摘要" 總結(jié)CD47在腫瘤相關(guān)小膠質(zhì)細(xì)胞/巨噬細(xì)胞中的功能,以及在膠質(zhì)母細(xì)胞瘤臨床前研究中的應(yīng)用,并分析CD47在膠質(zhì)母細(xì)胞瘤中的作用。膠質(zhì)母細(xì)胞瘤是成人神經(jīng)系統(tǒng)中最常見(jiàn)且惡性程度最高的腫瘤,對(duì)放療和化療具有很強(qiáng)的耐受性,常規(guī)治療方案療效較差。目前免疫治療是一種較為有效的治療手段,然而,膠質(zhì)母細(xì)胞瘤病人腦內(nèi)T細(xì)胞浸潤(rùn)較低、抗原呈遞較低導(dǎo)致自適應(yīng)免疫抑制。膠質(zhì)母細(xì)胞瘤病人腦內(nèi)環(huán)境具有高含量的髓樣細(xì)胞及腫瘤相關(guān)小膠質(zhì)細(xì)胞/巨噬細(xì)胞,能夠提升固有免疫治療在膠質(zhì)母細(xì)胞瘤的治療效果。CD47作為膠質(zhì)母細(xì)胞瘤生物學(xué)進(jìn)程中的免疫檢查點(diǎn),已經(jīng)應(yīng)用于膠質(zhì)母細(xì)胞瘤的臨床前研究和其他腫瘤臨床試驗(yàn)中的聯(lián)合治療。
關(guān)鍵詞" 膠質(zhì)母細(xì)胞瘤;免疫治療;CD47;綜述
doi:10.12102/j.issn.1672-1349.2024.23.014
膠質(zhì)母細(xì)胞瘤(glioblastoma,GBM)是中樞神經(jīng)系統(tǒng)中最具侵襲性的腫瘤,其表現(xiàn)出廣泛的表觀遺傳機(jī)制失調(diào)[1-2],以及腫瘤內(nèi)外廣泛的遺傳異質(zhì)性[3-5]。膠質(zhì)母細(xì)胞瘤在全球范圍內(nèi)的發(fā)病率為0.59/10萬(wàn)~3.69/10萬(wàn),中位發(fā)病年齡為63歲[6-8]。盡管膠質(zhì)母細(xì)胞瘤的手術(shù)切除、放療和化療等治療手段有所改進(jìn),但病人的中位生存時(shí)間仍為12~15個(gè)月,3年生存率約為10%[9-10]。在原發(fā)腫瘤切除后,對(duì)放射治療和化療的敏感性為中等,但復(fù)發(fā)性膠質(zhì)母細(xì)胞瘤對(duì)放射治療和化療顯示出耐藥性,導(dǎo)致臨床療效不佳[11-12]。因此,需要探索更有效的治療手段。
膠質(zhì)母細(xì)胞瘤的病因至今仍然未知。迄今為止,電離輻射、卵巢類(lèi)固醇激素、遺傳以及其他因素被認(rèn)為與膠質(zhì)母細(xì)胞瘤的發(fā)生和發(fā)展相關(guān)[13]。免疫療法已在其他腦外腫瘤治療中取得了顯著進(jìn)展,然而大多數(shù)膠質(zhì)母細(xì)胞瘤相關(guān)的免疫療法在臨床研究中僅取得了有限的進(jìn)展[14]。目前,膠質(zhì)母細(xì)胞瘤的免疫療法主要集中在適應(yīng)性抗腫瘤免疫上,包括免疫檢查點(diǎn)阻斷療法、疫苗療法、溶瘤病毒療法和嵌合抗原受體T細(xì)胞免疫療法(chimeric antigen receptor T-cell immunotherapy,CAR-T)[15-17]。越來(lái)越多的證據(jù)表明,膠質(zhì)母細(xì)胞瘤的腫瘤微環(huán)境中含有較多的髓系細(xì)胞和相對(duì)較少的腫瘤浸潤(rùn)淋巴細(xì)胞(tumor infiltrating lymphocyte,TIL)[18-19],并且T細(xì)胞功能存在障礙[20]。因此通過(guò)適
作者單位" 1.山西醫(yī)科大學(xué)第一臨床醫(yī)學(xué)院(太原 030001);2.山西醫(yī)科大學(xué)第一醫(yī)院(太原 030001)
通訊作者" 萬(wàn)大海,E-mail:13403451338@163.com
引用信息" 杜銘,萬(wàn)大海.CD47的生物學(xué)作用及在膠質(zhì)母細(xì)胞瘤免疫治療中的應(yīng)用進(jìn)展[J].中西醫(yī)結(jié)合心腦血管病雜志,2024,22(23):4315-4320.
應(yīng)性免疫抗腫瘤的免疫療法在膠質(zhì)母細(xì)胞瘤的治療中未取得顯著療效。然而腫瘤相關(guān)小膠質(zhì)細(xì)胞/巨噬細(xì)胞(tumor-associated microglia/macrophages,TAM)占膠質(zhì)母細(xì)胞瘤腫瘤微環(huán)境的30%~40%[21-22],其中約85%為骨髓來(lái)源的浸潤(rùn)性巨噬細(xì)胞/單核細(xì)胞,其余則來(lái)源于小膠質(zhì)細(xì)胞[23-24],其與適應(yīng)性免疫細(xì)胞相互作用,介導(dǎo)腫瘤細(xì)胞的免疫逃逸[25-27],驅(qū)動(dòng)腫瘤的生長(zhǎng)和進(jìn)展[28-32]。在這一過(guò)程中,CD47起到至關(guān)重要的作用,阻斷CD47作為克服腫瘤細(xì)胞逃避先天免疫的癌癥治療策略具有廣闊前景[33]。本研究總結(jié)CD47的相關(guān)免疫功能,探討CD47在膠質(zhì)母細(xì)胞瘤中的作用,并回顧其在膠質(zhì)母細(xì)胞瘤臨床前研究中的應(yīng)用。
1" CD47的生物學(xué)作用及在癌癥免疫治療中的作用機(jī)制
先天免疫系統(tǒng)是對(duì)抗感染和惡性腫瘤的第一道防線[34]??乖蔬f細(xì)胞(antigen-presenting cells,APCs)是先天免疫的重要組成部分,也與適應(yīng)性免疫系統(tǒng)之間相關(guān)聯(lián),其包括樹(shù)突狀細(xì)胞、單核細(xì)胞和巨噬細(xì)胞。APCs通過(guò)吞噬來(lái)招募和清除轉(zhuǎn)化的腫瘤細(xì)胞,向活化的T細(xì)胞呈遞腫瘤源性抗原,并激活下游的適應(yīng)性免疫反應(yīng)。CD47是目前研究最廣泛且最有前途的先天免疫檢查點(diǎn),在急性髓系白血病、胃癌等方面的一些聯(lián)合抗CD47治療已進(jìn)入Ⅲ期臨床試驗(yàn)[35]。
CD47是一種50 kDa的膜受體糖蛋白,屬于免疫球蛋白家族,其分子結(jié)構(gòu)包括N末端的細(xì)胞外可變區(qū)域、5個(gè)疏水的跨膜螺旋結(jié)構(gòu),以及一個(gè)親水性的C末端的細(xì)胞內(nèi)信號(hào)序列[36]。CD47最早于1987年在紅細(xì)胞上被鑒定出來(lái)[37],后來(lái)發(fā)現(xiàn)CD47廣泛表達(dá)于人類(lèi)細(xì)胞,并且在許多類(lèi)型的腫瘤細(xì)胞上過(guò)表達(dá)[38]。
CD47已知的配體包括血小板反應(yīng)蛋白-1(platelet-reactive protein,TSP-1)、信號(hào)調(diào)節(jié)蛋白(signal-regulating protein,SIRP)α 、SIRPγ和整合素,這些配體與CD47的生理功能相關(guān)[39]。TSP-1是由活化的血小板釋放的一種分泌型糖蛋白,可以影響血管生成、細(xì)胞增殖、遷移、吞噬作用、凋亡以及一氧化氮(NO)信號(hào)通路。CD47-TSP-1相互作用抑制血管生成,使血管內(nèi)皮生長(zhǎng)因子受體2(vascular endothelial growth factor receptor 2,VEGFR-2)失活,抑制炎癥反應(yīng),并通過(guò)上調(diào)Kruppel樣因子4(KLF4)、Sox2、MYC癌基因(c-Myc)和Oct4(Oct4)等干細(xì)胞轉(zhuǎn)錄因子來(lái)增強(qiáng)干細(xì)胞的再生能力[40]。SIRPα 是一種跨膜糖蛋白,主要在巨噬細(xì)胞、單核細(xì)胞、樹(shù)突狀細(xì)胞和神經(jīng)細(xì)胞(神經(jīng)元、小膠質(zhì)細(xì)胞)上表達(dá)。通常CD47-SIRPα相互作用會(huì)發(fā)出“不要吃我”的信號(hào),并導(dǎo)致免疫逃避,這已經(jīng)適用于免疫檢查點(diǎn)治療。SIRPγ在人類(lèi)活化T細(xì)胞上表達(dá),其與CD47結(jié)合的親和力低于SIRPα。但由于其表達(dá)位置的特殊性,可能在適應(yīng)性抗腫瘤免疫中發(fā)揮關(guān)鍵作用[41]。此外,CD47可以與整合素相互作用,如a2β1和αvβ3,調(diào)節(jié)平滑肌細(xì)胞的遷移和血小板活化,并且近年來(lái)還發(fā)現(xiàn)了CD47的幾種細(xì)胞質(zhì)結(jié)合伴侶,如整合素相關(guān)蛋白(integrin-associated protein,IAP)、泛醌蛋白2(PLIC-2)等[42]。
CD47普遍在淋巴瘤、白血病、卵巢癌、肺癌等多種腫瘤上過(guò)表達(dá)。大量的臨床前研究表明,靶向CD47治療的潛在機(jī)制主要包括:1)抑制CD47阻斷CD47-SIRPα軸,從而促進(jìn)巨噬細(xì)胞的吞噬作用[41-43]。目前,已有60多項(xiàng)阻斷CD47/SIRPα軸的臨床試驗(yàn)正在進(jìn)行[43]。2)抗 CD47 消除了 TSP-1 介導(dǎo)的對(duì)自然殺傷細(xì)胞的抑制,從而增加了自然殺傷細(xì)胞的活化和細(xì)胞毒性[44]。3)CD47抗體直接誘導(dǎo)腫瘤細(xì)胞凋亡[45]。4)抑制CD47促進(jìn)抗原呈遞,進(jìn)而改善T細(xì)胞的募集和活化[41-43]。5)CD47抗體通過(guò)Fc受體誘導(dǎo)細(xì)胞介導(dǎo)的細(xì)胞毒性作用。6)阻斷CD47可以激活與腫瘤相關(guān)的小膠質(zhì)細(xì)胞,從而增強(qiáng)小膠質(zhì)細(xì)胞對(duì)中樞神經(jīng)系統(tǒng)中膠質(zhì)瘤細(xì)胞的吞噬作用[46]。
另外,在中藥學(xué)治療腫瘤的領(lǐng)域,相關(guān)研究同樣也證實(shí)了CD47在中藥作用于腫瘤細(xì)胞的生物學(xué)進(jìn)程中起到了一定的影響。Tao等[47]研究表明,甘珀酸作為常見(jiàn)的中藥單體在鼻咽癌中能夠有效抑制腫瘤細(xì)胞的侵襲及惡性增殖等特性,但CD47的表達(dá)顯著降低了藥物療效。同樣,Dai等[48]研究表明,紅豆杉的水提取物能夠下調(diào)小細(xì)胞肺癌中CD47的表達(dá),促進(jìn)巨噬細(xì)胞介導(dǎo)的免疫反應(yīng),增強(qiáng)了紅豆杉的抗腫瘤能力。
2" CD47在膠質(zhì)母細(xì)胞瘤中的表達(dá)及其臨床意義
研究發(fā)現(xiàn)CD47在膠質(zhì)母細(xì)胞瘤細(xì)胞中過(guò)度表達(dá),尤其是在膠質(zhì)母細(xì)胞瘤干細(xì)胞中,其高表達(dá)水平與較差的臨床預(yù)后有關(guān)[49-50]。因此,CD47可以作為預(yù)測(cè)膠質(zhì)母細(xì)胞瘤的預(yù)后指標(biāo)。CD47會(huì)影響膠質(zhì)母細(xì)胞瘤的發(fā)生、發(fā)展。最近的研究發(fā)現(xiàn),CD47的過(guò)表達(dá)可通過(guò)磷脂酰肌醇-3-激酶(PI3K)/蛋白激酶B(AKT)信號(hào)通路激活膠質(zhì)母細(xì)胞瘤細(xì)胞的增殖和侵襲[51-52]。另外,有研究發(fā)現(xiàn)CD47的配體TSP-1在膠質(zhì)母細(xì)胞瘤細(xì)胞中過(guò)度表達(dá),并與較差的臨床預(yù)后有關(guān),同時(shí)也發(fā)現(xiàn)其通過(guò)調(diào)節(jié)轉(zhuǎn)化生長(zhǎng)因子-β1(TGF-β1)/Smad3通路影響膠質(zhì)母細(xì)胞瘤的增殖和侵襲[53]。
大量的證據(jù)表明,CD47-SIRPα、CD47-TSP-1的相互作用不僅影響膠質(zhì)母細(xì)胞瘤細(xì)胞的增殖和侵襲能力,還抑制巨噬細(xì)胞和中性粒細(xì)胞的細(xì)胞毒性,限制樹(shù)突狀細(xì)胞的抗原呈遞功能[43-46,50-53]。
3" 靶向CD47治療在膠質(zhì)母細(xì)胞瘤中的作用機(jī)制
針對(duì)膠質(zhì)母細(xì)胞瘤的CD47靶向機(jī)制與其他腫瘤類(lèi)似,其主要作用機(jī)制:1)靶向CD47,可阻斷CD47-SIRPα通路,促使巨噬細(xì)胞從促腫瘤的M2亞型向抗腫瘤的M1亞型極化,從而誘導(dǎo)吞噬作用,并且最近的研究表明,無(wú)論是靶向CD47-SIRPα軸還是下調(diào)上游調(diào)節(jié)蛋白,如富含亮氨酸重復(fù)序列免疫球蛋白2(LRIG2)、c-Jun,都可以誘導(dǎo)增強(qiáng)巨噬細(xì)胞的吞噬活性[50,54-62]。2)下調(diào)CD47表達(dá)可以減少膠質(zhì)母細(xì)胞瘤中干細(xì)胞/祖細(xì)胞的特性,這可能有助于提高其他治療方法的效率并減少耐藥性[50]。3)抑制CD47,從而激活小膠質(zhì)細(xì)胞,且增強(qiáng)小膠質(zhì)細(xì)胞對(duì)中樞神經(jīng)系統(tǒng)中膠質(zhì)母細(xì)胞瘤細(xì)胞的吞噬作用[46,59]。4)抑制CD47從而抑制CD47-TSP-1相互作用或其他相關(guān)途徑直接減少癌細(xì)胞的侵襲和增殖[52,60,62-63]。Ma等[60]研究發(fā)現(xiàn),CD47基因敲除可以招募更多的TAM,促進(jìn)免疫細(xì)胞吞噬作用,抑制腫瘤血管生成,并通過(guò)Notch通路上調(diào)腱糖蛋白-C(tenascin C,TNC)。而TNC可能是對(duì)抗CD47誘導(dǎo)吞噬作用的下游因子[60]。5)抗CD47增強(qiáng)樹(shù)突狀細(xì)胞的抗原呈遞能力,產(chǎn)生有效的T細(xì)胞啟動(dòng)和適應(yīng)性抗腫瘤免疫反應(yīng)[64-65]。6)CD47抗體通過(guò) Fc 受體誘導(dǎo)細(xì)胞介導(dǎo)的細(xì)胞毒性。巨噬細(xì)胞上的Fc受體在激活巨噬細(xì)胞中起著關(guān)鍵作用[66]。總體而言,與CD47抗體-免疫球蛋白G4(IgG4)相比,CD47抗體-免疫球蛋白G1(IgG1)具有更強(qiáng)的腫瘤殺傷效果,這是由于激活額外的巨噬細(xì)胞的抗體依賴(lài)性細(xì)胞吞噬(antibody-dependent cellular phagocytosis,ADCP)和自然殺傷細(xì)胞的抗體依賴(lài)性細(xì)胞毒性(antibody-dependent cell-mediated cytotoxic,ADCC)。然而,由于血漿中IgG1含量過(guò)高而引起的副作用限制了其應(yīng)用。
4" 靶向CD47治療膠質(zhì)母細(xì)胞瘤的局限性
第一,CD47抗體的非特異效應(yīng)會(huì)阻斷正常紅細(xì)胞中的CD47信號(hào)傳導(dǎo),并激活Fc介導(dǎo)的靶細(xì)胞殺傷作用,這些都導(dǎo)致巨噬細(xì)胞和自然殺傷細(xì)胞攻擊紅細(xì)胞并引發(fā)貧血。因此,需要設(shè)計(jì)新型的單克隆抗體、聯(lián)合療法和雙特異性抗體(bsAb)形式,克服這些限制并提高療效。第二,在巨噬細(xì)胞上的Fc受體在激活巨噬細(xì)胞中起關(guān)鍵作用。出于安全原因,在大多數(shù)研究中選擇的是IgG4而不是更有效的IgG1[66]。然而,血腦屏障和免疫抑制環(huán)境限制了藥物的效果[67]。第三,抗體與T淋巴細(xì)胞的結(jié)合可能會(huì)導(dǎo)致T細(xì)胞凋亡和免疫抑制[68]。第四,大腦中抗原呈遞細(xì)胞的缺乏使抗原識(shí)別和呈遞變得困難。僅靶向CD47可能不足以增強(qiáng)抗腫瘤的免疫力,目前國(guó)外進(jìn)行的多項(xiàng)臨床前研究旨在探索膠質(zhì)母細(xì)胞瘤的最佳聯(lián)合治療方案(見(jiàn)表1)。
5" 小結(jié)與展望
盡管靶向CD47的治療仍局限于臨床前研究中,但其能夠激活先天和適應(yīng)性抗腫瘤免疫系統(tǒng),是治療膠質(zhì)母細(xì)胞瘤病人的有前途的療法。然而,由于大腦中獨(dú)特的免疫微環(huán)境,臨床可行的膠質(zhì)母細(xì)胞瘤免疫療法的發(fā)展相對(duì)緩慢。臨床前研究表明,抗CD47療法能有效激活大腦中的先天免疫力,來(lái)抑制腫瘤生長(zhǎng)。然而,由于存在多種配體和復(fù)雜的信號(hào)途徑,膠質(zhì)母細(xì)胞瘤中CD47的相關(guān)機(jī)制還沒(méi)有被清楚地闡明。此外,關(guān)于FcR的參與、非特異性作用、具體的靶向選擇、替代途徑、協(xié)同途徑或靶點(diǎn)等問(wèn)題仍需解決。
綜上所述,靶向CD47在膠質(zhì)母細(xì)胞瘤的治療中具有潛力。要在膠質(zhì)母細(xì)胞瘤治療中實(shí)現(xiàn)靶向CD47的治療仍然需要很長(zhǎng)的路程。要充分理解其潛在機(jī)制,不斷深入研究,為靶向CD47提供合理的治療依據(jù),同時(shí)應(yīng)在充分的理論基礎(chǔ)上,基于中藥對(duì)于CD47的作用機(jī)制,探究合理有效的中藥聯(lián)合治療方案。那么,在膠質(zhì)母細(xì)胞瘤中實(shí)現(xiàn)靶向CD47的免疫治療的新紀(jì)元必定會(huì)到來(lái)。
參考文獻(xiàn):
[1]" NAGARAJAN R P,COSTELLO J F.Epigenetic mechanisms in glioblastoma multiforme[J].Seminars in Cancer Biology,2009,19(3):188-197.
[2]" POP S,ENCIU A M,NECULA L G,et al.Long non-coding RNAs in brain tumours:focus on recent epigenetic findings in glioma[J].Journal of Cellular and Molecular Medicine,2018,22(10):4597-4610.
[3]" INDA M M,BONAVIA R,SEOANE J.Glioblastoma multiforme:a look inside its heterogeneous nature[J].Cancers,2014,6(1):226-239.
[4]" QAZI M A,VORA P,VENUGOPAL C,et al.Intratumoral heterogeneity:pathways to treatment resistance and relapse in human glioblastoma[J].Annals of Oncology,2017,28(7):1448-1456.
[5]" TANASE C,ALBULESCU R,CODRICI E,et al.Circulating biomarker panels for targeted therapy in brain tumors[J].Future Oncology,2015,11(3):511-524.
[6]" DARLIX A,ZOUAOUI S,RIGAU V,et al.Epidemiology for primary brain tumors:a nationwide population-based study[J].Journal of Neuro-Oncology,2017,131(3):525-546.
[7]" OSTROM Q T,GITTLEMAN H,F(xiàn)ULOP J,et al.CBTRUS statistical report:primary brain and central nervous system tumors diagnosed in the United States in 2008-2012[J].Neuro-oncology,2015,17(Suppl 4):iv1-iv62.
[8]" KOSHY M,VILLANO J L,DOLECEK T A,et al.Improved survival time trends for glioblastoma using the SEER 17 population-based registries[J].Journal of Neuro-Oncology,2012,107(1):207-212.
[9]" BAKAS S,AKBARI H,PISAPIA J,et al.In vivo detection of EGFRvIII in glioblastoma via perfusion magnetic resonance imaging signature consistent with deep peritumoral infiltration:the /u03d5-index[J]. Clin Cancer Res,2017,23(16):4724-4734.
[10]" DUNN G P,RINNE M L,WYKOSKY J,et al.Emerging insights into the molecular and cellular basis of glioblastoma[J].Genes amp; Development,2012,26(8):756-784.
[11]" RAZAVI S M,LEE K E,JIN B E,et al.Immune evasion strategies of glioblastoma[J].Frontiers in Surgery,2016,3:11.
[12]" LIAUW S L,CONNELL P P,WEICHSELBAUM R R.New paradigms and future challenges in radiation oncology:an update of biological targets and technology[J].Science Translational Medicine,2013,5(173):173sr2.
[13]" YALAMARTY S S K,F(xiàn)ILIPCZAK N,LI X,et al.Mechanisms of resistance and current treatment options for glioblastoma multiforme (GBM)[J].Cancers,2023,15(7):2116.
[14]" MAXWELL R,JACKSON C M,LIM M.Clinical trials investigating immune checkpoint blockade in glioblastoma[J].Current Treatment Options in Oncology,2017,18(8):51.
[15]" KAMRAN N,CALINESCU A,CANDOLFI M,et al.Recent advances and future of immunotherapy for glioblastoma[J].Expert Opinion on Biological Therapy,2016,16(10):1245-1264.
[16]" LIM M,XIA Y X,BETTEGOWDA C,et al.Current state of immunotherapy for glioblastoma[J].Nature Reviews Clinical Oncology,2018,15:422-442.
[17]" CHANDRAMOHAN V,MITCHELL D A,JOHNSON L A,et al.Antibody,T-cell and dendritic cell immunotherapy for malignant brain tumors[J].Future Oncology,2013,9(7):977-990.
[18]" BERGHOFF A S,KIESEL B,WIDHALM G,et al.Programmed death ligand 1 expression and tumor-infiltrating lymphocytes in glioblastoma[J].Neuro-oncology,2015,17(8):1064-1075.
[19]" HAN S,MA E L,WANG X N,et al.Rescuing defective tumor-infiltrating T-cell proliferation in glioblastoma patients[J].Oncology Letters,2016,12(4):2924-2929.
[20]" WORONIECKA K,CHONGSATHIDKIET P,RHODIN K,et al.T-cell exhaustion signatures vary with tumor type and are severe in glioblastoma[J].Clinical Cancer Research,2018,24(17):4175-4186.
[21] "SCHUPP J,KREBS F K,ZIMMER N,et al.Targeting myeloid cells in the tumor sustaining microenvironment[J].Cellular Immunology,2019,343:103713.
[22]" ALDAPE K,BRINDLE K M,CHESLER L,et al.Challenges to curing primary brain tumours[J].Nature Reviews Clinical Oncology,2019,16(8):509-520.
[23]" CHEN Z H,F(xiàn)ENG X,HERTING C J,et al.Cellular and molecular identity of tumor-associated macrophages in glioblastoma[J].Cancer Research,2017,77(9):2266-2278.
[24]" ZHOU W C,KE S Q,HUANG Z,et al.Periostin secreted by glioblastoma stem cells recruits M2 tumour-associated macrophages and promotes malignant growth[J].Nature Cell Biology,2015,17(2):170-182.
[25]" RUFFELL B,COUSSENS L M.Macrophages and therapeutic resistance in cancer[J].Cancer Cell,2015,27(4):462-472.
[26]" MANTOVANI A,MARCHESI F,MALESCI A,et al.Tumour-associated macrophages as treatment targets in oncology[J].Nature Reviews Clinical Oncology,2017,14(7):399-416.
[27]" NOY R,POLLARD J W.Tumor-associated macrophages:from mechanisms to therapy[J].Immunity,2014,41(1):49-61.
[28]" POON C C,SARKAR S,YONG V W,et al.Glioblastoma-associated microglia and macrophages:targets for therapies to improve prognosis[J].Brain,2017,140(6):1548-1560.
[29]" YE X Z,XU S L,XIN Y H,et al.Tumor-associated microglia/macrophages enhance the invasion of glioma stem-like cells via TGF-β1 signaling pathway[J].Journal of Immunology (Baltimore,Md),2012,189(1):444-453.
[30]" ZHU C B,MUSTAFA D,ZHENG P P,et al.Activation of CECR1 in M2-like TAMs promotes paracrine stimulation-mediated glial tumor progression[J].Neuro-oncology,2017,19(5):648-659.
[31]" LI W,GRAEBER M B.The molecular profile of microglia under the influence of glioma[J].Neuro-Oncology,2012,14(8):958-978.
[32]" WANG N,LIANG H W,ZEN K.Molecular mechanisms that influence the macrophage M1-M2 polarization balance[J].Frontiers in Immunology,2014,5:614.
[33]" WILLINGHAM S B,VOLKMER J P,GENTLES A J,et al.The CD47-signal regulatory protein alpha (SIRPa) interaction is a therapeutic target for human solid tumors[J].Proceedings of the National Academy of Sciences of the United States of America,2012,109(17):6662-6667.
[34]" IWASAKI A,MEDZHITOV R.Regulation of adaptive immunity by the innate immune system[J].Science,2010,327(5963):291-295.
[35]" YE Z H,YU W B,HUANG M Y,et al.Building on the backbone of CD47-based therapy in cancer:combination strategies,mechanisms,and future perspectives[J].Acta Pharmaceutica Sinica B,2023,13(4):1467-1487.
[36]" FENALTI G,VILLANUEVA N,GRIFFITH M,et al.Structure of the human marker of self 5-transmembrane receptor CD47[J].Nature Communications,2021,12(1):5218.
[37]" MILLER Y E,DANIELS G L,JONES C,et al.Identification of a cell-surface antigen produced by a gene on human chromosome 3 (Cen-Q22) and not expressed by Rh1 cells[J].American Journal of Human Genetics,1987,41(6):1061-1070.
[38]" DA FONSECA A C,BADIE B.Microglia and macrophages in malignant gliomas:recent discoveries and implications for promising therapies[J].Clinical amp; Developmental Immunology,2013,2013:264124.
[39]" LIU Y E,WANG Y J,YANG Y R,et al.Emerging phagocytosis checkpoints in cancer immunotherapy[J].Signal Transduction and Targeted Therapy,2023,8(1):104.
[40]" KAUR S,SOTO-PANTOJA D R,STEIN E V,et al.Thrombospondin-1 signaling through CD47 inhibits self-renewal by regulating c-Myc and other stem cell transcription factors[J].Scientific Reports,2013,3:1673.
[41]" VEILLETTE A,CHEN J.SIRPα-CD47 immune checkpoint blockade in anticancer therapy[J].Trends in Immunology,2018,39(3):173-184.
[42]" ZHAO H,SONG S S,MA J W,et al.CD47 as a promising therapeutic target in oncology[J].Frontiers in Immunology,2022,13:757480.
[43]" BOUWSTRA R,VAN MEERTEN T,BREMER E.CD47-SIRPα blocking-based immunotherapy:current and prospective therapeutic strategies[J].Clinical and Translational Medicine,2022,12(8):e943.
[44]" NATH P R,PAL-NATH D,MANDAL A,et al.Natural killer cell recruitment and activation are regulated by CD47 expression in the tumor microenvironment[J].Cancer Immunology Research,2019,7(9):1547-1561.
[45]" CIOFFI M,TRABULO S,HIDALGO M,et al.Inhibition of CD47 effectively targets pancreatic cancer stem cells via dual mechanisms[J].Clinical Cancer Research,2015,21(10):2325-2337.
[46]" HUTTER G,THERUVATH J,GRAEF C M,et al.Microglia are effector cells of CD47-SIRPα antiphagocytic axis disruption against glioblastoma[J].Proceedings of the National Academy of Sciences of the United States of America,2019,116(3):997-1006.
[47]" REN T,BAI X Y,YANG M Z,et al.Gambogic acid suppresses nasopharyngeal carcinoma via rewiring molecular network of cancer malignancy and immunosurveillance[J].Biomedecine amp; Pharmacotherapie,2022,150:113012.
[48]" DAI S Y,LIU Y,ZHAO F M,et al.Aqueous extract of Taxus chinensis var.mairei targeting CD47 enhanced antitumor effects in non-small cell lung cancer[J].Biomedecine amp; Pharmacotherapie,2022,154:113628.
[49]" GHOSH D,F(xiàn)UNK C C,CABALLERO J,et al.A cell-surface membrane protein signature for glioblastoma[J].Cell Systems,2017,4(5):516-529.e7.
[50]" LI F,LV B K,LIU Y,et al.Blocking the CD47-SIRPα axis by delivery of anti-CD47 antibody induces antitumor effects in glioma and glioma stem cells[J].OncoImmunology,2018,7(2):e1391973.
[51]" SICK E,BOUKHARI A,DERAMAUDT T,et al.Activation of CD47 receptors causes proliferation of human astrocytoma but not normal astrocytes via an Akt-dependent pathway[J].Glia,2011,59(2):308-319.
[52]" LIU X J,WU X,WANG Y M,et al.CD47 promotes human glioblastoma invasion through activation of the PI3K/Akt pathway[J].Oncology Research,2019,27(4):415-422.
[53]" DAUBON T,LON C,CLARKE K,et al.Deciphering the complex role of thrombospondin-1 in glioblastoma development[J].Nature Communications,2019,10(1):1146.
[54]" HU J Y,DONG F,HE Y,et al.LRIG2 promotes glioblastoma progression by modulating innate antitumor immunity through macrophage infiltration and polarization[J].Journal for Immunotherapy of Cancer,2022,10(9):e004452.
[55]" ZHANG M,HUTTER G,KAHN S A,et al.Anti-CD47 treatment stimulates phagocytosis of glioblastoma by M1 and M2 polarized macrophages and promotes M1 polarized macrophages in vivo[J].PLoS One,2016,11(4):e0153550.
[56]" ZHU H Y,LEISS L,YANG N,et al.Surgical debulking promotes recruitment of macrophages and triggers glioblastoma phagocytosis in combination with CD47 blocking immunotherapy[J].Oncotarget,2017,8(7):12145-12157.
[57]" GHOLAMIN S,YOUSSEF O A,RAFAT M,et al.Irradiation or temozolomide chemotherapy enhances anti-CD47 treatment of glioblastoma[J].Innate Immunity,2020,26(2):130-137.
[58]" JIANG N,XIE B W,XIAO W W,et al.Fatty acid oxidation fuels glioblastoma radioresistance with CD47-mediated immune evasion[J].Nature Communications,2022,13(1):1511.
[59]" ZHOU Y,GUO Y X,CHEN L F,et al.Co-delivery of phagocytosis checkpoint and STING agonist by a Trojan horse nanocapsule for orthotopic glioma immunotherapy[J].Theranostics,2022,12(12):5488-5503.
[60]" MA D,LIU S Q,LAL B,et al.Extracellular matrix protein tenascin C increases phagocytosis mediated by CD47 loss of function in glioblastoma[J].Cancer Research,2019,79(10):2697-2708.
[61]" CHEN H P,YANG Y Y,DENG Y Q,et al.Delivery of CD47 blocker SIRPα-Fc by CAR-T cells enhances antitumor efficacy[J].Journal for ImmunoTherapy of Cancer,2022,10(2):e003737.
[62]" ZHANG X Y,WANG S F,NAN Y Y,et al.Inhibition of autophagy potentiated the anti-tumor effects of VEGF and CD47 bispecific therapy in glioblastoma[J].Applied Microbiology and Biotechnology,2018,102(15):6503-6513.
[63]" TANASE C,ENCIU A M,CODRICI E,et al.Fatty acids,CD36,thrombospondin-1,and CD47 in glioblastoma:together and/or separately?[J].International Journal of Molecular Sciences,2022,23(2):604.
[64]" ZHANG P,RASHIDI A,ZHAO J F,et al.STING agonist-loaded,CD47/PD-L1-targeting nanoparticles potentiate antitumor immunity and radiotherapy for glioblastoma[J].Nature Communications,2023,14(1):1610.
[65]" VON ROEMELING C A,WANG Y F,QIE Y Q,et al.Therapeutic modulation of phagocytosis in glioblastoma can activate both innate and adaptive antitumour immunity[J].Nature Communications,2020,11(1):1508.
[66]" XU B,TIAN L,CHEN J,et al.An oncolytic virus expressing a full-length antibody enhances antitumor innate immune response to glioblastoma[J].Nature Communications,2021,12(1):5908.
[67]" LIU S H,LIU J,LI H S,et al.An optimized ionizable cationic lipid for brain tumor-targeted siRNA delivery and glioblastoma immunotherapy[J].Biomaterials,2022,287:121645.
[68]" PETTERSEN R D,HESTDAL K,OLAFSEN M K,et al.CD47 signals T cell death[J].Journal of Immunology,1999,162(12):7031-7040.
(收稿日期:2023-12-07)
(本文編輯郭懷?。?/p>