對于低滲透油藏139.7 mm套管因腐蝕發(fā)生大段連續(xù)套損問題,通常采用88.9 mm小套管進(jìn)行二次固井,但治理后依然存在二次套損隱患,同時其76 mm的內(nèi)徑也不便于后期生產(chǎn)維護(hù)。為此,開展玻璃纖維增強(qiáng)樹脂基非金屬大段貼堵管的結(jié)構(gòu)設(shè)計(jì)、實(shí)物靜水壓試驗(yàn)及窄間隙高強(qiáng)韌性固井材料優(yōu)選。研究結(jié)果表明:試驗(yàn)管在不同溫度下的承壓性能、管體和螺紋接頭的密封性均能夠滿足現(xiàn)場需求,設(shè)計(jì)的固井材料抗壓強(qiáng)度達(dá)到62 MPa,同時配套貼堵施工作業(yè)保障措施,形成了一套完善的非金屬大段貼堵工藝技術(shù)體系;現(xiàn)場應(yīng)用7口井,固井成功率100%,固井質(zhì)量合格率99%以上,平均單井日增油3.2 t,效果顯著。研究成果不僅提高了低滲透油藏開發(fā)效益,也進(jìn)一步豐富了套損井治理技術(shù)手段。
低滲透油藏;套管;套損井;玻璃纖維增強(qiáng)樹脂基;貼堵劑;非金屬大段貼堵
中圖分類號:TE256
文獻(xiàn)標(biāo)識碼:A
DOI:10.16082/i.cnki.issn.1001-4578.2024.11.005
基金項(xiàng)目:陜西省高層次人才特殊支持計(jì)劃-青年拔尖人才項(xiàng)目“高性能膨脹管設(shè)計(jì)理論與應(yīng)用基礎(chǔ)研究”(00439)。
Nonmetallic Large Section Sticking-Plugging Technology for Casing
Damaged Wells in Low-Permeability Reservoirs
Yang Qi1" Wang Haizhou2" Chen Changkui3" Zhao Pengyu4" Li Dejun1" Huang Dongan3" Yuan Xiujie3
(1.CNPC Tubular Goods Research Institute;2.Zhidan Oil Production Plant,Yanchang Oilfield Co.,Ltd.;3.No.11 Oil Production Plant,PetroChina Changqing Oilfield Company;4.Oil and Gas Technology Institute,PetroChina Changqing Oilfield Company)
To solve the problem of large section damage of 139.7 mm casing in low-permeability reservoirs due to corrosion,small (88.9 mm) casing is usually adopted for secondary cementing.However,there is still a possibility of secondary casing damage,and the 76 mm inner diameter of small casing is not convenient for maintenance.In this paper,structural design and full-scale hydrostatic test were conducted on glass fiber reinforced resin (GFRR) based nonmetallic large section sticking-plugging pipe,and the cementing material with narrow gap and high obdurability was selected.The results show that the test pipe meets the field requirements in terms of the pressure bearing performance at different temperatures,and the sealing performance of the pipe body and the threaded connector,and the selected cementing material has a compressive strength of 62 MPa.Supported by appropriate safeguard measures for sticking-plugging operation,a set of sophisticated nonmetallic large section sticking-plugging technology was formed.Field application in 7 wells show that the cementing success rate is 100%,the cementing acceptability is over 99%,and the daily incremental production per well is 3.2 t,indicating remarkable achievements.The proposed technology improves the recovery efficiency of low-permeability reservoirs,and also provides additional option for treatment of casing damaged well.
low-permeability reservoir;casing;casing damaged well;glass fiber reinforced resin based;sticking-plugging agent;nonmetallic large section sticking-plugging
0" 引" 言
長慶油田地處鄂爾多斯盆地,區(qū)域內(nèi)油田主力開發(fā)層系為三疊系延長組和侏羅系延安組,儲層具有典型的“三低”特征[1],低滲透油藏年產(chǎn)油量占比達(dá)50%[2],開發(fā)過程中主要采用射孔壓裂完井[3]、注水方式補(bǔ)充地層能量[4-5]。受地層水外腐蝕及注水環(huán)境內(nèi)腐蝕、套管防腐措施、工程作業(yè)等因素影響[6-9],套損現(xiàn)象發(fā)生在油水井全生命周期的各個階段。據(jù)統(tǒng)計(jì),長慶油田目前約有2 000口井因套損導(dǎo)致高含水甚至關(guān)停,占油田總井?dāng)?shù)的3.1%;其中腐蝕原因占比達(dá)96%,年均新增套損井200口左右[10]。套損導(dǎo)致油井產(chǎn)量斷崖式下跌,治理不及時會污染儲層,進(jìn)而縮短單井的生命周期,同時造成油藏注采井網(wǎng)的不完善,影響油藏動用程度及整體開發(fā)效果,最終制約油田長期穩(wěn)產(chǎn)。鋼質(zhì)小套管二次固井治理套損技術(shù)成熟,但并沒有增強(qiáng)套管的耐腐蝕性能,除了二次套損隱患之外,配套小井眼的生產(chǎn)管柱在儲層改造和后期生產(chǎn)中也存在較大的局限性。非金屬材料因具有獨(dú)特的耐腐蝕性,兼具套損現(xiàn)狀的“治理”與本質(zhì)的“預(yù)防”。因此,研究非金屬大段貼堵工藝,對低滲透油藏以及石油行業(yè)套損井治理具有重要的指導(dǎo)意義。
楊琦,等:低滲透油藏套損井非金屬大段貼堵技術(shù)研究
圍繞長慶油田常見的139.7 mm×7.72 mm套管腐蝕問題,設(shè)計(jì)玻璃鋼貼堵管柱結(jié)構(gòu)、評價貼賭管實(shí)物性能、研究窄間隙高強(qiáng)韌性水泥漿體系,配套保障措施形成了非金屬大段貼堵工藝技術(shù);該技術(shù)通過了現(xiàn)場驗(yàn)證,已經(jīng)成功應(yīng)用了多口井。研究結(jié)論可為同類型套損井的高效治理提供技術(shù)支持和實(shí)踐借鑒。
1" 套損機(jī)理及治理技術(shù)
長慶油田低滲透油藏不同區(qū)塊、層系儲層的礦化度、水型、腐蝕介質(zhì)質(zhì)量分?jǐn)?shù)差異明顯[11-13],現(xiàn)存套損由套管內(nèi)外腐蝕引起,主要受到地層流體中的腐蝕氣體(H2S、CO2)、氯根、高礦化度及其在套管壁上形成的化學(xué)垢、硫酸鹽還原菌以及地層水等因素的綜合作用[14-16]。地層水中陰離子主要有Cl-、SO2-4、HCO-3,水型以Na2SO4、NaHCO3為主。近年來,為了經(jīng)濟(jì)、高效地恢復(fù)套損井生產(chǎn)能力,延長生命周期,油田現(xiàn)場已經(jīng)成熟應(yīng)用了多種治理技術(shù),包括LEP長效隔采[17]、化學(xué)擠封[18]、套補(bǔ)懸插隔采、套管補(bǔ)貼以及小套管二次固井等[19-21]。不同技術(shù)的適用范圍和優(yōu)缺點(diǎn)見表1。
對于139.7 mm套損井,采用常規(guī)88.9 mm防腐套管進(jìn)行二次固井治理套損技術(shù)應(yīng)用廣泛[22],其優(yōu)點(diǎn)是工藝成熟、施工風(fēng)險小、成本較低、治理有效期較長,是繼隔采、化學(xué)封堵等低成本治理措施失效后的高效治理方案。該工藝的缺點(diǎn)是:使用的小套管材質(zhì)為N80,材質(zhì)的防腐性能與原套管相比并沒有提升,無法有效降低相同腐蝕環(huán)境中的腐蝕速率;該套管內(nèi)徑僅為76 mm,后期生產(chǎn)、修井維護(hù)等作業(yè)需配套全尺寸小井眼工具及管柱[23],工藝復(fù)雜,對工具要求較高。
2" 非金屬大段貼堵工藝
非金屬耐腐蝕大段貼堵管柱工藝從管材防腐本質(zhì)出發(fā)[24-25],可以實(shí)現(xiàn)套損井治理與便捷的生產(chǎn)維護(hù),能有效解決鋼質(zhì)小套管二次固井存在的腐蝕隱患和內(nèi)通徑較小的問題。
2.1" 管柱結(jié)構(gòu)設(shè)計(jì)
玻璃纖維增強(qiáng)樹脂基(簡稱玻璃鋼)貼堵管由高樹脂含量的防滲層、纖維纏繞加強(qiáng)層及外表面層組成,主要原材料是高分子不飽和聚酯樹脂和玻璃纖維,能有效抵抗酸、堿、鹽等腐蝕介質(zhì)的侵蝕[26-27]。玻璃鋼貼堵管的生產(chǎn)采用鋼芯模外纏繞成型,出于脫模的需要,模具的加工精度高,制作前采用脫模劑反復(fù)處理。因此其內(nèi)表面極其光潔,表面粗糙度為0.001 5~0.010 0 mm;而新無縫鋼管內(nèi)表面粗糙度為0.046 mm,舊鋼管為0.6 mm。由于玻璃鋼管的內(nèi)壁光潔,其沿程阻力系數(shù)為0.009 5左右,僅為鋼質(zhì)管材的1/2左右,可以減少桿管之間的摩擦損失,增強(qiáng)防偏磨性能,有效降低原油與油管內(nèi)壁的水力損失,提高系統(tǒng)效率[28]。
試制的玻璃鋼管材的玻璃化轉(zhuǎn)變溫度、樹脂含量、巴氏硬度均滿足SY/T 7043—2016標(biāo)準(zhǔn)要求,具體如表2所示。
針對內(nèi)徑為124.26 mm的139.7 mm×7.72 mm套管,為保證玻璃鋼貼堵管的連接強(qiáng)度和順利下入,采用金屬結(jié)構(gòu)連接玻璃鋼管,其金屬接箍的最大外徑為118.0 mm;為保證貼堵后73.0 mm工具的油管作業(yè),玻璃鋼貼堵管的最小內(nèi)徑為94.0 mm。根據(jù)金屬接箍+玻璃鋼管材的設(shè)計(jì)特點(diǎn),外徑118.0 mm接箍能夠連接的非金屬管材最大外徑為109.0 mm,選取95.0 mm內(nèi)徑,則壁厚為7.0 mm。因此,設(shè)計(jì)的玻璃鋼管柱結(jié)構(gòu)為:管材本體外徑D=109.0 mm,壁厚t=7.00 mm,單根管長度L=8.7~9.0 m;接箍外徑W=118.0 mm,材質(zhì)為13Cr不銹鋼;油層段采用外徑D1=108.0 mm、壁厚t1=6.00 mm的不銹鋼貼堵管,滿足儲層改造過程的承壓要求。如圖1所示。
2.2" 力學(xué)性能評價
依據(jù)SY/T 7043—2016《石油天然氣工業(yè)用高壓玻璃鋼油管》標(biāo)準(zhǔn)對玻璃鋼管及螺紋接頭進(jìn)行力學(xué)性能試驗(yàn),試驗(yàn)結(jié)果如表3所示。由表3可知:玻璃鋼管室溫下最大可承受外壓為17.9 MPa,最大可承受內(nèi)壓為60.3 MPa;帶螺紋接頭的玻璃鋼管在不同溫度下可承受內(nèi)壓最小為36.3 MPa,管體與螺紋接頭承壓能力均滿足標(biāo)準(zhǔn)要求。同時對帶螺紋接頭的玻璃鋼管進(jìn)行拉伸測試,其最大拉力為354 kN。帶螺紋接頭的玻璃鋼管靜水壓曲線如圖2所示。由圖2可知,管體在不同溫度及15 MPa內(nèi)壓條件下性能穩(wěn)定,規(guī)定保壓時間(35 min)內(nèi)無滲漏和滴漏現(xiàn)象,滿足測試標(biāo)準(zhǔn)要求。
2.3" 貼堵材料優(yōu)選
常規(guī)工藝采用的88.9 mm鋼質(zhì)小套管接箍外徑為108 mm,接箍段與原套管環(huán)空間距為8.13 mm,玻璃鋼管接箍段與原套管的環(huán)空間隙僅為3.13 mm,更窄的環(huán)空間隙對固井質(zhì)量提出了更高要求。窄間隙固井會使泵壓升高,玻璃鋼管具有良好的耐腐蝕性能,但管材的抗壓性能弱于金屬管材。為了防止非金屬管材在固井過程中因過高的內(nèi)外壓差發(fā)生破裂,必須對固井材料,即固井水泥進(jìn)行改進(jìn),以減小固井時水泥流動的阻力,從而減小固井壓力。同時,通過大幅提高水泥固凝后的強(qiáng)度實(shí)現(xiàn)窄間隙固井薄層水泥環(huán)的膠結(jié)和承壓能力。
與常規(guī)固井水泥相比,聚合物改性水泥在沒有大幅增加材料成本的前提下,可有效提高固井水泥的強(qiáng)度,且固化后的水泥環(huán)具有一定的彈性,避免水泥石的開裂,為高質(zhì)量的窄間隙固井提供技術(shù)可能。采用固體和液態(tài)樹脂2種類型的樹脂添加劑設(shè)計(jì)了12種配比的改性水泥,具體成分見表4。
不同配比改性水泥的抗壓強(qiáng)度測試結(jié)果如表5所示。試驗(yàn)后的樣品均無脆性破裂,只有表面的小碎塊脫離本體試樣。由表5可知:采用液態(tài)樹脂4號配方的改性水泥的抗壓強(qiáng)度最高,其抗壓強(qiáng)度為62 MPa,是常規(guī)固井水泥的2倍以上。因此,優(yōu)選液態(tài)樹脂4號配方作為非金屬貼堵工藝的堵劑。
2.4" 工藝保障措施
在套損井生產(chǎn)歷史中,受地質(zhì)、工程作業(yè)等因素影響,井筒存在不同程度的腐蝕結(jié)垢、套管變形、毛刺等現(xiàn)象。因此,在下入109.0 mm×7.00 mm非金屬貼堵管之前需處理井筒,避免發(fā)生遇阻、卡鉆、劃傷管體等工程故障與質(zhì)量問題。
(1)銑井。針對套管壁結(jié)垢、水泥碎屑、毛刺、變形等情況,采用120 mm長錐面銑錐進(jìn)行全井筒磨銑,下入銑錐(錐面>0.5 m)+90 mm螺桿鉆具+73 mm油管+防倒轉(zhuǎn)卡瓦,用四擋(或排量≥400 L/min)洗井至進(jìn)出、口水質(zhì)一致。
(2)模擬通井。在下入玻璃鋼貼堵管之前,先下一趟118.0 mm通井管柱,模擬通井規(guī)+試壓球座+撞擊式泄油器+73 mm油管,通井至人工井底,平穩(wěn)下入,速度為每小時15~20根,實(shí)探井筒暢通。
(3)套管居中。結(jié)構(gòu)設(shè)計(jì)采用接箍外徑為118 mm,其外徑單邊比109 mm的玻璃鋼管本體大4.5 mm,既確保貼堵管連接密封性又起到扶正作用,減小貼堵管下入阻力,實(shí)現(xiàn)套管劇中,避免玻璃鋼管大段偏心或貼近套管璧,平衡環(huán)空固井水泥流動均勻性,提高固井頂替效率與質(zhì)量。
3" 現(xiàn)場應(yīng)用
通過對玻璃鋼非金屬管大段貼堵工藝技術(shù)研究,2021—2022年在低滲透油藏現(xiàn)場應(yīng)用7口井,貼堵最大井深2 320.0 m,單井最長貼堵段636.1 m,貼堵固井最高碰壓為10 MPa,固井質(zhì)量合格率99%以上。治理后,平均單井日恢復(fù)油量3.2 t,應(yīng)用效果見表6。實(shí)踐證明,運(yùn)用非金屬大段貼堵工藝實(shí)現(xiàn)了低滲透油藏套損井井筒完整性重構(gòu)的目的,增油效果顯著。
4" 結(jié)" 論
(1)研制的玻璃鋼非金屬貼堵管內(nèi)徑為95.0 mm,壁厚為7.00 mm,接頭外徑為118.0 mm。經(jīng)實(shí)物試驗(yàn)測試,室溫下管體最大承受內(nèi)壓為60.3 MPa,最大可承受外壓為17.9 MPa,螺紋接頭最大拉力為354 kN;在室溫、65和80 ℃時螺紋接頭承受的極限內(nèi)壓依次為36.4、36.3和34.7 MPa;在室溫、65和80 ℃以及15 MPa內(nèi)壓作用下保壓35 min,管體和螺紋接頭無泄漏。
(2)優(yōu)化設(shè)計(jì)了一種窄間隙聚合物改性水泥基高強(qiáng)度貼堵劑,其抗壓強(qiáng)度達(dá)到62 MPa,為普通固井水泥的2倍以上,具有較低的流動阻力和良好的填充性能,可滿足窄間隙固井的使用要求。
(3)研發(fā)的109.0 mm×7.0 mm非金屬貼堵管材在長慶油田低滲透油藏現(xiàn)場試驗(yàn)7口井,貼堵固井碰壓最高為10 MPa,固井成功率100%,固井質(zhì)量合格率99%以上,投產(chǎn)后平均單井恢復(fù)油量3.2 t,可為大范圍推廣應(yīng)用提供良好借鑒。
[1]" 付金華,董國棟,周新平,等.鄂爾多斯盆地油氣地質(zhì)研究進(jìn)展與勘探技術(shù)[J].中國石油勘探,2021,26(3):19-40.
FU J H,DONG G D,ZHOU X P,et al.Research progress of petroleum geology and exploration technology in Ordos Basin[J].China Petroleum Exploration,2021,26(3):19-40.
[2]" 周小英,魏明霞,張藝榮,等.長慶油田油藏效益分類及開發(fā)對策[J].新疆石油地質(zhì),2022,43(3):320-323,340.
ZHOU X Y,WEI M X,ZHANG Y R,et al.Reservoir benefit classification and development countermeasures for Changqing Oilfield[J].Xinjiang Petroleum Geology,2022,43(3):320-323,340.
[3]" 王海洲,王勇,楊琦,等.延長油田保護(hù)儲層射孔液的研究與應(yīng)用[J].油氣地質(zhì)與采收率,2014,21(2):106-110.
WANG H Z,WANG Y,YANG Q,et al.Research and application of reservoir protection perforating fluid system in Yanchang Oilfield[J].Petroleum Geology and Recovery Efficiency,2014,21(2):106-110.
[4]" 馬寶全,楊少春,傅永強(qiáng),等.低滲透油藏水平井油氣水三相流測試技術(shù)[J].石油機(jī)械,2018,46(7):56-61.
MA B Q,YANG S C,F(xiàn)U Y Q,et al.Oil-gas-water three-phase flow production logging technology for horizontal wells in low-permeability reservoirs[J].China Petroleum Machinery,2018,46(7):56-61.
[5]" 吳天江,楊海恩,陳榮環(huán),等.低滲透油藏調(diào)剖用井口壓降測試儀[J].石油機(jī)械,2016,44(9):66-69.
WU T J,YANG H E,CHEN R H,et al.Wellhead pressure drop tester for profile control of low permeability reservoir[J].China Petroleum Machinery,2016,44(9):66-69.
[6]" 王海洲,周雪,劉洋,等.陜北某含硫油田油管腐蝕結(jié)垢機(jī)理及防護(hù)措施[J].天然氣與石油,2022,40(3):98-103.
WANG H Z,ZHOU X,LIU Y,et al.Corrosion mechanism and prevention measures of oil tubing in a sour oil field in Northern Shaanxi province[J].Natural Gas and Oil,2022,40(3):98-103.
[7]" 文懷梁.低碳鋼在模擬深地質(zhì)處置環(huán)境中的腐蝕行為[D].合肥:中國科學(xué)技術(shù)大學(xué),2014.
WEN H L.The corrosion behavior of low Carbon steel in simulated deep geological disposal environment[D].Hefei:University of Science and Technology of China,2014.
[8]" 陳虎,周昊,王樹立,等. N80鋼在含沙和含Cl-溶液中的沖刷腐蝕行為[J].腐蝕與防護(hù),2018,39(9):668-672.
CHEN H,ZHOU H,WANG S L,et al.Erosion-corrosion behavior of N80 steel in the solution containing Cl- and sand[J].Corrosion amp; Protection,2018,39(9):668-672.
[9]" 朱廣社,張曉博,楊學(xué)峰,等.長慶油田含硫化氫區(qū)塊中J55鋼套管的腐蝕機(jī)理[J].機(jī)械工程材料,2022,46(12):55-59.
ZHU G S,ZHANG X B,YANG X F,et al.Corrosion mechanism of J55 steel casing in block containing Hydrogen sulfide in Changqing Oilfield[J].Materials for Mechanical Engineering,2022,46(12):55-59.
[10]" 郭鋼,李瓊瑋,楊立華,等.長慶油田套管堵漏用有機(jī)樹脂研發(fā)及應(yīng)用[J].鉆井液與完井液,2019,36(5):659-662.
GUO G,LI Q W,YANG L H,et al.Development and application of organic resin for controlling loss of borehole fluids in cased hole[J].Drilling Fluid amp; Completion Fluid,2019,36(5):659-662.
[11]" 張金海,王中濤,謝海波,等.長慶油田長停井生產(chǎn)測井組合找漏技術(shù)[J].油氣井測試,2021,30(5):61-67.
ZHANG J H,WANG Z T,XIE H B,et al.Leak detection technology of production logging combination for long-term shutdown well in Changqing Oilfield[J].Well Testing,2021,30(5):61-67.
[12]" 張金海,李震,劉平,等.長期關(guān)停套損出水井的找漏技術(shù)及應(yīng)用[J].測井技術(shù),2022,46(2):223-228.
ZHANG J H,LI Z,LIU P,et al.Application and technology of leakage detection in long shutdown casing damage outlet wells[J].Well Logging Technology,2022,46(2):223-228.
[13]" 周妍,李震,甘寧,等.長慶油田套損井綜合防治技術(shù)[J].測井技術(shù),2021,45(2):196-200.
ZHOU Y,LI Z,GAN N,et al.Comprehensive prevention technology for casing damaged wells in Changqing Oilfield[J].Well Logging Technology,2021,45(2):196-200.
[14]" ZHOU C S,F(xiàn)ANG B,WANG J,et al.Effect of interaction between corrosion film and H2S/CO2 partial pressure ratio on the Hydrogen permeation in X80 pipeline steel[J].Corrosion Engineering Science and Technology,2020,55(5):392-399.
[15]" PESSU F,HUA Y,BARKER R,et al.A study of the pitting and uniform corrosion characteristics of X65 carbon steel in different H2S-CO2-containing environments[J].Corrosion,2018,74(8):886-902.
[16]" 趙凱峰,陳作明,徐建國,等.油井套管腐蝕原因分析與防腐蝕措施的效果評價[J].腐蝕與防護(hù),2023,44(11):86-92.
ZHAO K F,CHEN Z M,XU J G,et al.Corrosion cause analysis of oil well casing and effect evaluation of corrosion protection measures[J].Corrosion and Protection,2023,44(11):86-92.
[17]" 茍利鵬,張進(jìn)科,楊金峰,等.姬塬油田套損井隔水采油技術(shù)研究與應(yīng)用[J].西南石油大學(xué)學(xué)報(自然科學(xué)版),2020,42(3):107-114.
GOU L P,ZHANG J K,YANG J F,et al.Research and application of the water isolation technology for casing damage in Jiyuan Oilfield[J].Journal of Southwest Petroleum University(Science amp; Technology Edition),2020,42(3):107-114.
[18]" 孫歡,朱明明,王偉良,等.長慶頁巖油水平井華H90-3井超長水平段防漏堵漏技術(shù)[J].石油鉆探技術(shù),2022,50(2):16-21.
SUN H,ZHU M M,WANG W L,et al.Lost circulation prevention and plugging technologies for the ultra-long horizontal section of the horizontal shale oil well Hua H90-3 in Changqing Oilfield[J].Petroleum Drilling Techniques,2022,50(2):16-21.
[19]" 侯學(xué)文,馮定,張斌,等.套損井貼堵窄間隙固井頂替分析研究[J].石油機(jī)械,2023,51(12):58-65,105.
HOU X W,F(xiàn)ENG D,ZHANG B,et al.Cementing displacement analysis of narrow annulus in casing-damaged wells repaired with pachting-plugging pipes[J].China Petroleum Machinery,2023,51(12):58-65,105.
[20]" 汪海,徐興平,溫盛魁,等.套損井大通徑膨脹薄壁管補(bǔ)貼修復(fù)技術(shù)研究[J].石油機(jī)械,2017,45(10):98-102.
WANG H,XU X P,WEN S K,et al.Study on casing patch technology of large diameter expandable thin-walled tubular for casing damaged well[J].China Petroleum Machinery,2017,45(10):98-102.
[21]" 胡晉軍,史為紀(jì),吳文兵,等.遼河海域高壓氣井月探1井套損補(bǔ)救固井技術(shù)[J].石油鉆采工藝,2023,45(4):441-446.
HU J J,SHI W J,WU W B,et al.Cementing technology for casing damage remediation of well Yuetan-1 in the offshore area of Liaodong Bay[J].Oil Drilling amp; Production Technology,2023,45(4):441-446.
[22]" 閔江本,劉小利,萬向臣.長慶油田洛河水層防腐固井水泥漿及配套工藝技術(shù)[J].鉆井液與完井液,2021,38(2):231-236.
MIN J B,LIU X L,WAN X C.Corrosion inhibitive cement slurry and supporting techniques for cementing the Luohe aquifer in Changqing Oilfield[J].Drilling Fluid amp; Completion Fluid,2021,38(2):231-236.
[23]" 王領(lǐng),張紅生,啜廣山,等.海洋油氣油管套管特殊螺紋接頭評價技術(shù)研究[J].中國海上油氣,2022,34(5):171-178.
WANG L,ZHANG H S,CHUAI G S,et al.Evaluation technology of premium threaded connection for tubing and casing in offshore oil and gas engineering[J].China Offshore Oil and Gas,2022,34(5):171-178.
[24]" 謝文獻(xiàn),王麗葉,金玉寒,等.不同表面處理工藝對閘閥材料12Cr13 耐腐蝕影響研究[J].天然氣與石油,2023,41(1):113-119.
XIE W X,WANG L Y,JIN Y H,et al.Study on the corrosion resistance of gate valve materials 12Cr13 by different surface treatment processes[J].Natural Gas and Oil,2023,41(1):113-119.
[25]" 陳杰,秦曦,代紅,等.吐哈油田勝北區(qū)塊高壓氣藏長封固水平井固井技術(shù)[J].世界石油工業(yè),2022,29(1):50-58.
CHEN J,QIN X,DAI H,et al.Cementing technology for long cementing segment horizontal wells of high-pressure gas reservoirs in Shengbei Block of Tuha Oilfield[J].World Petroleum Industry,2022,29(1):50-58.
[26]" 丁楠,李厚補(bǔ),古興瑾,等.非金屬智能連續(xù)管拉伸層力學(xué)特性研究[J].石油機(jī)械,2020,48(11):119-125.
DING N,LI H B,GU X J,et al.Study on the mechanical properties of the tensile layer of non-metallic intelligent coiled tubing[J].China Petroleum Machinery,2020,48(11):119-125.
[27]" 宋彥琦,李向上,李國慶.玻璃鋼套管Ⅰ型裂紋應(yīng)力強(qiáng)度因子的數(shù)值計(jì)算[J].遼寧工程技術(shù)大學(xué)學(xué)報(自然科學(xué)版),2017,36(9):949-954.
SONG Y Q,LI X S,LI G Q.Numerical calculation of Ⅰ crack stress intensity factor in the fiberglass casing[J].Journal of Liaoning Technical University(Natural Science Edition),2017,36(9):949-954.
[28]" 胡敏,郭強(qiáng),習(xí)向東,等.玻璃鋼管材無損檢測方法綜述[J].材料導(dǎo)報,2023,37(增刊2):586-590.
HU M,GUO Q,XI X D,et al.Overview of new nondestructive testing of GFRP pipes.[J].Materials Reports,2023,37(S2):586-590.
第一楊琦,高級工程師,生于1987年,2014年畢業(yè)于西安石油大學(xué)油氣田開發(fā)工程專業(yè),獲碩士學(xué)位,現(xiàn)從事油氣田套損井綜合治理研究工作。地址:(710077)陜西省西安市。電話:(029)81887964。email:yangqi006@cnpc.com.cn。2024-05-28任" 武