induce the relative expression of VaEXO11 to increase rapidly,directly or indirectly promoting the production of antioxidant enzymes in cells,and thereby reducing the damage of low temperature to cells and improving cold resistance.
Keywords:Vitis amurensis;VaEXO11;Promoter;Sequence analysis
EXO(EXORDIUM)是一個(gè)能促進(jìn)植物生長(zhǎng)并響應(yīng)油菜素內(nèi)酯(BR)誘導(dǎo)的基因,在擬南芥中被首次發(fā)現(xiàn)并命名[1],EXO的過(guò)量表達(dá)可以使野生型植物的芽和根生長(zhǎng)更強(qiáng)[2]。基因啟動(dòng)子通常認(rèn)為是基因結(jié)合轉(zhuǎn)錄因子的位點(diǎn),位于結(jié)構(gòu)基因5'端上游的DNA序列,能活化RNA聚合酶,使之與模板DNA準(zhǔn)確地結(jié)合并具有轉(zhuǎn)錄起始的特異性[3]。啟動(dòng)子包含兩大區(qū)域,一是含有核心啟動(dòng)子元件(TATA-box)和轉(zhuǎn)錄起始位點(diǎn)(TSS)的核心區(qū);二是調(diào)控元件區(qū),包括應(yīng)答順式作用元件和增強(qiáng)元件。啟動(dòng)子上的順式作用元件可以和轉(zhuǎn)錄因子基因結(jié)合,調(diào)控下游基因的轉(zhuǎn)錄?;虬l(fā)揮功能的第一步是轉(zhuǎn)錄為mRNA,而啟動(dòng)子與轉(zhuǎn)錄因子調(diào)控特定基因表達(dá)是植物發(fā)揮自身調(diào)控能力最重要的方式之一[4]。Far-rar等[5]克隆了擬南芥中EXO基因及啟動(dòng)子,并驗(yàn)證了二者的活性。EXO是一種細(xì)胞外蛋白,蛋白質(zhì)組學(xué)方法確定擬南芥EXO/EXL蛋白家族的成員,如EXO、EXL1、EXL2、EXL3和EXL4蛋白是細(xì)胞壁蛋白組的一部分[6-9]。目前還沒(méi)有關(guān)于EXO/EXL基因家族對(duì)低溫脅迫或其他非生物脅迫反應(yīng)的詳細(xì)報(bào)道。Wei等[10]分析了桑寄生[Taxillusi chinensis(DC.)Danser]種子在低溫脅迫下的轉(zhuǎn)錄組,在普遍上調(diào)的基因中發(fā)現(xiàn)了3個(gè)共同上調(diào)表達(dá)的編碼EX-ORDIUM的基因。在擬南芥中,EXL3在低溫脅迫時(shí)上調(diào)表達(dá);EXL1和EXO在干旱脅迫時(shí)上調(diào)表達(dá),EXL6下調(diào)表達(dá);此外,EXL5在兩種脅迫下都上調(diào)表達(dá),EXL2、EXL4下調(diào)表達(dá),表明EXO/EXL基因家族對(duì)非生物脅迫有反應(yīng),并且還參與了干旱和低溫脅迫共表達(dá)網(wǎng)絡(luò)的調(diào)控[11]。然而,關(guān)于該蛋白家族在葡萄中的成員數(shù)量,EXO蛋白的功能以及對(duì)低溫脅迫反應(yīng)的表達(dá)模式,目前還沒(méi)有系統(tǒng)的報(bào)道。
葡萄是世界上栽培范圍廣、經(jīng)濟(jì)效益高的水果之一。葡萄產(chǎn)業(yè)的穩(wěn)定和可持續(xù)發(fā)展持續(xù)受到各種外部環(huán)境壓力的挑戰(zhàn),包括生物和非生物脅迫。其中,低溫成為影響葡萄的生長(zhǎng)和發(fā)育、果實(shí)品質(zhì)和產(chǎn)量的主要因素。因此,提高葡萄的抗寒性被視為育種計(jì)劃的一個(gè)重要目標(biāo),以防止冬季嚴(yán)重的冷害或者凍害。山葡萄(Vitis amurensis)是常見(jiàn)的野生葡萄種類,可以承受-40℃的低溫,已被廣泛用于傳統(tǒng)育種和培育耐寒栽培品種[12]。然而,由于葡萄的生命周期長(zhǎng),釀酒葡萄的遺傳背景復(fù)雜,通過(guò)傳統(tǒng)的雜交育種來(lái)改善葡萄種質(zhì)面臨挑戰(zhàn)[13],基因工程在育種過(guò)程中提供了另一種可行策略。為此,明確山葡萄抗寒性的冷反應(yīng)機(jī)制,并研究有價(jià)值的冷反應(yīng)基因,在葡萄遺傳改良中具有重要作用。通過(guò)對(duì)筆者實(shí)驗(yàn)室前期研究結(jié)果分析發(fā)現(xiàn),在低溫條件下,玫瑰香葡萄中有6個(gè)VvEXO家族成員上調(diào)表達(dá),其中VvEXO11上調(diào)最為顯著。對(duì)VvEXO的表達(dá)譜分析發(fā)現(xiàn),VvEXO11在葡萄中能對(duì)低溫脅迫做出快速反應(yīng),可以進(jìn)一步研究其在相應(yīng)低溫脅迫中的作用。山葡萄作為一個(gè)抗寒性極強(qiáng)的葡萄種類被廣泛研究,因此克隆山葡萄中VaEXO11基因及其啟動(dòng)子序列并進(jìn)行生物信息學(xué)分析,對(duì)VaEXO11的功能做出初步預(yù)測(cè),從而為進(jìn)一步的基因功能驗(yàn)證提供線索。
1材料和方法
1.1植物材料
供試材料為中國(guó)科學(xué)院武漢植物園園藝作物逆境生物學(xué)課題組保存的山葡萄組培苗,培養(yǎng)基為1/2 MS培養(yǎng)基+30 g·L-1蔗糖+7 g·L-1瓊脂+0.1 mg·L-1 IAA,光周期為16 h光照/8 h黑暗,光照度為100μmol·m-2·s-2,培養(yǎng)溫度為26℃。
本氏煙草種子保存在4℃冰箱中,使用前將其取出播種至蛭石與泥炭土1∶2(體積比)的花盆中,蓋上薄膜黑暗培養(yǎng)2 h后在16h光照/8 h黑暗的光周期條件下生長(zhǎng),培養(yǎng)溫度為25℃,隨后用于LUC檢測(cè)的瞬時(shí)轉(zhuǎn)化。
1.2方法
1.2.1 DNA提取、總RNA提取與cDNA合成以山葡萄為試材,使用天根生化技術(shù)有限公司生產(chǎn)的DN-Asecure新型植物基因組DNA提取試劑盒和RNA-prep Pure多糖多酚植物總RNA提取試劑盒分別提取DNA和總RNA,按產(chǎn)品說(shuō)明書(shū)進(jìn)行操作并稍作改動(dòng)。以檢測(cè)合格的葡萄總RNA為模板,采用全式金生物技術(shù)有限公司生產(chǎn)的TransScript一步法gDNA去除及cDNA合成試劑盒并按說(shuō)明書(shū)將RNA反轉(zhuǎn)錄為cDNA。反轉(zhuǎn)錄體系為:RNA樣品1μg(根據(jù)測(cè)得的RNA濃度計(jì)算所用RNA體積),oligo(dT)18 1μL,2×TS Reaction Mix 10μL,TransScript RT/RI Enzyme Mix 1μL,gDNA Remover 1μL,RNase-free Water補(bǔ)足到20μL,42℃孵育50 min,85℃加熱5 s使逆轉(zhuǎn)錄酶失活。提取的DNA和合成的cDNA在-20℃存儲(chǔ)備用。
1.2.2引物合成以中國(guó)科學(xué)院武漢植物園園藝作
物逆境生物學(xué)課題組未發(fā)表的山葡萄轉(zhuǎn)錄組數(shù)據(jù)庫(kù)中得到的VaEXO11序列片段為基礎(chǔ),結(jié)合已公布的黑比諾葡萄基因組注釋信息,運(yùn)用Primer Premier 5.0軟件設(shè)計(jì)擴(kuò)增VaEXO11編碼區(qū)全長(zhǎng)的引物和編碼區(qū)ATG上游2000bp啟動(dòng)子引物,引物合成與測(cè)序均由北京擎科生物科技有限公司(武漢)完成。本文所用到的引物如下:
含有EcoRⅠ同源臂的擴(kuò)增VaEXO11編碼區(qū)的引物:
VaEXO11-F:GACACTAGTGGATCCAAAGA-ATTCATGGCATCTTTCGTTCCTACTCAAT,
VaEXO11-R:TCCCTCGAGAAGCTTTTTGAA-TTCGACCAGAGTAGAACAGGTGGAAGTT。
含有SpeⅠ同源臂的擴(kuò)增VaEXO11啟動(dòng)子PVaEXO11的引物:
PVaEXO11-F:CCCGGGGGATCCACTAGTTCATA-TATTAGTCCCACCGATATCC,
PVaEXO11-R:GGCCGCTCTAGAACTAGTGGCA-GTTAGGACTTAAGAGTGCAGT。
1.2.3 PCR擴(kuò)增與質(zhì)粒提取分別以山葡萄RNA反轉(zhuǎn)錄得到的cDNA和提取的山葡萄DNA為模板,根據(jù)山葡萄轉(zhuǎn)錄組測(cè)序得到的EXORDIUM序列片段并結(jié)合設(shè)計(jì)引物VaEXO11-F/VaEXO11-R,PVaEXO11-F/PVaEXO11-R進(jìn)行目的基因ORF和啟動(dòng)子的擴(kuò)增??寺≡摶蛉L(zhǎng)用1.2%瓊脂糖凝膠電泳和DNA Marker DL2000檢測(cè)PCR擴(kuò)增產(chǎn)物,將擴(kuò)增得到的DNA和cDNA片段回收并連接克隆載體,然后利用熱激法將連接產(chǎn)物轉(zhuǎn)化到DH5α大腸桿菌感受態(tài)中,經(jīng)抗生素篩選和菌落PCR檢測(cè),挑取陽(yáng)性克隆送往北京擎科生物科技有限公司(武漢)進(jìn)行測(cè)序。將測(cè)序正確的菌液接種于10 mL含10μL Spe/Kan(100 mg·L-1)的LB液體培養(yǎng)基中,在37℃、220 r·min-1搖床上振蕩培養(yǎng)12~14 h,利用質(zhì)粒小提試劑盒提取質(zhì)粒,操作參考說(shuō)明書(shū)并稍作改動(dòng)。用1.2%瓊脂糖凝膠電泳檢測(cè)質(zhì)粒質(zhì)量,將合格的質(zhì)粒置于-20℃儲(chǔ)存?zhèn)溆谩?/p>
1.2.4序列生物信息學(xué)分析采用SMART 7(https://smart.embl.de/)和Pfam(http://pfam-legacy.xfam.org/)確認(rèn)VaEXO11蛋白的結(jié)構(gòu)域,采用ExPASy-ProtParam(https://web.expasy.org/protparam/)分析VaEXO11蛋白的物理化學(xué)特性。使用基因結(jié)構(gòu)顯示服務(wù)器2.0(http://gsds.gao-lab.org/)分析VaEXO11基因內(nèi)含子/外顯子結(jié)構(gòu)。采用SignalP-6.0(https://services.healthtech.dtu.dk/services/SignalP-6.0/)預(yù)測(cè)信號(hào)肽種類。利用NetPhos 3.1 Server(https://servic-es.healthtech.dtu.dk/services/NetPhos-3.1/)預(yù)測(cè)VaEXO11蛋白磷酸化位點(diǎn)。通過(guò)DNAMAN9進(jìn)行DNA和氨基酸序列比對(duì)分析,利用MEGA11構(gòu)建系統(tǒng)進(jìn)化樹(shù)。利用BDGP(https://fruitfly.org/seq_tools/promoter.html)分析核心啟動(dòng)子。通過(guò)網(wǎng)絡(luò)分析工具PlantCare(https://bioinformatics.psb.ugent.be/webt-ools/plantcare/html/)分析VaEXO11起始密碼子上游啟動(dòng)子序列中的順式作用元件。最后,采用TB-tools 10軟件分析可視化啟動(dòng)子序列的順式作用元件。
1.2.5 PVaEXO11啟動(dòng)子瞬時(shí)表達(dá)分析用凍融法將獲得的重組質(zhì)粒pGreen 0800-PVaEXO11-LUC和空載pGreen 0800-LUC轉(zhuǎn)入根癌農(nóng)桿菌GV3101,并檢測(cè)LUC熒光活性,將檢測(cè)正確的陽(yáng)性克隆用于煙草瞬時(shí)轉(zhuǎn)化,瞬時(shí)轉(zhuǎn)化主要參考Sheludko等[14]的方法。將瞬時(shí)轉(zhuǎn)化得到的煙草置于低溫光照培養(yǎng)箱中8℃處理2 h,室溫恢復(fù)15 min后進(jìn)行LUC觀察。以1∶200(體積比)配置熒光素酶鉀鹽溶液3 mL,用毛筆涂在煙草葉片背面,背面朝上,放入多功能成像系統(tǒng)中拍照,選擇化學(xué)發(fā)光,曝光時(shí)間為5min。
2結(jié)果與分析
2.1 VaEXO11和PVaEXO11序列的獲得
分別以山葡萄RNA反轉(zhuǎn)錄得到的cDNA和提取的山葡萄DNA為模板,根據(jù)山葡萄轉(zhuǎn)錄組測(cè)序得到的EXORDIUM序列片段并結(jié)合設(shè)計(jì)引物VaEXO11-F/VaEXO11-R,PVaEXO11-F/PVaEXO11-R進(jìn)行目的基因ORF和啟動(dòng)子的擴(kuò)增,得到該基因全長(zhǎng)和啟動(dòng)子(圖1)。經(jīng)測(cè)序分析,PCR擴(kuò)增得到的目的基因的序列長(zhǎng)度為957 bp,利用DNAMAN9進(jìn)行序列比對(duì),發(fā)現(xiàn)該基因與Phytozome上葡萄基因組中編號(hào)為VvEXO11的基因序列相似度高達(dá)99.37%(圖2),蛋白相似度達(dá)98.75%(圖3)。啟動(dòng)子長(zhǎng)度為1938 bp,與VvEXO11啟動(dòng)子序列相似度達(dá)65.02%(圖4),與預(yù)測(cè)結(jié)果基本一致,故將山葡萄中擴(kuò)增得到的目的基因命名為VaEXO11,其啟動(dòng)子為PVaEXO11。
2.2 VaEXO11基因序列特征分析
該基因的cDNA序列全長(zhǎng)為957 bp,開(kāi)放閱讀框?yàn)?57 bp,編碼318個(gè)氨基酸。對(duì)VaEXO11的DNA序列分析發(fā)現(xiàn),VaEXO11僅由1個(gè)外顯子(ex-on)構(gòu)成,與VvEXO11序列比對(duì)發(fā)現(xiàn),二者僅有6個(gè)核苷酸差異(圖2)。對(duì)VaEXO11蛋白進(jìn)行保守結(jié)構(gòu)域分析表明,該蛋白僅含有一個(gè)保守結(jié)構(gòu)域,即Phi_1結(jié)構(gòu)域(Phosphate-induced protein 1 domain),同時(shí),該蛋白前25個(gè)氨基酸形成一個(gè)信號(hào)肽Sec/SPI,是一種由Sec轉(zhuǎn)座運(yùn)輸并由信號(hào)肽酶Ⅰ(Lep)裂解的“標(biāo)準(zhǔn)”分泌性信號(hào)肽(圖5),裂解點(diǎn)位于A25~A26之間(圖6-A)。通過(guò)NetPhos 3.1 Server預(yù)測(cè)該蛋白共71個(gè)磷酸化位點(diǎn)(圖6-B),其中陽(yáng)性結(jié)果36個(gè),包括絲氨酸(Serine)25個(gè),蘇氨酸(Threonine)9個(gè)和酪氨酸(Tyrosine)2個(gè)。VaEXO11與VvEXO11蛋白序列比對(duì)發(fā)現(xiàn),二者僅有3個(gè)氨基酸差異(圖3)。用Protparam對(duì)VaEXO11蛋白的基本理化性質(zhì)分析,結(jié)果顯示,該蛋白的分子質(zhì)量為33 855.58 Da,理論等電點(diǎn)(pI)為9.15;在氨基酸組成上,絲氨酸(Ser)含量最高,達(dá)12.3%,其次為亮氨酸(Leu)和甘氨酸(Gly),分別為11.3%和8.8%;不穩(wěn)定系數(shù)(in-stability index,Ⅱ)為31.75,表明該蛋白穩(wěn)定性較好;平均疏水性系數(shù)(grand average of hydropathicity,GRAVY)為-0.082,脂溶指數(shù)(aliphatic index)為85.03,表明其為疏水性脂溶蛋白。另外,對(duì)葡萄基因組數(shù)據(jù)分析顯示,EXL11存在于葡萄第18條染色體上。
2.3 VaEXO11系統(tǒng)發(fā)育分析
為了探究山葡萄中VaEXO11蛋白與其他物種的EXO蛋白的關(guān)系,用VaEXO11蛋白在NCBI進(jìn)行blastn,選擇不同物種中相似度最高的序列,共篩選到27個(gè)EXO11蛋白序列。對(duì)已克隆的VaEXO11與27個(gè)其他物種的EXO11基因的氨基酸序列進(jìn)行多序列比對(duì)分析,并構(gòu)建系統(tǒng)發(fā)育樹(shù)。通過(guò)氨基酸序列比對(duì)發(fā)現(xiàn)(圖7),包括VaEXO11在內(nèi)的28個(gè)EXO11氨基酸長(zhǎng)度相近,序列相似度達(dá)77.99%,均含有相似的結(jié)構(gòu)域,序列較為保守,尤其是N端FAYIWVGNSETQCFGQCAWPFHQFIYGFQ比例極高。從系統(tǒng)發(fā)育分析來(lái)看(圖8),與VaEXO11關(guān)系較近的除了釀酒葡萄(V.vinifera)和河岸葡萄(V.ri-paria)外,還有雷公藤(Tripterygium wilfordii)。
2.4低溫處理下VaEXO11的表達(dá)分析
轉(zhuǎn)錄組的結(jié)果表明,VvEXO11能被低溫誘導(dǎo)表達(dá),為了進(jìn)一步研究其詳細(xì)的表達(dá)模式,筆者利用熒光定量PCR對(duì)山葡萄中VaEXO11在低溫處理24 h內(nèi)的表達(dá)模式進(jìn)行分析(圖9)。山葡萄VaEXO11基因在4℃低溫下不同冷處理時(shí)間點(diǎn)的定量RT-PCR分析表明,冷處理早期(0~2 h),該基因的表達(dá)量就發(fā)生明顯的變化,并且在2h達(dá)到最高值,約為0h的4250倍,說(shuō)明VaEXO11基因能夠快速響應(yīng)冷脅迫。RNA-Seq與qRT-PCR獲得的基因表達(dá)模式高度一致,表明本研究中VaEXO11基因可能在山葡萄的低溫響應(yīng)中發(fā)揮作用。
2.5啟動(dòng)子PVaEXO11序列分析
以山葡萄轉(zhuǎn)錄組數(shù)據(jù)庫(kù)中的VaEXO11基因上游一段-2000 bp序列為模板設(shè)計(jì)引物,以提取的山葡萄DNA為模板擴(kuò)增VaEXO11的啟動(dòng)子PVaEXO11,得到一段長(zhǎng)1938 bp的DNA序列,與VvEXO11起始密碼子上游-2000 bp啟動(dòng)子比對(duì)(圖4)發(fā)現(xiàn),二者相似度達(dá)65.02%。核心啟動(dòng)子分析表明(圖10),其位于-1833~1883 bp之間,轉(zhuǎn)錄起始位點(diǎn)在-1873 bp處,進(jìn)一步證明克隆的VaEXO11基因cDNA序列的5'端是完整的。
通過(guò)Plant CARE(http://bioinformatics.psb.ugent.be/webtools/plantcare/html/)預(yù)測(cè)啟動(dòng)子順式作用元件,結(jié)果表明,VaEXO11的啟動(dòng)子PVaEXO11含有激素響應(yīng)元件如P-box(赤霉素元件)、TGACG-motif(茉莉酸甲酯元件)、TCA(水楊酸元件)、ERE(乙烯元件)、AAGAA-motif(脫落酸元件),脅迫響應(yīng)元件如MYB(MYB響應(yīng)元件)、MYC(MYC響應(yīng)元件)、W-box(WRKY轉(zhuǎn)錄因子結(jié)合位點(diǎn))、STRE(脅迫響應(yīng)元件)、WUN-motif(創(chuàng)傷響應(yīng)元件)等,另外還有參與晝夜節(jié)律調(diào)控順式調(diào)節(jié)元件和無(wú)氧誘導(dǎo)所必需的順式調(diào)節(jié)元件,相關(guān)預(yù)測(cè)結(jié)果如表1所示。
2.6啟動(dòng)子瞬時(shí)表達(dá)分析
為了探究啟動(dòng)子是否響應(yīng)低溫脅迫,將構(gòu)建好的pGreen 0800-PVaEXO11-LUC重組載體和pGreen0800-LUC空載進(jìn)行農(nóng)桿菌(GV3101)轉(zhuǎn)化,將空載和包含重組載體的農(nóng)桿菌液注射本氏煙草葉片,用Dual-LUC報(bào)告系統(tǒng)評(píng)估轉(zhuǎn)錄活性。研究結(jié)果如圖11所示,4℃處理后pGreen 0800Ⅱ-PVaEXO11活性大于空載,說(shuō)明低溫能激活VaEXO11啟動(dòng)子活性。
3討論
利用生物信息學(xué)手段對(duì)克隆到的基因序列與不同物種中的已知基因進(jìn)行比對(duì)分析,可以對(duì)新基因的功能做出初步預(yù)測(cè),通過(guò)系統(tǒng)進(jìn)化樹(shù)推測(cè)其進(jìn)化過(guò)程,從而為進(jìn)一步的基因功能驗(yàn)證提供線索。張宇等[15]克隆了雙紅F3'H基因并進(jìn)行生物信息學(xué)分析,發(fā)現(xiàn)該基因與雙豐中的F3'H基因序列相似性達(dá)到99.67%。Farrar等[5]克隆了擬南芥中長(zhǎng)度為945bp的EXO基因,編碼314個(gè)氨基酸,生物信息學(xué)分析發(fā)現(xiàn)該蛋白的N端存在一個(gè)信號(hào)肽,與煙草中的PHI-1蛋白在氨基酸水平上有76%的同源性。將桉樹(shù)中EgPHI-1氨基酸序列和其他43個(gè)同源氨基酸序列進(jìn)行比對(duì),表明這些序列高度保守,EgPHI-1與水稻(Oryza sativa)的AAM08535有64%的相似性,與釀酒葡萄(V.vinifera)的CAO61694有75%的相似性[16]。筆者從山葡萄中克隆到VaEXO11基因,僅由1個(gè)外顯子(exon)構(gòu)成,與黑比諾中的VvEXO11序列相似度達(dá)99.37%,蛋白序列相似度達(dá)98.75%,其蛋白含有一個(gè)高度保守的Phi-1結(jié)構(gòu)域和一個(gè)信號(hào)肽,絲氨酸含量豐富,經(jīng)預(yù)測(cè)其為疏水脂溶性蛋白。與其他27個(gè)物種的EXO11蛋白序列比對(duì)分析,發(fā)現(xiàn)氨基酸長(zhǎng)度相近,序列相似度達(dá)77.99%,均含有相似的結(jié)構(gòu)域,序列較為保守。系統(tǒng)發(fā)育分析表明,與VaEXO11關(guān)系較近的除了釀酒葡萄和河岸葡萄外,還有雷公藤。
啟動(dòng)子包含兩大區(qū)域,一是含有核心啟動(dòng)子元件(TATA-box)和轉(zhuǎn)錄起始位點(diǎn)(TSS)的核心區(qū);二是調(diào)控元件區(qū),包括應(yīng)答順式作用元件和增強(qiáng)元件,調(diào)控元件的種類和數(shù)量直接影響基因的表達(dá)模式和表達(dá)強(qiáng)度[17]。張宇等[15]克隆了雙紅F3'H基因上游1051 bp啟動(dòng)子序列并預(yù)測(cè)啟動(dòng)子可能存在的順式作用元件,分析發(fā)現(xiàn),F(xiàn)3'H基因啟動(dòng)子除含有典型的TATA-box、CAAT-box和參與光反應(yīng)的順式作用元件GT1-motif、TCCC-motif、Box4外,還有參與缺氧特異性誘導(dǎo)性的增強(qiáng)子元件(GC-motif),以及與分生組織表達(dá)有關(guān)的順式作用調(diào)控元件(CAT-box)、參與水楊酸反應(yīng)的順式作用元件(TCA-ele-ment)和傷口反應(yīng)元件(WUN-motif)等。薛竟一等[18]克隆了釀酒葡萄VvMT2上游783 bp啟動(dòng)子序列,順式作用元件預(yù)測(cè)分析表明,序列中有TATA-box、CAAT-box、ARE、GAG-motif、Box-4等12個(gè)可能的啟動(dòng)子上游調(diào)控元件,推測(cè)將參與響應(yīng)脅迫與激素等過(guò)程。據(jù)報(bào)道,AtEXL1的啟動(dòng)子區(qū)域也存在受光照、晝夜節(jié)律周期和厭氧條件調(diào)控的順式元件,同時(shí)發(fā)現(xiàn)其在低輻照度、長(zhǎng)期黑暗和缺氧條件下表達(dá)量升高[19]。將本試驗(yàn)克隆到的啟動(dòng)子序列進(jìn)行順式作用元件預(yù)測(cè),發(fā)現(xiàn)葡萄PVaEXO11啟動(dòng)子含有多個(gè)作用元件,除了CAAT-box、TATA-box等核心啟動(dòng)子外,還有一些功能響應(yīng)元件,包括激素類響應(yīng)元件、參與干旱脅迫的作用元件、參與晝夜節(jié)律調(diào)控的元件和創(chuàng)傷響應(yīng)元件等。葡萄VaEXO11基因的啟動(dòng)子含有多種順式作用元件,推測(cè)VaEXO11基因參與葡萄復(fù)雜的調(diào)控網(wǎng)絡(luò),與葡萄生長(zhǎng)發(fā)育及逆境響應(yīng)等多種生命活動(dòng)有密切聯(lián)系。
植物在遭受低溫脅迫時(shí)會(huì)產(chǎn)生各種生理和分子變化,包括影響某些蛋白質(zhì)、代謝物和植物激素水平的轉(zhuǎn)錄、翻譯和代謝變化[20]。Zheng等[21]和Degen-kolbe等[22]分析山葡萄在低溫脅迫下轉(zhuǎn)錄組數(shù)據(jù),發(fā)現(xiàn)有1000多個(gè)轉(zhuǎn)錄本的表達(dá)量在低溫脅迫下上調(diào),同時(shí)還發(fā)現(xiàn)膜脂質(zhì)成分的動(dòng)態(tài)變化,而膜的穩(wěn)定性是低溫脅迫條件下細(xì)胞生存的必要條件。以前的研究已經(jīng)注意到EXO對(duì)植物細(xì)胞的重要性[2,5]。EXO基因家族的成員已被證明在擬南芥中執(zhí)行其他功能,擬南芥中的EXO定位于細(xì)胞壁并介導(dǎo)細(xì)胞擴(kuò)張,而exo突變體的葉片大小、根長(zhǎng)和生物量減少,外生葉尺寸減小是由于表皮細(xì)胞和薄壁細(xì)胞的擴(kuò)張減少[1]。有研究表明,擬南芥在合成培養(yǎng)基中的低糖供應(yīng)條件,土壤中的有限光照、延長(zhǎng)黑暗期以及缺氧條件下,其正常生長(zhǎng)離不開(kāi)EXL1,該基因促進(jìn)擬南芥在上述生長(zhǎng)條件下對(duì)新陳代謝和生長(zhǎng)進(jìn)行全面的適應(yīng)[23]。然而EXO基因家族在低溫脅迫下的研究還未見(jiàn)報(bào)道。
通過(guò)對(duì)筆者實(shí)驗(yàn)室前期研究結(jié)果分析,發(fā)現(xiàn)在低溫條件下,玫瑰香葡萄中有6個(gè)VvEXO家族成員上調(diào)表達(dá),其中VvEXO11上調(diào)最為顯著。山葡萄是耐寒性極強(qiáng)的葡萄種類,通過(guò)研究VvEXO11在山葡萄中的同源基因VaEXO11的表達(dá)及功能,以期為揭示葡萄抗寒分子通路、培育新的抗寒葡萄品種提供理論依據(jù)。經(jīng)測(cè)序分析,筆者發(fā)現(xiàn)了一個(gè)有趣的現(xiàn)象,即PCR擴(kuò)增得到的目的基因的序列長(zhǎng)度為957bp,利用DNAMAN9進(jìn)行序列比對(duì),發(fā)現(xiàn)該基因與Phy-tozome上葡萄基因組中編號(hào)為VvEXO11的基因序列相似度高達(dá)99.37%,蛋白相似度達(dá)98.75%;但是克隆得到的啟動(dòng)子PVaEXO11長(zhǎng)度為1938 bp,與啟動(dòng)子PVvEXO11序列相似度只有65.02%。分析發(fā)現(xiàn),克隆得到的啟動(dòng)子序列靠近起始密碼子ATG的500bp啟動(dòng)子序列相似性達(dá)93.3%,其余部分差異較大,可能是葡萄種間進(jìn)化的差異所造成的[24]。通過(guò)LUC驗(yàn)證了低溫能激活VaEXO11的啟動(dòng)子PVaEXO11的活性,因此推測(cè),低溫通過(guò)激活VaEXO11上游啟動(dòng)子的活性來(lái)提高VaEXO11的表達(dá)量,從而提高葡萄的耐寒性。
4結(jié)論
筆者初步推測(cè)低溫能夠激活啟動(dòng)子活性從而誘導(dǎo)VaEXO11的相對(duì)表達(dá)量迅速上升,直接或間接促進(jìn)細(xì)胞內(nèi)抗氧化酶的產(chǎn)生,減輕低溫對(duì)細(xì)胞的傷害,提高葡萄抗寒性。研究還發(fā)現(xiàn)PVaEXO11含有多種與逆境脅迫相關(guān)的元件,說(shuō)明該基因可能參與多種逆境脅迫的調(diào)控。
參考文獻(xiàn)References:
[1]SCHR?DER F,LISSO J,LANGE P,MüSSIG C.The extracellu-lar EXO protein mediates cell expansion in Arabidopsis leaves[J].BMC Plant Biology,2009,9:20.
[2]COLL-GARCIA D,MAZUCH J,ALTMANN T,MüSSIG C.EXORDIUM regulates brassinosteroid-responsive genes[J].FEBS Letters,2004,563(1/2/3):82-86.
[3]周浩.鉤藤STR基因及其啟動(dòng)子的克隆與分析[D].貴陽(yáng):貴州大學(xué),2022.
ZHOU Hao.Cloning and analysis of STR gene and its promoter from U.rhynchophylla[D].Guiyang:Guizhou University,2022.
[4]THALLINGER B,PRASETYO E N,NYANHONGO G S,GUEBITZ G M.Antimicrobial enzymes:An emerging strategy to fight microbes and microbial biofilms[J].Biotechnology Jour-nal,2013,8(1):97-109.
[5]FARRAR K,EVANS I M,TOPPING J F,SOUTER M A,NIELSEN J E,LINDSEY K.EXORDIUM:A gene expressed in proliferating cells and with a role in meristem function,identi-fied by promoter trapping in Arabidopsis[J].The Plant Journal,2003,33(1):61-73.
[6]BORDERIES G,JAMET E,LAFITTE C,ROSSIGNOL M,JAUNEAU A,BOUDART G,MONSARRAT B,ESQUERRé-TUGAYéM T,BOUDET A,PONT-LEZICA R.Proteomics of loosely bound cell wall proteins of Arabidopsis thaliana cell sus-pension cultures:A critical analysis[J].Electrophoresis,2003,24(19/20):3421-3432.
[7]FEIZ L,IRSHAD M,PONT-LEZICAR F,CANUTH,JAMETE.Evaluation of cell wall preparations for proteomics:A new proce-dure for purifying cell walls from Arabidopsis hypocotyls[J].Plant Methods,2006,2:10.
[8]JAMET E,CANUT H,BOUDART G,PONT-LEZICA R F.Cell wall proteins:A new insight through proteomics[J].Trends in Plant Science,2006,11(1):33-39.
[9]BAYER E M,BOTTRILL A R,WALSHAW J,VIGOUROUX M,NALDRETT M J,THOMAS C L,MAULE A J.Arabidopsis cell wall proteome defined using multidimensional protein iden-tification technology[J].Proteomics,2006,6(1):301-311.
[10]WEI S G,MA X J,PAN L M,MIAO J H,F(xiàn)U J E,BAI L H,ZHANG Z L,GUAN Y H,MO C M,HUANG H,CHEN M S.Transcriptome analysis of Taxillusichinensis(DC.)danser seeds in response to water loss[J].PLoS One,2017,12(1):e0169177.
[11]SHARMA R,SINGH G,BHATTACHARYA S,SINGH A.Com-parative transcriptome meta-analysis of Arabidopsis thaliana un-der drought and cold stress[J].PLoS One,2018,13(9):e0203266.
[12]WAN Y,SCHWANINGER H,LI D,SIMON C,WANG Y J,ZHANG C H.The eco-geographic distribution of wild grape germplasm in China[J].Vitis,2008,47:77-80.
[13]GRAY D J,LI Z T,DHEKNEY S A.Precision breeding of grapevine(Vitis vinifera L.)for improved traits[J].Plant Sci-ence,2014,228:3-10.
[14]SHELUDKO Y V,SINDAROVSKA Y R,GERASYMENKO I M,BANNIKOVA M A,KUCHUK N V.Comparison of several Nicotiana species as hosts for high-scale Agrobacterium-mediat-ed transient expression[J].Biotechnology and Bioengineering,2007,96(3):608-614.
[15]張宇,徐智慧,任邵琦,楊銘慧,陳蒙,劉海峰.山葡萄F3’H基因及其啟動(dòng)子的克隆與表達(dá)分析[J].農(nóng)業(yè)生物技術(shù)學(xué)報(bào),2021,29(11):2099-2108.
ZHANG Yu,XU Zhihui,REN Shaoqi,YANG Minghui,CHEN Meng,LIU Haifeng.Cloning and expression analysis of F3'H gene and promoter from Vitis amurensis[J].Journal of Agricul-tural Biotechnology,2021,29(11):2099-2108.
[16]SOUSAA O,CAMILLO L R,ASSIS E T C M,LIMAN S,SIL-VA G O,KIRCH R P,SILVA D C,F(xiàn)ERRAZ A,PASQUALI G,COSTA M G C.EgPHI-1,a PHOSPHATE-INDUCED-1 gene from Eucalyptus globulus,is involved in shoot growth,xylem fi-ber length and secondary cell wall properties[J].Planta,2020,252(3):45.
[17]RUSHTON P J,REINST?DLER A,LIPKA V,LIPPOK B,SOMSSICH I E.Synthetic plant promoters containing defined regulatory elements provide novel insights into pathogen-andwound-induced signaling[J].The Plant Cell,2002,14(4):749-762.
[18]薛竟一,代偉娜,王玲,劉靜,張靜茹,張朝紅.葡萄VvMT2基因和啟動(dòng)子的克隆及表達(dá)分析[J].農(nóng)業(yè)生物技術(shù)學(xué)報(bào),2018,26(11):1856-1864.
XUE Jingyi,DAI Weina,WANG Ling,LIU Jing,ZHANG Jin-gru,ZHANG Chaohong.Cloning and expression analysis of VvMT2 gene and promoter in grape(Vitis vinifera)[J].Journal of Agricultural Biotechnology,2018,26(11):1856-1864.
[19]SCHR?DER F,LISSO J,MüSSIG C.Expression pattern and pu-tative function of EXL1 and homologous genes in Arabidopsis[J].Plant Signalingamp;Behavior,2012,7(1):22-27.
[20]NAKAMINAMI K,MATSUI A,NAKAGAMI H,MINAMI A,NOMURA Y,TANAKA M,MOROSAWA T,ISHIDA J,TAKA-HASHI S,UEMURA M,SHIRASU K,SEKI M.Analysis of dif-ferential expression patterns of mRNA and protein during cold-acclimation and de-acclimation in Arabidopsis[J].Molecularamp;Cellular Proteomics,2014,13(12):3602-3611.
[21]ZHENG G W,TIAN B,ZHANG F J,TAO F Q,LI W Q.Plant adaptation to frequent alterations between high and low tempera-tures:Remodelling of membrane lipids and maintenance of un-saturation levels[J].Plant,Cellamp;Environment,2011,34(9):1431-1442.
[22]DEGENKOLBE T,GIAVALISCO P,ZUTHER E,SEIWERT B,HINCHA D K,WILLMITZER L.Differential remodeling of the lipidome during cold acclimation in natural accessions of Arabi-dopsis thaliana[J].The Plant Journal,2012,72(6):972-982.
[23]SCHR?DER F,LISSO J,MüSSIG C.EXORDIUM-LIKE1 pro-motes growth during low carbon availability in Arabidopsis[J].Plant Physiology,2011,156(3):1620-1630.
[24]DONG Y,DUAN S C,XIA Q J,LIANG Z C,DONG X,MAR-GARYAN K,MUSAYEV M,GORYSLAVETS S,ZDUNI?G,BERT P F,LACOMBE T,MAUL E,NICK P,BITSKINASHVI-LI K,BISZTRAY G D,DRORI E,DE LORENZIS G,CUNHA J,POPESCU C F,ARROYO-GARCIA R,ARNOLD C,ERGüL A,ZHU Y F,MA C,WANG S F,LIU S Q,TANG L,WANG C P,LI D W,PAN Y B,LI J X,YANG L,LI X Z,XIANG G S,YANG Z J,CHEN B Z,DAI Z W,WANG Y,ARAKELYAN A,KULIYEV V,SPOTAR G,GIROLLET N,DELROT S,OLLAT N,THIS P,MARCHAL C,SARAH G,LAUCOU V,BACILIERI R,R?CKEL F,GUAN P Y,JUNG A,RIEMANN M,UJMAJURIDZE L,ZAKALASHVILI T,MAGHRADZE D,H?HN M,JAHNKE G,KISS E,DEáK T,RAHIMI O,HüBNER S,GRASSI F,MERCATI F,SUNSERI F,EIRAS-DIAS J,DUMITRU A M,CARRASCO D,RODRI-GUEZ-IZQUIERDO A,MU?OZ G,UYSAL T,?ZER C,KA-ZAN K,XU M L,WANG Y Y,ZHU S S,LU J,ZHAO M X,WANG L,JIU S T,ZHANG Y,SUN L,YANG H M,WEISS E,WANG S P,ZHU Y Y,LI S H,SHENG J,CHEN W.Dual do-mestications and origin of traits in grapevine evolution[J].Sci-ence,2023,379(6635):892-901.