超深氣井溫壓條件苛刻、流體分布復(fù)雜,油管柱泄漏后油套環(huán)空壓力大且起壓機(jī)理不清,嚴(yán)重影響超深氣井的長期安全平穩(wěn)生產(chǎn)。為揭示油套環(huán)空在復(fù)雜泄漏工況下的起壓機(jī)理,建立了基于泄漏驅(qū)動(dòng)、泄漏過程和氣液分布的環(huán)空壓力機(jī)理模型,對油套環(huán)空起壓關(guān)鍵參數(shù)開展了對比分析,表征了環(huán)空壓力、環(huán)空液面和環(huán)空氣體聚集量等關(guān)鍵指標(biāo)的變化規(guī)律。研究結(jié)果表明:超深氣井油管柱泄漏存在氣體泄漏和液體泄漏2種類型以及5種泄漏工況;氣體泄漏情況下,上部泄漏點(diǎn)決定了環(huán)空壓力的最大值、環(huán)空液面最終深度和氣體聚集量,泄漏點(diǎn)的增多會(huì)提高壓力的上升速率,壓力上升過程可分為全部泄漏點(diǎn)泄漏、部分泄漏點(diǎn)泄漏和泄漏完全停止3個(gè)階段;液體泄漏情況下,環(huán)空液面持續(xù)下降,為環(huán)空氣體提供更多的聚集空間,增加了環(huán)空氣體聚集量,此時(shí)氣體積聚所引發(fā)的風(fēng)險(xiǎn)最大;不同泄漏工況下環(huán)空壓力與環(huán)空液面高度的表征具有一定的相似性,因此基于U型管理論的泄漏點(diǎn)定位方法不適用于多泄漏點(diǎn)的復(fù)雜工況,需要進(jìn)一步研究新的泄漏識別檢測方法。研究結(jié)果可為超深氣井油套環(huán)空壓力的分析與管控提供依據(jù)。
超深氣井;油套環(huán)空;起壓機(jī)理;復(fù)雜泄漏;環(huán)空壓力
中圖分類號:TE28
文獻(xiàn)標(biāo)識碼:A
DOI:10.16082/i.cnki.issn.1001-4578.2024.11.012
基金項(xiàng)目:國家自然科學(xué)基金委員會(huì)基礎(chǔ)科學(xué)中心項(xiàng)目“超深特深層油氣鉆采流動(dòng)調(diào)控”(52288101);中國石油天然氣股份有限公司油氣和新能源分公司科技項(xiàng)目“三高井完整性風(fēng)險(xiǎn)量化評價(jià)技術(shù)研究與現(xiàn)場試驗(yàn)”(2022KT1904)。
Mechanism and Pattern of Pressure Generation in Tubing-Casing Annulus
Due to Leakage of Tubing String in Ultradeep Gas Wells
Cao Lihu1,2" Sun Jinsheng1,3" Zhang Bo4
(1.School of Petroleum Engineering,China University of Petroleum (East China);2.PetroChina Tarim Oilfield Company;3.CNPC Engineering Technology R amp; D Company Limited;4.College of Mechanical and Electrical Engineering,Beijing University of Chemical Technology)
In ultradeep gas wells with harsh temperature and pressure conditions and complex fluid distribution,the pressure generation in the tubing-casing annulus due to leakage of tubing string is unclear in mechanism and high in value,which impedes the long-term safe and stable production of wells.To reveal the mechanism of pressure generation in the tubing-casing annulus due to leakage of tubing string,an annulus pressure model was built based on leakage drive,leakage process and gas-liquid distribution.Then,the model was used to conduct comparative analysis on the key parameters of pressure generation in the tubing-casing annulus.Finally,the variations of key indicators such as annulus pressure,annulus liquid level and annulus gas accumulation volume were characterized.The results show that two types of leakage (gas leakage and liquid leakage) may occur in tubing string in ultradeep gas wells,mainly under five leakage conditions.In case of gas leakage,the upper leakage point determines the maximum annulus pressure,the ultimate annulus liquid level and the gas accumulation volume.The increase in leakage points accelerates the rate of pressure rise.The pressure rise process is divided into three stages: leakage at all leakage points,leakage at partial leakage points,and stop of leakage.In case of liquid leakage,the annulus liquid level continues to drop,providing more accumulation space for the annulus gas,and increasing the annulus gas accumulation volume.At this time,the risk caused by gas accumulation is the greatest.Under different leakage conditions,the characterization of annulus pressure and annulus liquid level has certain similarities.Therefore,the leakage point localization method based on U tube theory is not suitable for the complex condition with multiple leakage points,and a new leakage detection method is required.The research results provide reference for the analysis and control of tubing-casing annulus pressure in ultradeep gas wells.
ultradeep gas well;tubing-casing annulus;pressure generating mechanism;complex leakage;annulus pressure
0" 引" 言
2023年我國天然氣消費(fèi)量達(dá)3 915.5 億m3 [1],表明天然氣已成為能源消費(fèi)由重碳向可再生轉(zhuǎn)換的重要橋梁[2]。我國超深層天然氣儲(chǔ)量豐富[3-8],其資源量達(dá)29.12萬億m3,能夠?yàn)樘烊粴獾脑鰞?chǔ)上產(chǎn)提供有力的支撐。然而,超深氣井開發(fā)面臨“三超工況”(超深、超高地層壓力、超高地層溫度),開發(fā)過程中井筒完整性、失效問題突出[9],其首要表征為油套環(huán)空異常帶壓[10]。不同于密閉環(huán)空壓力,生產(chǎn)管柱泄漏誘發(fā)的持續(xù)環(huán)空壓力的危害性和管控難度極大,可能會(huì)引起外層套管環(huán)空超壓和油氣泄漏等風(fēng)險(xiǎn)的產(chǎn)生,還會(huì)導(dǎo)致高強(qiáng)度油管擠毀事故[11-15]。
曹立虎,等:超深氣井油套環(huán)空泄漏起壓機(jī)理與規(guī)律分析
因此,超深氣井油套環(huán)空起壓一直是國內(nèi)外的研究重點(diǎn)。朱紅鈞等[16]模擬了氣體自油管柱或井下封隔器泄漏引發(fā)的油套環(huán)空起壓過程,擬合獲取了壓力恢復(fù)時(shí)間的經(jīng)驗(yàn)公式。I.M.MOHAMED等[17]認(rèn)為通過環(huán)空壓力值和變化趨勢可確定環(huán)空壓力的產(chǎn)生原因,從而節(jié)省修井時(shí)間并降低作業(yè)成本。張洪寧等[18]研究了產(chǎn)量導(dǎo)致的井筒壓力剖面變化對油套環(huán)空壓力的影響,提出了優(yōu)化產(chǎn)量控制壓力的思路。ZHANG B.等[19]建立了針對油管柱單點(diǎn)泄漏的油套環(huán)空壓力計(jì)算方法。DING L.L.等[20]研究發(fā)現(xiàn),油管泄漏位置和環(huán)空液體密度會(huì)影響環(huán)空壓力的最大值及其恢復(fù)過程。然而,由于高溫高壓條件和復(fù)雜服役環(huán)境,超深氣井油套環(huán)空起壓機(jī)理仍需要進(jìn)一步深入研究。為此,本文建立了針對管柱單點(diǎn)泄漏、多點(diǎn)泄漏和氣液同漏等泄漏工況的超深氣井油套環(huán)空起壓機(jī)理模型,研究了環(huán)空壓力、氣液界面和氣體體積等關(guān)鍵參數(shù)的變化規(guī)律,可為超深氣井的完整性管控提供依據(jù)和支撐。
1" 油套環(huán)空泄漏溫壓條件
1.1" 高溫高壓工況下的氣體性質(zhì)
在超深氣井生產(chǎn)過程中,地層產(chǎn)出氣體的性質(zhì)會(huì)對井筒溫壓分布產(chǎn)生影響[21]。因此,在計(jì)算泄漏溫壓條件前需要表征氣體性質(zhì)與溫度壓力的耦合關(guān)系。根據(jù)質(zhì)量守恒定律,氣體密度與其速度的關(guān)系為:
ρf=pfMgZgRTf
dvfdz=-vfρfdρfdz(1)
式中:ρf為油管內(nèi)氣體密度,kg/m3;pf為壓力,Pa;Mg為氣體摩爾質(zhì)量,kg/mol;Zg為氣體壓縮因子,無因次;R為氣體常數(shù),取8.341 4 J/(mol·℃);Tf為氣體溫度,℃;vf為生產(chǎn)管柱內(nèi)氣體流速,m/s。
壓縮因子Zg可用Ehsan公式表示[22]。氣體黏度可用薩特蘭公式計(jì)算:
μμ0=273.15+Tf273.15+T01.5273.15+T0+B273.15+Tf+B(2)
式中:μ為氣體黏度,Pa·s;μ0為氣體測量黏度,Pa·s ;T0為測量黏度所對應(yīng)的溫度,℃;B為常數(shù),取110.4。
1.2" 生產(chǎn)管柱與油套環(huán)空泄漏壓差
泄漏點(diǎn)內(nèi)側(cè)壓力即為油管柱的內(nèi)部壓力。考慮到氣體溫壓沿井筒呈非線性分布,自井底至井口把井筒劃分為若干較短的等長分段,假設(shè)分段內(nèi)溫壓保持穩(wěn)定。根據(jù)動(dòng)量守恒定律,用相鄰分段間平均速度之差作為速度差值,則壓力計(jì)算如下:
pi+1f=pif-ρi+1fgsin θ+fi+1ρfvi+1f22dtΔz-
ρi+1fvi+1fΔvi+1f
Δvi+1f=ρi+1f-ρifρi+1fvi+1f(3)
式中:g為重力加速度,m/s2;θ為井斜角,°;f為摩擦因數(shù),無因次;dt為油管內(nèi)徑,m;i為分段編號,i=1,2,3,……;Δz為分段長度,m。
式(3)中的摩擦因數(shù)計(jì)算公式為[23]:
f-0.5=-2logRa3.715dt+6.943Re0.9
Re=ρfvfdtμ(4)
式中:Ra為油管粗糙度,m;Re為雷諾數(shù),無因次。
泄漏點(diǎn)外側(cè)壓力則是油套環(huán)空內(nèi)的壓力,由環(huán)空壓力和環(huán)空內(nèi)流體產(chǎn)生的壓力組成。由于油套環(huán)空存在氣液共存的情況[24],因此泄漏點(diǎn)外側(cè)壓力:
pL=pa+ρa(bǔ)ghL""""""" hL≤hg
pa+ρa(bǔ)ghg+ρLghL-hg" hLgt;hg(5)
式中:pL為泄漏點(diǎn)外部的壓力,Pa;pa為環(huán)空壓力,Pa;ρg為環(huán)空內(nèi)氣體密度,kg/m3;ρL為環(huán)空液體密度,kg/m3;hL為泄漏點(diǎn)所在深度,m;hg為環(huán)空內(nèi)氣柱高度,m。
1.3" 油管柱內(nèi)的溫度剖面計(jì)算
為求取油管柱內(nèi)的溫度剖面,首先做出以下假設(shè):①管柱完全居中且水泥環(huán)厚度分布均勻;②井筒傳熱以導(dǎo)熱系數(shù)統(tǒng)一表征,忽略其中對流和熱輻射的影響;③氣井穩(wěn)定生產(chǎn),忽略沿流動(dòng)方向的熱傳遞?;谝陨霞僭O(shè),油管柱內(nèi)的氣體流動(dòng)符合動(dòng)量和能量守恒關(guān)系,井筒內(nèi)、井筒和地層間的傳熱符合徑向熱流守恒原理[25]。據(jù)此可得井筒徑向熱流量:
dQdz=2πλeTe-TfTD+2πλeRt(6)
式中:Q為井筒徑向熱流量,J/s;λe為地層導(dǎo)熱系數(shù),W/(m·℃);Te為地層溫度,℃;TD為無因次地層溫度,無因次;Rt為井筒內(nèi)徑向傳熱熱阻,m·℃/W。
式(6)中的無因次溫度采用M.V.FERRAIRE等[26]建立的組合計(jì)算方法。同理,在劃分井筒為若干較短的等長分段的情況下,油管柱內(nèi)的溫度分布:
Ti+1f=1A+ΔzATif+ΔzTi+1e+AΔzfi+1vi+1f22Cfdt(7)
A=wfCfTD+2πλeRi+1t2πλe(8)
式中:A為計(jì)算參數(shù),m;Te為地層初始溫度,℃;Cf為氣體比熱容,J/(kg·℃);wf為氣體質(zhì)量流量,kg/s。
2" 復(fù)雜泄漏條件下的油套環(huán)空起壓模型
根據(jù)流體通過能力,油管柱泄漏點(diǎn)可分為氣體泄漏點(diǎn)與氣液泄漏點(diǎn)2種類型[27]。氣體泄漏點(diǎn)只允許氣體通過,氣液泄漏點(diǎn)則氣體、液體均可通過。表征不同泄漏對環(huán)空氣液分布的影響和環(huán)空壓力與氣液分布的關(guān)系,即可建立起壓機(jī)理模型。
2.1" 井筒氣體泄漏速率表征
油管柱發(fā)生泄漏后氣體運(yùn)移聚集示意圖如圖1所示。氣體會(huì)通過油管柱泄漏點(diǎn)進(jìn)入油套環(huán)空,最終在上部形成氣柱。通常來說,引起持續(xù)環(huán)空壓力的油管柱泄漏點(diǎn)尺寸較?。ù罂锥椿蛴凸軘嗔褧r(shí),認(rèn)為油管和環(huán)空連為一體),因此可用小孔泄漏模型來描述氣體泄漏過程,泄漏速率計(jì)算式為:
Qg=CopfALρs2kgkg-1MgZgRTLpLpf2kg-pLpfkg+1kg
CRlt;pLpf
CopfALρsMgkgZgRTf2kg+1kg+1kg-1" CR≥pLpf(9)
式中:Qg為標(biāo)況氣體泄漏速率,m3/s;Co為流量系數(shù),無因次;AL為泄漏點(diǎn)當(dāng)量面積,m2;ρs為氣體標(biāo)況密度,kg/m3;kg為氣體絕熱指數(shù),無因次;Tf為泄漏點(diǎn)處溫度,K;CR為臨界壓力比,無因次。
式(9)中的氣體絕熱指數(shù)和流量系數(shù)分別與氣體分子結(jié)構(gòu)及泄漏孔形狀相關(guān)[28],臨界壓力比則與氣體指數(shù)相關(guān)。考慮到同一時(shí)刻不同泄漏點(diǎn)泄漏速率和泄漏狀態(tài)的差異性,可對時(shí)間進(jìn)行分段,則環(huán)空內(nèi)的氣體體積可計(jì)算如下:
Vjg=Vj-1g+Δt∑Nn=1Qj-1gn-Δt∑Mm=1Qj-1gm(10)
式中:j為時(shí)間分段編號,j=1,2,3,…;Vg為氣體泄漏總體積,m3;Δt為時(shí)間分段,s;n為氣體自油管柱進(jìn)入環(huán)空的泄漏點(diǎn)編號;N為氣體自油管柱進(jìn)入環(huán)空的泄漏點(diǎn)數(shù)量;m為氣體自環(huán)空進(jìn)入油管柱的泄漏點(diǎn)編號;M為氣體自環(huán)空進(jìn)入油管柱的泄漏點(diǎn)數(shù)量。
上述式中氣體體積為標(biāo)況體積,在計(jì)算環(huán)空中氣柱高度的時(shí)候還需要考慮環(huán)空內(nèi)的溫壓分布。根據(jù)氣體的PVT定律,整個(gè)氣柱的體積:
Vjag=VjgpsTjgpjaTshj-1g(11)
式中:Vag為氣柱體積,m3;ps為標(biāo)況壓力,Pa;h為環(huán)空液面深度,m;Tg為環(huán)空氣柱平均溫度,計(jì)算方法見參考文獻(xiàn)[25],K;Ts為標(biāo)況溫度,K。
2.2" 環(huán)空液體泄漏速率表征
部分氣液泄漏點(diǎn)位于環(huán)空液面以下[29],會(huì)發(fā)生自油套環(huán)空向油管柱的環(huán)空液體漏失。根據(jù)伯努利方程,可建立液體通過泄漏點(diǎn)前后的動(dòng)能、勢能、壓能和能量損耗平衡方程:
p1ρl+α1v212+gh1=p2ρl+α2v222+gh2+ξ+λLdv222(12)
式中:p1為泄漏點(diǎn)入口壓力,Pa;p2為泄漏點(diǎn)出口壓力,Pa;α1為泄漏點(diǎn)入口的動(dòng)能修正系數(shù),無因次;α2為泄漏點(diǎn)出口的動(dòng)能修正系數(shù),無因次;ρl為泄漏點(diǎn)的液體密度,kg/m3;v1為泄漏點(diǎn)入口的液體流速,m/s;v2為泄漏點(diǎn)出口的液體流速,m/s;h1為泄漏點(diǎn)入口的勢能高度,m;h2為泄漏點(diǎn)出口的勢能高度,m;ξ為液體流經(jīng)小孔時(shí)時(shí)局部阻力系數(shù),無因次;λ為沿程阻力系數(shù),無因次,可通過試驗(yàn)測量;L為泄漏孔長度,m;d為泄漏孔的直徑,m。
由于泄漏點(diǎn)尺寸較小,小孔斷面上流速可認(rèn)為是均勻分布的,α2=1。泄漏點(diǎn)位于油管柱,勢能變化微小,可認(rèn)為h1=h2。泄漏點(diǎn)可看作為油管柱上一個(gè)突然縮小的薄壁小孔,來計(jì)算局部阻力系數(shù)。環(huán)空液體被井口裝置封堵在環(huán)空中,因此處于靜止?fàn)顟B(tài),可認(rèn)為v1=0。綜上所述,可得環(huán)空液體泄漏速率:
QL=v2×A2=A121+ξ+λL/dpaL-pfLρl(13)
式中:QL為環(huán)空液體泄漏速率,m3/s;A1為泄漏點(diǎn)入口處的橫截面積,m2;A2為泄漏點(diǎn)出口處的橫截面積,m2。
同理,考慮到不同泄漏點(diǎn)泄漏速率的差異性,環(huán)空內(nèi)液體的漏失量計(jì)算表達(dá)式:
VjL=Vj-1L+Δt∑Xx=1Qj-1Lx(14)
式中:VL為液體泄漏量,m3;X為發(fā)生環(huán)空液體漏失的泄漏點(diǎn)數(shù)量;x為發(fā)生環(huán)空液體漏失的泄漏點(diǎn)編號。
2.3" 油套環(huán)空壓力及氣液分布
體積相容性原則仍然適用于發(fā)生復(fù)雜泄漏的超深氣井油套環(huán)空,即氣柱與液柱的體積仍然等于整個(gè)油套環(huán)空的體積[30]:
Va+ΔVa=Vag+VaL+ΔVaL-VL(15)
式中:Va為環(huán)空初始體積,m3;ΔVa為環(huán)空體積改變量,m3(當(dāng)環(huán)空視為剛性空間時(shí),ΔVa為0),計(jì)算方法見參考文獻(xiàn)[31];Vag為環(huán)空氣柱體積,m3;VaL為環(huán)空液柱初始體積,m3;ΔVaL為溫壓變化導(dǎo)致的環(huán)空液柱體積變化值,m3。
結(jié)合熱膨脹系數(shù)和壓縮系數(shù)的定義[32],基于PVT偏微分方程可建立溫壓變化導(dǎo)致的環(huán)空液柱體積變化值表達(dá)式:
ΔVaL=VaLΔTLαp-10-6pakT(16)
式中:ΔTL為環(huán)空液柱的平均溫度變化,K;αp為環(huán)空液體的等壓膨脹系數(shù),K-1;kT為環(huán)空液體等溫壓縮系數(shù),MPa-1。
3" 油套環(huán)空起壓關(guān)鍵參數(shù)對比分析
結(jié)合生產(chǎn)管柱泄漏的形式和空間分布,共分為如表1所示的5種泄漏工況,其中工況1為對比工況,泄漏點(diǎn)數(shù)量為1個(gè),其他工況以2個(gè)泄漏點(diǎn)代表多點(diǎn)泄漏工況。以西部某超深氣井為例進(jìn)行模擬,設(shè)定產(chǎn)氣量為20×104m3,井底溫壓分別為172.93 ℃、119 MPa,環(huán)空液面初始高度為338.5 m,井身結(jié)構(gòu)、環(huán)空流體參數(shù)、井筒傳熱參數(shù)見文獻(xiàn)[19],對比分析環(huán)空起壓過程、環(huán)空液面、環(huán)空氣體聚集量等關(guān)鍵參數(shù)的變化。
3.1" 環(huán)空起壓過程對比分析
圖2對比了不同泄漏工況下的環(huán)空起壓過程。由圖2可見,氣體泄漏點(diǎn)的增多會(huì)加速壓力的上升速率。工況2與工況4的壓力變化曲線重合,工況1與工況3的壓力最大值相同,為76.77 MPa,此時(shí)對應(yīng)油壓為84.85 MPa,該數(shù)值與塔里木盆地某K井油套環(huán)空76.60 MPa的帶壓值接近。工況4的壓力最大值明顯上升,最大值接近80 MPa。這說明,氣液泄漏點(diǎn)位于最上方時(shí),沒有形成向油管柱泄漏液體所需的壓差。在僅有氣體泄漏的情況下,最上方泄漏點(diǎn)決定了環(huán)空壓力的最大值,并且在有多個(gè)氣體泄漏點(diǎn)的情況下,位于下方的泄漏點(diǎn)會(huì)首先停止泄漏。相比于工況1,工況5的環(huán)空壓力上升速率先快后慢,且最大值小于工況1。這是因?yàn)?,位? 500 m深度的氣液泄漏點(diǎn)起先發(fā)生自油管進(jìn)入油套環(huán)空的氣體泄漏,又轉(zhuǎn)變?yōu)樽杂吞篆h(huán)空進(jìn)入油管柱的液體泄漏。當(dāng)位于下方的氣液泄漏點(diǎn)尺寸足夠大時(shí),液體泄漏速率隨著環(huán)空壓力的上升而增加,還會(huì)出現(xiàn)環(huán)空壓力降低的情況。
根據(jù)環(huán)空壓力上升曲線的形態(tài)和機(jī)理模型,可進(jìn)一步的對不同工況下的壓力上升過程進(jìn)行分類。如表2所示,工況1單點(diǎn)泄漏情況下的壓力上升過程可分為臨界泄漏上升、非臨界泄漏上升2個(gè)階段。其中,非臨界泄漏階段,泄漏點(diǎn)外部壓力在環(huán)空壓力的共同作用下顯著上升,這是造成泄漏速率下降和環(huán)空壓力上升變緩的主要原因。工況2代表多點(diǎn)泄漏,環(huán)空壓力上升過程可分為全部泄漏、部分泄漏和壓力平穩(wěn)3個(gè)階段,這主要是由于環(huán)空壓力上升過程中油套環(huán)空內(nèi)的壓力剖面動(dòng)態(tài)變化造成的。當(dāng)氣體泄漏點(diǎn)超過2個(gè)時(shí),也可分為同樣的3個(gè)階段,如工況3。以工況5為代表的氣液同漏環(huán)空起壓過程可分為氣體泄漏、氣液同漏和液體泄漏主導(dǎo)3個(gè)階段,決定性因素是氣液泄漏點(diǎn)處的壓力差發(fā)生逆轉(zhuǎn),發(fā)生逆轉(zhuǎn)時(shí)氣液泄漏轉(zhuǎn)變成自油套環(huán)空進(jìn)入油管柱的液體泄漏。
3.2" 環(huán)空液面動(dòng)態(tài)變化規(guī)律對比分析
圖3顯示了不同泄漏工況下環(huán)空液面深度變化規(guī)律。由圖3可知,環(huán)空液面整體上隨著泄漏發(fā)生而降低,這是因?yàn)闅怏w進(jìn)入環(huán)空后壓縮環(huán)空液體所致。對比發(fā)現(xiàn),在僅有氣體泄漏的情況下,上部泄漏點(diǎn)所在的深度相同則最終的液面深度相同。工況5的液面深度持續(xù)下降,且后期變化規(guī)律呈現(xiàn)線性趨勢。這是因?yàn)榍捌诘囊好嫦陆抵饕黔h(huán)空壓力上升時(shí)壓縮環(huán)空液體所致,后期線性趨勢則由環(huán)空液體持續(xù)漏失導(dǎo)致,這與圖2中的壓力變化趨勢也一致。工況1與工況3的環(huán)空液面高度與環(huán)空壓力均相同,因此油套環(huán)空的壓力剖面一致,此時(shí)油套環(huán)空與油管柱內(nèi)的壓力剖面重合點(diǎn)位置也相同?;赨形管的泄漏點(diǎn)定位方法[33-34]以壓力剖面重合點(diǎn)作為定位依據(jù),因此工況1與工況3的定位是相同的,然而兩者的泄漏點(diǎn)數(shù)量不同??梢?,該方法不適用于多個(gè)氣體點(diǎn)的泄漏工況。同理,也不適用于氣液同漏的工況。
3.3" 環(huán)空氣體積聚量變化規(guī)律對比分析
圖4顯示了不同泄漏工況下環(huán)空氣體聚集量變化規(guī)律。由圖4可知,與環(huán)空液面的變化規(guī)律相同,單一氣體泄漏點(diǎn)的情況下,最上部泄漏點(diǎn)的位置決定了環(huán)空氣體的最大聚集量。工況3與工況5的部分氣體積聚量變化曲線重合,之后工況5的氣體聚集量上升速率大于工況3。這是因?yàn)楣r5中位于3 500 m的氣液泄漏點(diǎn)先發(fā)生氣體泄漏再發(fā)生液體泄漏,液體泄漏為環(huán)空氣體提供了更多的聚集空間,延緩了環(huán)空壓力的上升速率,因此上部泄漏點(diǎn)仍然保持較高的氣體泄漏速率,導(dǎo)致環(huán)空氣體聚集量持續(xù)上升。綜上所述,發(fā)生氣體和液體同步泄漏的超深氣井,可燃?xì)怏w積聚所引發(fā)的風(fēng)險(xiǎn)最大。
4" 結(jié)" 論
(1)氣體泄漏點(diǎn)的增多會(huì)加速壓力的上升速率。單一氣體泄漏情況下,上部泄漏點(diǎn)決定了環(huán)空壓力的最大值、環(huán)空液面最終深度和氣體聚集量。多點(diǎn)氣體泄漏工況下,環(huán)空壓力可分為全部泄漏、部分泄漏和泄漏停止3個(gè)階段。
(2)當(dāng)油管柱氣液泄漏點(diǎn)位于其他泄漏點(diǎn)下方時(shí),會(huì)先發(fā)生氣體泄漏再發(fā)生液體泄漏。環(huán)空液體的泄漏會(huì)為環(huán)空氣體提供更多的聚集空間,從而延緩環(huán)空壓力上升速率,造成環(huán)空液面持續(xù)下降,增加環(huán)空氣體聚集量,此時(shí)氣體積聚所引發(fā)的風(fēng)險(xiǎn)最大。
(3)油套環(huán)空壓力剖面取決于環(huán)空壓力與環(huán)空液面高度。單一氣體泄漏情況下,上部泄漏點(diǎn)決定了環(huán)空壓力與環(huán)空液面高度,氣液同漏情況下,環(huán)空液面處于持續(xù)變化狀態(tài)?;赨形管理論的泄漏點(diǎn)定位方法不適用于多點(diǎn)泄漏和氣液同漏的復(fù)雜工況。
[1]" "高蕓,王蓓,胡迤丹,等.2023年中國天然氣發(fā)展述評及2024年展望[J].天然氣工業(yè),2024,44(2):166-177.
GAO Y,WANG B,HU Y D,et al.Development of Chinas natural gas:review 2023 and outlook 2024[J].Natural Gas Industry,2024,44(2):166-177.
[2]" 鄒才能,何東博,賈成業(yè),等.世界能源轉(zhuǎn)型內(nèi)涵、路徑及其對碳中和的意義[J].石油學(xué)報(bào),2021,42(2):233-247.
ZOU C N,HE D B,JIA C Y,et al.Connotation and pathway of world energy transition and its significance for carbon neutral[J].Acta Petrolei Sinica,2021,42(2):233-247.
[3]" 劉巖生,張佳偉,黃洪春.中國深層:超深層鉆完井關(guān)鍵技術(shù)及發(fā)展方向[J].石油學(xué)報(bào),2024,45(1):312-324.
LIU Y S,ZHANG J W,HUANG H C.Key technologies and development direction for deep and ultra-deep drilling and completion in China[J].Acta Petrolei Sinica,2024,45(1):312-324.
[4]" 汪澤成,趙振宇,黃福喜,等.中國中西部含油氣盆地超深層油氣成藏條件與勘探潛力分析[J].世界石油工業(yè),2024,31(1):33-48.
WANG Z C,ZHAO Z Y,HUANG F X,et al.Ultra-deep hydrocarbon accumulation conditions and exploration potential in sedimentary basins of Central-Western China[J].World Petroleum Industry,2024,31(1):33-48.
[5]" 王震,孔盈皓,李夢祎.新形勢下中國天然氣安全態(tài)勢研究[J].天然氣與石油,2023,41(1):1-7.
WANG Z,KONG Y H,LI M Y.Research on the supply security of Chinas natural gas under the new situation[J].Natural Gas and Oil,2023,41(1):1-7.
[6]" 趙群,周天琪,王紅巖,等.頁巖氣資源/儲(chǔ)量計(jì)算中吸附參數(shù)確定的新方法:以四川盆地五峰組-龍馬溪組頁巖為例[J].天然氣工業(yè),2023,43(1): 47-54.
ZHAO Q,ZHOU T Q,WANG H Y,et al.A novel method for determining adsorption parameters in shale gas resources/reserves calculation: a case study of the Wufeng Formation-Longmaxi Formation in the Sichuan Basin[J].Natural Gas Industry,2023,43(1):47-54.
[7]" 崔巍,魏文治,孫曉琪,等.中國液化天然氣進(jìn)口脆弱性研究[J].世界石油工業(yè),2022,29(1):20-29.
CUI W,WEI W Z,SUN X Q,et al.Research on China’s LNG import vulnerability[J].World Petroleum Industry,2022,29(1):20-29.
[8]" 張抗,孟凡洋,張立勤.21世紀(jì)初期世界天然氣格局變化及啟示[J].世界石油工業(yè),2023,30(1):20-29.
ZHANG K,MENG F Y,ZHANG L Q.Changes and enlightenment of the world natural gas pattern in the early 21st century[J].World Petroleum Industry,2023,30(1):20-29.
[9]" 張波,羅方偉,孫秉才,等.深層油氣井井筒完整性檢測方法[J].石油鉆探技術(shù),2021,49(5):114-120.
ZHANG B,LUO F W,SUN B C,et al.A method for wellbore integrity detection in deep oil and gas wells[J].Petroleum Drilling Techniques,2021,49(5):114-120.
[10]" CAO L H,SUN J S,ZHANG B,et al.Analysis of multiple annular pressure in gas storage well and high-pressure gas well[J].Energy Engineering,2022,120(1):35-48.
[11]" 張波,管志川,張琦.深水油氣井開采過程環(huán)空壓力預(yù)測與分析[J].石油學(xué)報(bào),2015,36(8):1012-1017.
ZHANG B,GUAN Z C,ZHANG Q.Prediction and analysis on annular pressure of deepwater well in the production stage[J].Acta Petrolei Sinica,2015,36(8):1012-1017.
[12]" 趙春,賀夢琦,陳顯學(xué),等.儲(chǔ)氣庫井水泥環(huán)密封性失效試驗(yàn)研究[J].石油機(jī)械,2024,52(6):78-85.
ZHAO C,HE M Q,CHEN X X,et al.Experimental study on sealing failure of cement sheath in gas storage wells[J].China Petroleum Machinery,2024,52(6):78-85.
[13]" CONLEY S,F(xiàn)RANCO G,F(xiàn)ALOONA I,et al.Methane emissions from the 2015 Aliso Canyon blowout in Los Angeles,CA[J].Science,2016,351(6279):1317-1320.
[14]" "CAO L H,YUAN H,PAN Z C,et al.Dynamic scaling prediction model and application in near-wellbore formation of ultradeep natural gas reservoirs[J].SPE Journal,2024,29(5):2476-2493.
[15]" ZHANG B,CAO L H,LU N,et al.Comparison of nitrogen gas and thermal-insulation liquid to control the temperature-pressure effect in deep gas well[J].Iranian Journal of Science,2023,47(2):389-400.
[16]" 朱紅鈞,唐有波,李珍明,等.氣井A環(huán)空壓力恢復(fù)與泄壓試驗(yàn)[J].石油學(xué)報(bào),2016,37(9):1171-1178.
ZHU H J,TANG Y B,LI Z M,et al.Experiment on pressure recovery and relief in the A annulus space of gas well[J].Acta Petrolei Sinica,2016,37(9):1171-1178.
[17]" MOHAMED I M,PANCHAL Y,MOUNIR N,et al.Evaluation of annulus pressure buildup during injection operations[J].Journal of Energy Resources Technology,2021,143(7):073002.
[18]" 張洪寧,張波,陸努,等.產(chǎn)量對氣井持續(xù)油套環(huán)空壓力的調(diào)控機(jī)理與效果評價(jià)研究[J].中國安全生產(chǎn)科學(xué)技術(shù),2022,18(6):162-166.
ZHANG H N,ZHANG B,LU N,et al.Research on regulation mechanism and effect of production rate on sustained tubing-casing annular pressure in gas wells[J].Journal of Safety Science and Technology,2022,18(6):162-166.
[19]" ZHANG B,LU N,GUO Y,et al.Modeling and analysis of sustained annular pressure and gas accumulation caused by tubing integrity failure in the production process of deep natural gas wells[J].Journal of Energy Resources Technology,2022,144(6):063005.
[20]" DING L L,CHEN W,HAN C,et al.Study on prediction of sustained casing pressure in tubing-casing annulus based on bubble migration experiment[J].Physics of Fluids,2023,35(9):097103.
[21]" CAO L H,SUN J S,ZHANG B,et al.Sensitivity analysis of the temperature profile changing law in the production string of a high-pressure high-temperature gas well considering the coupling relation among the gas flow friction,gas properties,temperature,and pressure[J].Frontiers in Physics,2022,10:1050229.
[22]" HEIDARYAN E,SALARABADI A,MOGHADASI J.A novel correlation approach for prediction of natural gas compressibility factor[J].Journal of Natural Gas Chemistry,2010,19(2):189-192.
[23]" HASAN A R,KABIR C S.Fluid flow and heat transfer in wellbores[M].Dallas,Texas:Society of Petroleum Engineers,2002.
[24]" 郭浩,簡成,劉賢玉,等.深水油氣井套管環(huán)空注氮控壓模型與效果分析[J].石油機(jī)械,2022,50(10):44-50.
GUO H,JIAN C,LIU X Y,et al.Nitrogen injection pressure control model and effect analysis of casing annulus in deep-water oil and gas wells[J].China Petroleum Machinery,2022,50(10):44-50.
[25]" ZHANG B,XU Z X,GUAN Z C,et al.Evaluation and analysis of nitrogen gas injected into deepwater wells to mitigate annular pressure caused by thermal expansion[J].Journal of Petroleum Science and Engineering,2019,180:231-239.
[26]" FERREIRA M V,HAFEMANN T E,BARBOSA J R,et al.A numerical study on the thermal behavior of wellbores[J].SPE Production amp; Operations,2017,32(4):564-574.
[27]" ZHANG B,XU Z X,LU N,et al.Characteristics of sustained annular pressure and fluid distribution in high pressure and high temperature gas wells considering multiple leakage of tubing string[J].Journal of Petroleum Science and Engineering,2021,196:108083.
[28]" 彭世尼,周廷鶴.燃?xì)庑孤┡c擴(kuò)散模型的探討[J].煤氣與熱力,2008,28(11):35-38.
PENG S N,ZHOU T H.Discussion on models for Gm leakage and diffusion[J].Gas amp; Heat,2008,28(11):35-38.
[29]" 房奕霖,樊建春,楊云朋,等.氣井環(huán)空液面下泄漏聲場模擬[J].石油機(jī)械,2024,52(6):64-69.
FANG Y L,F(xiàn)AN J C,YANG Y P,et al.Simulation on sound field of leakage below fluid level in annulus of gas well[J].China Petroleum Machinery,2024,52(6):64-69.
[30]" 張更,李軍,柳貢慧,等.深水油氣井全生命周期環(huán)空圈閉壓力預(yù)測模型[J].石油機(jī)械,2022,50(4):49-55.
ZHANG G,LI J,LIU G H,et al.Prediction model of annular trapped pressure in the whole Life cycle of deepwater oil and gas wells[J].China Petroleum Machinery,2022,50(4):49-55.
[31]" ZHANG Z,XIANG S L,YUAN Z,et al.A coupling prediction model of annular pressure build-up for deepwater oil and gas wells during transient-state testing[J].Geoenergy Science and Engineering,2023,230:212162.
[32]" ALVES E B D M,DA VEIGA A P,F(xiàn)ANCELLO E A,et al.A coupled model of wellbore-formation thermal phenomena and salt creep in offshore wells[J].Geoenergy Science and Engineering,2024,233:212548.
[33]" 張波,胥志雄,高文祥,等.深層氣井生產(chǎn)管柱完整性檢測技術(shù)總結(jié)及評價(jià)[J].天然氣與石油,2020,38(5):49-57.
ZHANG B,XU Z X,GAO W X,et al.Summary and evaluation of integrity detection technology for production string in deep gas well[J].Natural Gas and Oil,2020,38(5):49-57.
[34]" 劉宇飛,肖國華,詹偉,等.分層調(diào)剖注水一體化管柱的研制與應(yīng)用[J].鉆采工藝,2022,45(2): 89-93.
LIU Y F,XIAO G H,ZHAN W,et al.Research and Application of Layered Profile Control and Water Injection Integrated Technology [J].Drilling amp; Production Technology,2022,45(2): 89-93.
第一曹立虎,高級工程師,生于1989年,2015年畢業(yè)于中國石油大學(xué)(北京)石油與天然氣工程專業(yè),獲碩士學(xué)位,主要從事超深油氣井井筒完整性技術(shù)研究工作。地址:(841003)新疆維吾爾自治區(qū)。email:caolh-tlm@petrochina.com.cn。
通信作者:孫金聲,中國工程院院士。email:sunjsdri@cnpc.com.cn。
2024-08-08宋治國