摘要:【目的】深入分析蘋果sMdCAX11(去掉NRR區(qū)域的MdCAX11)基因功能?!痉椒ā糠謩e利用蜜脆蘋果果實和擬南芥材料,采用過表達sMdCAX11的試驗方法,觀察果實、葉片等各組織的表型,并測定不同組織的礦質元素含量,同時對蘋果MdCAX11基因啟動子區(qū)域進行預測分析以及啟動子轉錄活性分析?!窘Y果】瞬時過表達sMdCAX11的蘋果果肉顏色變褐,并出現皺縮;同時過表達sMdCAX11的蘋果果肉和擬南芥葉片的總Ca含量明顯下降,且元素比值(K+Mg)/Ca明顯升高?!窘Y論】sMdCAX11基因過表達可導致植株組織的元素分配不均,不同元素間的比例失衡。
關鍵詞:蘋果;Ca2+/H+反向轉運體(CAX);基因功能;礦質元素;鈣含量
中圖分類號:S661.1文獻標志碼:A文章編號:1009-9980(2024)07-1275-10
Functional analysis and characterization of the sMdCAX11 gene in apple
LIU Jia1,2,YIN Weijie2,LI Yukun3,WANG Caixia1*,REN Xiaolin2*
(1Institute of Chinese Materia Medica,China Academy of Chinese Medical Sciences,Beijing 100700,China;2College of Horticulture,Northwest Agriculture and Forestry University,Yangling 712100,Shaanxi,China;3Mengniu Hi-tech Dairy Product Beijing Co.,Ltd.,Bei-jing 101100,China)
Abstract:【Objective】Ca2+/H+antiporter(CAX)is a type of low-affinity and high-capacity transporter that mainly relies on the transmembrane proton gradient to complete the transport of Ca2+.This protein may be related to the occurrence of plant calcium deficiency.It is known that Ca2+/H+reverse transport-er proteins(CAXs)in model plants like Arabidopsis thaliana and tomato play important roles in regulat-ing intracellular Ca2+distribution and allocation,and maintaining intracellular calcium homeostasis,and overexpression of the CAXs genes in different plants could cause calcium deficiency symptoms in the plants.In the preliminary stage of this study,Honeycrisp apple bitter pit disorder fruits with different de-grees of incidence were used as test materials,and the differences in mineral element contents and ex-pression patterns of calcium transport-related genes in disordered fruits were analyzed.The key regula-tory genes MdCAX5 and sMdCAX11(MdCAX11 with the N-terminal autoinhibitory region removed)in-volved in the development of bitter pit disorder were then identified.However,the function of Md-CAX11 protein in apple was still unclear.Meanwhile,it was still unclear whether Ca2+/H+reverse trans-porter proteins were involved in the development of bitter pit disorder in fruit.【Methods】The gene functions of sMdCAX11 were analyzed using experimental methods like genetic transformation.In this study,we first utilized the transient transformation of Honeycrisp apple fruits to verify the calcium trans-port function of the sMdCAX11 protein.Fruits transiently transformed with the sMdCAX11 gene were sectioned to observe the changes in the flesh tissue near the injection hole,and the mineral element con-tent of the flesh tissue was also determined.Next,we stably transformed sMdCAX11 into the Arabidop-sis Col-0 and successfully obtained positive T4 generation transgenic plants.The PCR tests at DNA lev-el and RNA level verified that all obtained were positive plants,and the leaves were analyzed for miner-al element detection.In this study,various types of elements contained in the 1500 bp promoter region upstream of the start codon of the apple MdCAX11 gene were also predicted and analyzed.Meanwhile,in order to investigate the effect of the ProCAX11 promoter on the response to Ca2+,tobacco leaves sprayed with different concentrations(0,10,20 and 40 mmol·L-1)of CaCl2 were infiltrated by using Agrobacterium proCAX11::GUS.The effect of calcium ion on the transcriptional activity of MdCAX11 gene promoter was verified by GUS staining and GUS protein activity analysis.【Results】The total cal-cium content in apple flesh tissues overexpressing the sMdCAX11 gene significantly decreased and con-tinued to decrease with the extension of storage time.By analyzing the total Mg and K contents in the flesh tissues,these two elements showed a rapid increase after a transient decrease at the 3rd day after infestation,reaching the highest value at the 5th day.Further analysis of the elemental ratios of the flesh tissues revealed that the total mineral elements(K+Mg)/Ca significantly increased in the flesh of transiently transformed sMdCAX11 and continued to rise with the extension of storage time.At the 5th day of infestation,(K+Mg)/Ca ratio of water-soluble mineral elements was significantly higher in the flesh tissues of transiently transformed sMdCAX11 genes,while there was no significant change in the elemental ratios of the control.By analyzing the leaf mineral element contents of the four sMdCAX11 transgenic Arabidopsis lines,consistent with the apple flesh material transiently transformed with sMd-CAX11,the(K+Mg)/Ca ratios of the total elements,and the ratios of the water-soluble elements ap-peared to be marked increase and significantly different in the positive plants.A large number of cis-acting elements responsive to external environmental conditions were present in the promoter region of the MdCAX11,such as ARE,an element involved in anaerobic induction,as well as the light-respon-sive elements ATCT-motif,Box 4,G-box,GT1-motif,TCCC-motif and chs-CMA2a.In addition,the MdCAX11 promoter region was characterized by the presence of several transcription factor binding sites,such as the WRKY transcription factor binding sites WBOXNTERF3,WBOXATNPR1 and WRKY710S,as well as the binding sites of transcription factors like MYB.By analyzing the GUS pro-tein activity of tobacco leaves,it was found that ProCAX11 initiation significantly increased in a high calcium environment.The GUS protein activity significantly increased when they were sprayed with different concentrations of CaCl2,and the difference was significant compared with the control.Simul-taniously,the GUS protein activity reached the highest value when they were sprayed with 20 mmol·L-1 CaCl2.The transcriptional activity of MdCAX11 promoter was significantly affected by Ca2+.【Conclu-sion】The calcium transport capacity of the MdCAX11 gene was influenced by the N-terminal autoin-hibitory region,and the sMdCAX11 gene was equipped to transport calcium ions.Overexpression of the sMdCAX11 gene significantly reduced the calcium content in plants and disrupted the balance of mineral element ratios.sMdCAX11 transgenic Arabidopsis thaliana leaves contained significantly lower total Ca content as well as water-soluble Ca content compared with the wild type,and the(K+Mg)/Ca ratio of the total and water-soluble mineral elements was significantly higher than that of the control.In conclusion,these findings provided further evidence that overexpression of the sMdCAX11 gene can cause uneven distribution of elements in plant tissues and imbalance in element proportions.
Keywords:Apple;Ca2+/H+antiporter(CAX);Gene function;Mineral elements;Calcium content
Ca2+/H+反向轉運體(CAXs)是一類低親合、高容量的轉運蛋白,即使胞質中Ca2+水平較低時也可以發(fā)揮其生理功能。近年來,在擬南芥、水稻、葡萄等植物中已克隆出多個CAX基因,這些基因編碼的蛋白不僅可以運輸Ca2+,還能運輸Mn2+[1-2]。將擬南芥的AtCAX4基因超表達載體轉入到番茄中,獲得轉基因番茄苗,其中轉基因植株對鈣離子的吸收增強,植株體內的鈣元素含量增加,甚至延長果實的貨架期[3]。
研究CAXs的蛋白結構發(fā)現,幾乎所有的Ca2+/H+反向轉運蛋白都有著相似的結構(圖1),400 aa左右的氨基酸,均含有11個跨膜區(qū)域(TMD),都存在著一個Ca2+的結合區(qū)(CaD),以此調節(jié)CAXs蛋白轉運鈣離子的能力[4]。Ca2+/H+反向轉運蛋白的N端有親水性自抑制區(qū)(NRR),N末端自抑制區(qū)存在于細胞質中,該段序列可直接影響CAX蛋白的活性[5]。利用酵母突變體K667菌株進行功能互補實驗時發(fā)現,Ca2+的轉運受CAXs蛋白N-末端自抑制區(qū)的調控,全長的CAXs基因編碼的蛋白無法有效地轉運Ca2+[6-7]。CAXs的這種轉運特性存在于大多數植物的Ca2+/H+反向轉運蛋白中,例如擬南芥AtCAX1、AtCAX2、AtCAX3、AtCAX4[8],棉花GhCAX1、GhCAX3[9],水稻OsCAX1、OsCAX3和OsCAX4[10]。
蛋白的調控機制在不同植物品種及不同的成員之間不盡相同。例如,綠豆中去NRR的sVCAX1可以彌補K667酵母菌株轉運Ca2+的缺陷,同時轉化全長MdCAX2L-2的K667菌株也可以正常轉運Ca2+[11]。相似的情況也多有報道,白菜全長BrCAX蛋白和蘋果全長MdCAX5蛋白在酵母菌株K667中均可彌補突變株的鈣轉運缺陷[12-13]。研究去除N-末端自抑制區(qū)sPutCAX1的基因功能時發(fā)現,與星星草的全長PutCAX1基因相比,sPutCAX1的鈣轉運能力明顯下降[14]。同時也有文獻表明,CAXs的N-末端自抑制區(qū)在不同的植物體細胞中有各自不同的調節(jié)功能,但目前對這些相關調節(jié)機制尚不明了。通過對CAXs蛋白多樣性的研究可以發(fā)現,不同物種之間的CAXs蛋白存在著較大的差別。
在前期研究中發(fā)現sMdCAX11(去NRR的Md-CAX11)也表現出較強的鈣轉運能力,與MdCAX5的基因功能相似[12]。同時sMdCAX11蛋白作為一價陽離子和二價陽離子的轉運體,既可以轉運Ca2+,也可以轉運Na+。因此在本研究中將重點研究sMdCAX11的基因功能,通過觀察過表達sMdCAX11試驗材料的表型及分析不同組織的礦質元素含量,研究sMd-CAX11蛋白在植物體內所起到的關鍵作用。
1材料和方法
1.1試驗材料
用于瞬時轉化的蜜脆蘋果果實采收自陜西省寶雞市西北農林科技大學千陽試驗站,選取無病害、機械損傷的蘋果,樣品采集后迅速帶回實驗室,1℃貯藏冷庫存放。用于瞬時轉化的本氏煙草放置于光照培養(yǎng)箱進行培養(yǎng)(培養(yǎng)條件:22℃/20℃,16 h光照/8 h黑暗),培養(yǎng)至6~8枚葉時用于試驗。用于穩(wěn)定轉化的擬南芥為Col-0生態(tài)型,光照培養(yǎng)條件為16h光照(22℃)和8 h黑暗(20℃)。
克隆載體pMD19-T Simple vector購自TaKaRa公司,植物表達載體pVBG2307、pC0390GUS等均由實驗室保存。大腸桿菌E.coli DH5“購自天根公司,農桿菌菌株GV3101感受態(tài)購自上海唯地生物有限公司。
1.2蘋果的瞬時轉化
克隆sMdCAX11基因CDS序列(去掉終止密碼子),將得到的片段插入到融合載體GFP蛋白的N端,得到新的融合載體35S::sMdCAX11-GFP。將獲得的融合載體通過凍融法轉入農桿菌GV3101感受態(tài)細胞,獲得陽性農桿菌。蘋果瞬時轉化的方法參考Jiang等[15]方法進行,在果實瞬時轉化的第3天、第5天、第9天采樣并液氮速凍后保存于-80℃冰箱。
1.3擬南芥的穩(wěn)定轉化方法
利用方法1.2中獲得的含有35S::sMdCAX11-GFP的農桿菌用于擬南芥的穩(wěn)定轉化,采用浸花序法獲得陽性擬南芥植株。
1.4總Ca、Mg、K、N和P含量的測定
1.4.1總Ca、Mg和K含量的測定稱取3.00 g果肉凍樣置于70℃烘箱中烘至恒質量,稱取1.00 g烘干樣品并放置于100mL消解管中,同時加入3mL高氯酸和12mL硝酸,浸泡過夜后進行高溫消解,對消解樣品趕酸、定容后稀釋一定倍數,利用原子吸收光譜儀(ZA3000)測定樣品的總Ca、K和Mg含量。
1.4.2總N和P含量的測定稱取0.20 g烘干樣品與8 mL硫酸混合后放入100 mL消解管中浸泡過夜,經高溫消解、趕酸、定容、稀釋后利用連續(xù)流動化學分析儀測定總N、P含量。
總礦質元素含量以干質量表示,每項測定均包括3次生物學重復。
1.5水溶性Ca、Mg、K、N和P含量的測定
水溶性礦質元素的測定方法參照Pavicic等[16]的報道并有所改動。稱取6 g凍樣置于研缽中,加20 mL去離子水充分研磨,將研磨后的勻漿10 000r·min-1離心30min。收集上清液,將離心管的沉淀用20 mL去離子水重懸后,如上所述再次離心。收集兩次離心后的上清液經多次濾紙過濾后定容到50 mL,稀釋至一定倍數后利用原子吸收光譜儀測定水溶性Ca、Mg和K含量,利用連續(xù)流動化學分析儀測定水溶性N和P含量。水溶性礦質養(yǎng)分含量以鮮質量表示。每項測定均包括3次生物學重復。
1.6 ProCAX11啟動子的克隆及順式作用元件分析
采用植物基因組DNA提取試劑盒(AG21011)提取植物總DNA。以MdCAX11全長在蘋果基因組數據庫中比對,獲得起始密碼子上游1500bp左右的核苷酸序列。隨后設計引物,以蜜脆葉片DNA為模板,克隆MdCAX11基因啟動子序列。利用Plant CARE和PLACE在線網站預測ProCAX11啟動子存在的轉錄因子結合位點及順式作用元件。
1.7 GUS染色方法及蛋白活性分析
克隆MdCAX11基因啟動子ProCAX11序列,將得到的片段插入到載體pC0390GUS,得到新的融合載體ProCAX11::GUS,對照為pC0390GUS空載。將獲得的融合載體采用凍融法轉入農桿菌GV3101感受態(tài)細胞。PCR鑒定陽性的菌液瞬時侵染本氏煙草。GUS染色、GUS粗蛋白提取及濃度測定、GUS蛋白熒光值測定等方法參照Chen等[17]的報道。
1.8 ProCAX11啟動子對不同濃度CaCl2的響應分析
為了探究ProCAX11啟動子對CaCl2的響應效果,配制濃度為0、10、20和40 mmol·L-1的CaCl2溶液。在侵染前24h時,對本氏煙草植株噴灑不同濃度的CaCl2溶液,葉片的正反面均勻噴灑,直至葉片兩面均被打濕且不斷滴水為止,然后放回原來的培養(yǎng)條件下繼續(xù)培養(yǎng)。利用轉化有融合載體Pro-CAX5::GUS的農桿菌侵染煙草葉片。侵染48 h后對侵染的煙草葉片進行GUS染色及GUS蛋白活性分析。
2結果與分析
2.1 sMdCAX11瞬時過表達在蘋果果實的表型鑒定及元素分析
利用瞬時轉化蜜脆蘋果果實的方法,來驗證sMdCAX11蛋白的鈣轉運功能。對瞬時轉化sMd-CAX11基因的果實進行切片,觀察注射孔附近的果肉組織,發(fā)現在侵染第9天時果肉組織明顯變褐,果肉組織皺縮,與對照組相比差異顯著(圖2-A)。基因相對表達量分析檢測侵染第9天時果肉的sMd-CAX11基因表達量顯著上調,這也直接說明了瞬時轉化試驗效果良好,可以用于進一步的分析檢測(圖2-B)。
2.2 sMdCAX11瞬時過表達在蘋果果實的元素分析
分析瞬時轉化sMdCAX11基因的果肉組織總礦質元素及水溶性礦質元素的含量,對照組為瞬時轉化空載的果肉組織,結果發(fā)現過表達sMdCAX11基因的果肉組織總鈣含量顯著下降,且隨著貯藏時間的延長而不斷降低(圖3-A)。在侵染后第3天時,水溶性Ca含量與對照組相比出現了短暫的上升,但隨著貯藏時間的延長而顯著下降(圖3-B)。分析果肉組織的總Mg、K含量,這兩種元素在侵染后第3天時出現短暫降低之后迅速升高,在第5天時達到最高值。而水溶性Mg、K含量則與總Mg、K含量的變化趨勢相反(圖3)。進一步分析果肉組織的元素比值發(fā)現,總礦質元素(K+Mg)/Ca比值在瞬時轉化sMdCAX11的果肉中顯著增加,且隨著貯藏時間的延長而不斷升高。在侵染第5天時,水溶性礦質元素的(K+Mg)/Ca比值在瞬時轉化sMdCAX11基因的果肉組織中明顯升高,同時對照組的元素比值無顯著變化(圖3)。
2.3過表達sMdCAX11擬南芥的元素分析
為進一步驗證sMdCAX11參與鈣轉運的功能,將sMdCAX11穩(wěn)定轉化擬南芥Col-0生態(tài)型,并成功獲得陽性T4代轉基因植株。通過DNA水平及RNA水平的PCR檢驗,驗證所獲得的均為陽性植株,并開展后續(xù)試驗。對擬南芥葉片進行礦質元素檢測分析,結果發(fā)現4個過表達sMdCAX11擬南芥株系的葉片總Ca含量與水溶性Ca含量均出現顯著下降,差異極顯著(圖4)。同時4個株系的陽性樣本間差異不顯著,說明轉基因植株間的表型穩(wěn)定,不存在特異性。分析4個轉基因擬南芥株系葉片的總Mg與水溶性Mg含量,發(fā)現與野生型對照組相比差異不顯著(圖4)。然而4個轉基因擬南芥株系的總K含量與水溶性K含量均高于野生型且差異顯著,但在4個株系間差異不顯著(圖4)。與瞬時轉化sMd-CAX11的蘋果果肉材料相一致的是元素的(K+Mg)/Ca比值,總元素的比值與水溶性元素的比值在陽性植株中均出現明顯增大,且差異顯著(圖4)。
2.4 ProCAX11啟動子順式作用元件分析
利用Plant CARE等在線網站,對蘋果Md-CAX11基因起始密碼子上游1500bp啟動子區(qū)域所包含的各類元件進行預測分析(表1)。結果表明,該基因啟動子區(qū)存在大量響應外界環(huán)境條件的順式作用元件,如參與厭氧誘導的元件ARE,以及參與光響應的元件ATCT-motif、Box 4、G-box、GT1-motif、TCCC-motif和chs-CMA2a(表1)。該基因的啟動子也存在參與激素應答的調控元件,如參與脫落酸的ABRE(表1)。另外,ProCAX11啟動子區(qū)域還存在著多個轉錄因子結合位點,如WRKY轉錄因子結合位點WBOXNTERF3、WBOXATNPR1和WRKY710S,以及MYB等轉錄因子的結合位點(表1)。
2.5 ProCAX11啟動子轉錄活性及鈣元素響應分析
為探究ProCAX11啟動子對CaCl2的響應效果,利用轉化融合載體ProCAX11::GUS的農桿菌侵染噴灑過不同濃度(0、10、20、40 mmol·L-1)CaCl2的煙草葉片,并采用GUS染色及GUS蛋白活性分析的方法來驗證鈣離子對MdCAX11基因啟動子轉錄活性的影響(圖5)。GUS染色發(fā)現噴灑10 mmol·L-1與20 mmol·L-1 CaCl2的煙草葉片顏色相比于其他組明顯更深,CK為注射空載農桿菌煙草葉片(圖5-A)。通過分析煙草葉片的GUS蛋白活性,發(fā)現在高鈣的環(huán)境下MdCAX11啟動效果明顯增強。在噴灑不同濃度的CaCl2時,GUS蛋白活性顯著提高,與對照組相比差異顯著。同時在噴灑20 mmol·L-1 CaCl2時,GUS蛋白活性達到最高值(圖5-B)。ProCAX11啟動子轉錄活性受Ca2+的顯著影響。然而,隨著鈣離子濃度的增加,GUS蛋白的活性并沒有隨之增高(圖5)。
3討論
在前期研究中已經證實sMdCAX11(去NRR的MdCAX11)可以表現出較強的鈣轉運能力[12]。同時sMdCAX11蛋白作為一價陽離子和二價陽離子的轉運體,既可以轉運Ca2+,也可以轉運Na+。為驗證sMdCAX11蛋白的功能,筆者在本研究中分別利用了蘋果果實和擬南芥材料,采用瞬時過表達和穩(wěn)定過表達sMdCAX11的試驗手段,觀察果肉組織的表型,并測定不同組織的礦質元素含量。
在白菜[13]、番茄[5]和土豆[18]中過表達液泡CAX轉運蛋白,植株出現了類似缺鈣的癥狀。瞬時過表達sMdCAX11的蘋果在侵染第9天時注射孔附近的果肉顏色變褐,并出現皺縮,有明顯的死細胞,而這一癥狀與苦痘病發(fā)病部位的果肉表型十分相像。分析瞬時轉化sMdCAX11基因的果肉組織總礦質元素及水溶性礦質元素的含量。過表達sMdCAX11基因的果肉組織相比于對照組總鈣含量顯著下降。分析果肉組織的元素比值發(fā)現,總礦質元素及水溶性礦質元素(K+Mg)/Ca比值在瞬時轉化sMdCAX11的果肉中顯著增大,且隨著貯藏時間的延長而不斷升高。這一結果與苦痘病果實中不同礦質元素的分布及比例極其相似??喽徊」麑嵵械乃苄訡a含量顯著低于健康果實,且(K+Mg)/Ca比值顯著高于對照果實[19-20]。
穩(wěn)定過表達sMdCAX11的擬南芥葉片在礦質元素含量及比值的檢測結果上與蘋果果實相一致,總Ca含量與水溶性Ca含量在陽性植株的葉片中明顯下降,且(K+Mg)/Ca比值在陽性植株中顯著升高。這一結果也證實了sMdCAX11基因過表達可導致植株組織的元素分配不均,不同元素間的比例失衡的結論。但這一結果與先前研究報道并不完全相符[21]。這可能是因為筆者在本研究中對果實的Ca含量檢測時并未對細胞膜、細胞質等分別進行檢測,所以Ca含量與先前研究不一致。
在先前的研究報道中也表明WRKY轉錄因子可能參與了苦痘病的發(fā)生與發(fā)展[18,22]。對蘋果Md-CAX11基因啟動子區(qū)域進行預測分析,發(fā)現基因啟動子區(qū)存在著WRKY轉錄因子結合位點WBOXN-TERF3、WBOXATNPR1和WRKY71OS。因此在下一步的工作中將開展WRKY轉錄因子與MdCAX11基因啟動子的互作分析,以期明確WRKY轉錄因子與苦痘病發(fā)生的相關性。
4結論
MdCAX11基因的鈣轉運能力受N末端自抑制區(qū)的影響,sMdCAX11基因的過表達顯著降低植物體內鈣含量,打破了礦質元素比例的平衡。
參考文獻References:
[1]HE F,SHI Y J,LI J L,LIN T T,ZHAO K J,CHEN L H,MI J X,ZHANG F,ZHONG Y,LU M M,NIU M X,FENG C H,DING S S,PENG M Y,HUANG J L,YANG H B,WAN X Q.Genome-wide analysis and expression profiling of Cation/H+ex-changer(CAX)family genes reveal likely functions in cadmium stress responses in poplar[J].International Journal of Biological Macromolecules,2022,204:76-88.
[2]KAMIYA T,AKAHORI T,MAESHIMA M.Expression profile of the genes for rice cation/H+exchanger family and functional analysis in yeast[J].Plant and Cell Physiology,2005,46(10):1735-1740.
[3]CHENG N H,PITTMAN J K,SHIGAKI T,HIRSCHI K D.Char-acterization of CAX4,an Arabidopsis H+/cation antiporter[J].Plant Physiology,2002,128(4):1245-1254.
[4]ZOU W L,CHEN J G,MENG L J,CHEN D D,HE H H,YE G Y.The rice cation/H+exchanger family involved in Cd tolerance and transport[J].International Journal of Molecular Sciences,2021,22(15):8186.
[5]HAN B B,TAI Y X,LI S P,SHI J M,WU X Q,KAKESH-POUR T,WENG J F,CHENG X G,PARK S,WU Q Y.Rede-fining the N-terminal regulatory region of the Ca2+/H+antiporter CAX1 in tomato[J].Frontiers in Plant Science,2022,13:938839.
[6]SHIGAKI T,MEI H,MARSHALL J,LI X,MANOHAR M,HIRSCHI K D.The expression of the open reading frame of Arabidopsis CAX1,but not its cDNA,confers metal tolerance in yeast[J].Plant Biology,2010,12(6):935-939.
[7]MARTINS V,CARNEIRO F,CONDE C,SOTTOMAYOR M,GERóS H.The grapevine VvCAX3 is a cation/H+exchanger in-volved in vacuolar Ca2+homeostasis[J].Planta,2017,246(6):1083-1096.
[8]MATHEW I E,RHEIN H S,YANG J,GRADOGNA A,CAR-PANETO A,GUO Q,TAPPERO R,SCHOLZ-STARKE J,BARKLA B J,HIRSCHI K D,PUNSHON T.Sequential remov-al of cation/H+exchangers reveals their additive role in elemen-tal distribution,calcium depletion and anoxia tolerance[J].Plant,Cellamp;Environment,2024,47(2):557-573.
[9]XU L,ZAHID K R,HE LR,ZHANG WW,HE X,ZHANG X L,YANG X Y,ZHU L F.GhCAX3 gene,a novel Ca2+/H+exchang-er from cotton,confers regulation of cold response and ABA in-duced signal transduction[J].PLoS One,2013,8(6):e66303.
[10]KAMIYA T,AKAHORI T,ASHIKARI M,MAESHIMA M.Expression of the vacuolar Ca2+/H+exchanger,OsCAX1a,in rice:Cell and age specificity of expression,and enhancement by Ca2+[J].Plantamp;Cell Physiology,2006,47(1):96-106.
[11]MEI C,YAN P,FENG B B,MAMATA,WANG J X.The apple Ca2+/H+exchanger MdCAX2L-2 functions positively in modula-tion of Ba2+tolerance[J].Plant Physiology and Biochemistry,2024,207:108314.
[12]LIU J,JIANG Z T,QI Y W,LIU Y F,DING Y D,TIAN X N,REN X L.MdCAX affects the development of the‘Honey-crisp’bitter pit by influencing abnormal Ca distribution[J].Post-harvest Biology and Technology,2021,171:111341.
[13]CUI S N,LIU H,WU Y,ZHANG L G,NIE S S.Genome-Wide identification of BrCAX genes and functional analysis of BrCAX1 involved in Ca2+transport and Ca2+deficiency-induced tip-burnin Chinese cabbage(Brassica rapa L.ssp.pekinensis)[J].Genes,2023,14(9):1810.
[14]LIU H,ZHANG X X,TAKANO T,LIU S K.Characterization of a PutCAX1 gene from Puccinellia tenuiflora that confers Ca2+and Ba2+tolerance in yeast[J].Biochemical and Biophysical Re-search Communications,2009,383(4):392-396.
[15]JIANG Y H,LIU C H,YAN D,WEN X H,LIU Y L,WANG H J,DAI J Y,ZHANG Y J,LIU Y F,ZHOU B,REN X L.Md-HB1 down-regulation activates anthocyanin biosynthesis in the white-fleshed apple cultivar‘Granny Smith’[J].Journal of Ex-perimental Botany,2017,68(5):1055-1069.
[16]PAVICIC N,JEMRIC T,KURTANJEK Z,COSIC T,PAVLOV-IC I,BLASKOVIC D.Relationship between water-soluble Ca and other elements and bitter pit occurrence in‘Idared’apples:A multivariate approach[J].Annals of Applied Biology,2004,145(2):193-196.
[17]CHEN J X,LU C,DELA CRUZ R Y,LI Y H,ZHENG J P,ZHANG Y G,WANG Y L.Cloning and functional analysis of the promoter of a UDP-glycosyltransferase gene from Panax quinquefolium L.[J].Plant Cell,Tissue and Organ Culture,2023,153(2):343-356.
[18]LIU Y,HE G D,HE Y Q,TANG Y Y,ZHAO F L,HE T B.Dis-covery of cadmium-tolerant biomacromolecule(StCAX1/4 trans-portproteins)in potato and its potential regulatory relationship with WRKY transcription factors[J].International Journal of Bi-ological Macromolecules,2023,228:385-399.
[19]TORRES E,RECASENS I,àVILA G,LORDAN J,ALEGRES.Early stage fruit analysis to detect a high risk of bitter pit in‘Golden Smoothee’[J].Scientia Horticulturae,2017,219:98-106.
[20]SONG J Y,SUN S N,WANG B,CHEN H Y,SHI J S,ZHANG Y G,KONG X Y.Fruit-stalk supplementing calcium and parti-tion regulation of fruit calcium for prevention of bitter pit of bagged apple[J].Journal of Plant Growth Regulation,2023,42(5):3000-3016.
[21]DE FREITAS S T,PADDA M,WU Q Y,PARK S,MITCHAM E J.Dynamic alternations in cellular and molecular components during blossom-end rot development in tomatoes expressing sCAX1,a constitutively active Ca2+/H+antiporter from Arabidop-sis[J].Plant Physiology,2011,156(2):844-855.
[22]BUTI M,SARGENT D J,BIANCO L,MAGNAGO P,VELAS-CO R,COLGAN R J.A study of gene expression changes at the Bp-2 locus associated with bitter pit symptom expression in ap-ple(Malus pumila)[J].Molecular Breeding,2018,38(7):85.