摘""" 要:鮮切馬鈴薯加工和貯藏過程中的酶促褐變嚴重影響產(chǎn)品質(zhì)量和市場價值,針對這一問題開展了很多控制褐變的相關(guān)研究。對鮮切馬鈴薯褐變發(fā)生機制、國內(nèi)外鮮切馬鈴薯褐變控制技術(shù)進行綜述,其中物理控制技術(shù)包括超聲、低溫、高壓、高氧和氣調(diào)包裝等處理;化學(xué)制劑控制褐變技術(shù)涉及無機物、有機物、植物提取物和納米材料;基因工程技術(shù)包括反義基因、人工microRNA(amiRNA)、基因過表達、基因編輯(CRISPR/ Cas9)和RNAi技術(shù)等。總結(jié)褐變控制技術(shù)在褐變研究中的最新進展,并提出相應(yīng)的建議和展望,以期為后續(xù)鮮切馬鈴薯褐變抑制的深入研究提供參考。
關(guān)鍵詞:馬鈴薯;酶促褐變;控制技術(shù)
中圖分類號:S532""""""""""""" 文獻標志碼:A""""""""""" 文章編號:1673-2871(2024)11-010-09
收稿日期:2024-06-23;修回日期:2024-08-20
基金項目:貴州省自然科學(xué)基金(黔科合基礎(chǔ)﹝2022﹞一般297);貴州省科技計劃項目(黔科合基礎(chǔ)-﹝2024﹞青年069);國家現(xiàn)代農(nóng)業(yè)產(chǎn)業(yè)技術(shù)體系專項(CARS-09-ES24);貴州省育種科研基礎(chǔ)平臺創(chuàng)新能力建設(shè)(黔科合服企﹝2022﹞014);貴州喀斯特山區(qū)重要作物生物育種平臺建設(shè)(黔科合中引地﹝2023﹞033)
作者簡介:曹貞菊,女,助理研究員,研究方向為馬鈴薯遺傳育種及基因工程。E-mail:zhenjucao@163.com
通信作者:李""" 飛,男,研究員,研究方向為馬鈴薯遺傳育種和分子生物學(xué)。E-mail:gzlfei@sina.com
馬鈴薯(Solanum tuberosum L.)富含優(yōu)質(zhì)蛋白質(zhì)、淀粉、膳食纖維和其他多種營養(yǎng)物質(zhì)[1],是繼玉米、小麥和水稻后的第四大糧食作物。鮮切馬鈴薯方便加工且富含營養(yǎng),在人們?nèi)粘o嬍持姓急容^大[2]。然而,在馬鈴薯鮮切過程中,由機械損傷引起的酶促褐變會影響產(chǎn)品質(zhì)量和市場價值[3]。褐變是鮮切蔬菜和水果常見的變色現(xiàn)象,分為酶促褐變和非酶褐變,酶促褐變與酚類物質(zhì)和多酚氧化酶(PPO)相關(guān),非酶褐變包括焦糖化反應(yīng)、美拉德反應(yīng)、抗壞血酸氧化分解以及酚類氧化縮合現(xiàn)象[4],發(fā)生在馬鈴薯加工過程中的主要是酶促褐變和美拉德反應(yīng)。在正常植物組織中,根據(jù)酚-酶區(qū)域分布理論,酚類物質(zhì)和多酚氧化酶分別主要存在于液泡和細胞質(zhì)中[5]。一旦鮮切處理破壞細胞完整性,PPO就會與酚類底物接觸,暴露于空氣中,發(fā)生氧、底物和酶三種元素共存的酶氧化反應(yīng)。在此過程中酚類底物被催化成醌類,醌類物質(zhì)快速聚合,通過非酶反應(yīng)與蛋白質(zhì)或糖的氨基或巰基反應(yīng)生成深棕色色素,對鮮切馬鈴薯產(chǎn)品的外觀和消費者感官產(chǎn)生不利影響[6]。加工馬鈴薯市場需求大,目前50%~60%新鮮馬鈴薯通過加工成為高附加值產(chǎn)品,如切丁、脫水、罐裝、冷凍炸薯條、冷凍、烘焙、烹飪(即時)和土豆泥等[7-8]。加工即食馬鈴薯經(jīng)削皮、蒸煮,滅菌及真空包裝等過程[9],這就需要即食馬鈴薯制備時間短且保質(zhì)期要長,以確保馬鈴薯的新鮮。而高溫滅菌會導(dǎo)致馬鈴薯塊莖中大量的還原糖和氨基酸發(fā)生被稱為美拉德反應(yīng)的非酶褐變反應(yīng),這對加工馬鈴薯外觀產(chǎn)生負面影響[10]??刂泼览路磻?yīng)水平在理想感官發(fā)展中起著重要作用,如一些食物的顏色和味道,包括面包、餅干、烤肉、咖啡、堅果、啤酒等[11-12]。然而,在即食馬鈴薯加工中,美拉德反應(yīng)的發(fā)生會導(dǎo)致顏色變化,降低即食馬鈴薯的商業(yè)可接受性[13]。此外,在美拉德反應(yīng)的中間階段形成有毒物質(zhì),如丙烯酰胺(AM)和5-羥甲基糠醛(HMF)[10]。因此,馬鈴薯即食產(chǎn)品需要降低中間化合物如丙烯酰胺的含量。高溫和長時間油炸會形成黑素,這是一種棕色甚至是黑色的大分子物質(zhì),導(dǎo)致丙烯酰胺濃度降低[14]。還可以通過降低還原糖的濃度,盡可能降低美拉德反應(yīng)的速度來延遲中間化合物生成,從而避免這些有害化合物的形成[15]。目前對鮮切馬鈴薯褐變的研究主要集中在抗褐變的方法,如加熱、包裝和使用抗褐變劑等,以及鮮切馬鈴薯在褐變過程中代謝變化等方面[16]。因此,筆者對馬鈴薯褐變機制、現(xiàn)有控制褐變的方法進行總結(jié),并對未來發(fā)展方向進行展望,以期為鮮切馬鈴薯褐變抑制的深入研究提供借鑒。
1 馬鈴薯褐變機制
眾所周知,鮮切馬鈴薯的褐變主要是由酶促褐變引起的,酚類化合物底物在酶的作用下產(chǎn)生醌,然后醌轉(zhuǎn)化為色素[17]。其中涉及多酚氧化酶(PPO)、過氧化物酶(POD)和苯丙氨酸解氨酶(PAL)3個關(guān)鍵酶[18-20]。
PPO是酶促褐變黑色素形成途徑中的關(guān)鍵酶,不僅催化單酚羥基化生成二酚,還催化二酚氧化生成醌[21]。PPO廣泛存在于植物界中,與膜系統(tǒng)關(guān)系密切,在脅迫作用下因膜的破壞而活化,導(dǎo)致活性增強[22]。在植物組織中,酚類底物位于液泡中,而PPO位于細胞質(zhì)、質(zhì)膜、質(zhì)體和線粒體中[23-24]。酚-酶區(qū)域分布阻止了酚類底物與PPO的接觸,避免正常組織發(fā)生褐變。馬鈴薯采后,在產(chǎn)品的加工和貯存過程中,易發(fā)生機械損傷(剝削、切割、冷損傷等應(yīng)激損傷),破壞膜結(jié)構(gòu)的完整性,降解細胞膜,引起脂質(zhì)過氧化,破壞酚-酶的區(qū)域分布。在有氧條件下,酶催化酚類底物形成鄰醌化合物,這些化合物聚合成棕色色素,導(dǎo)致酶促褐變[25-26]。因此,較高的細胞膜完整性可以有效地防止酶促褐變。
POD是另一種重要的氧化酶,在褐變過程中形成自由基[27]。POD廣泛存在于各種動物、植物和微生物中,以H2O2為電子受體直接氧化酚類或胺類化合物,具有消除過氧化氫和酚類及胺類毒性的雙重作用。POD與植物在逆境條件下酶促防御系統(tǒng)相關(guān),與超氧化物歧化酶(SOD)、過氧化氫酶(CAT)協(xié)同作用,清除體內(nèi)過剩的自由基,從而提高植物的抗逆性[28]。除了POD外,PAL是苯丙烷代謝途徑中的一種限速酶,也是一種重要的傷口誘導(dǎo)酶,參與酶促褐變。PAL通過L-苯丙氨酸途徑催化酚類成分的褐變,催化苯丙氨酸脫氨形成肉桂酸和各種酚類物質(zhì)[26]。因此,PPO、POD和PAL活性的調(diào)控是許多抗褐變策略的關(guān)鍵靶點。
此外,細胞膜的重要成分磷脂在細胞生命活動中對維持細胞結(jié)構(gòu)和信號轉(zhuǎn)導(dǎo)具有重要功能[29]。磷脂酶D(PLD)和脂氧合酶(LOX)是膜脂代謝的關(guān)鍵酶[30]。PLD是膜脂降解途徑中的第一個酶,也是磷脂水解的關(guān)鍵酶[31]。在水果和蔬菜機械損傷時,PLD被激活降解細胞膜脂質(zhì),導(dǎo)致磷脂酸和游離脂肪酸的積累,并為LOX提供反應(yīng)底物[32]。LOX是脂肪酸代謝途徑的關(guān)鍵酶,將膜脂中的不飽和脂肪酸氧化為丙二醛(MDA)和自由基,對膜系統(tǒng)產(chǎn)生毒性作用,破壞細胞膜完整性,促進褐變[33]。MDA是膜脂過氧化的產(chǎn)物之一,可以改變細胞的結(jié)構(gòu)和功能,MDA的濃度常被用于衡量細胞內(nèi)膜脂過氧化的程度[34]。在低溫脅迫下,膜脂代謝紊亂引起的PLD和LOX活性的增強可誘導(dǎo)梨表面發(fā)生褐變[35]。活性氧(ROS)在褐變調(diào)節(jié)中起重要作用,可以催化多不飽和脂肪酸轉(zhuǎn)化為MDA[36]。在過氧化氫存在下,POD可以催化酚類和黃酮類化合物聚合成褐變色素[37]。
2 馬鈴薯褐變控制技術(shù)
針對鮮切馬鈴薯褐變控制技術(shù)的研究較多,主要包括物理、化學(xué)和基因工程技術(shù)等。
2.1 物理控制技術(shù)
使用超聲[38]、低溫[39]、高壓[40]、高氧[41]和氣調(diào)包裝等物理處理方法,對控制馬鈴薯褐變均具有一定的效果。
2.1.1 超聲處理 超聲處理(US)是一種非熱的、生態(tài)友好的褐變控制方法,在食品加工和保存過程中,通過液體系統(tǒng)中的空化現(xiàn)象來保證質(zhì)量和殺滅病原微生物[42]??栈饔猛ǔ淖兎謮?,不僅使微生物細胞受到壓力,而且使植物組織和細胞交替壓縮和擴張。超聲處理的空化過程類似于海綿的反復(fù)擠壓和釋放,被稱為“海綿效應(yīng)”。海綿效應(yīng)使超聲波促進液體流動,打開植物內(nèi)部孔隙和空間[43]。超聲空化現(xiàn)象是由于超聲微泡的形成、生長和破裂,直接增強了組織和細胞受到的局部壓力和化學(xué)能[44-45]。最近的研究表明,US(20 kHz,10 min)抑制了鮮切生菜和蓮藕的微生物生長,降低了質(zhì)量損失率、硬度、可溶性固體總量、色差和水的流動性,并保持了細胞壁的完整性[46-47]。Zhu等[48]研究了超聲耦合馬齒莧提取物對鮮切馬鈴薯在4 °C保存8 d期間抗褐變的影響,當超聲波工作時間為10 min時,聯(lián)合施用較低的馬齒莧提取物(濃度0.02%,w/w),比單獨施用(濃度0.05%,w)具有更好的抗褐變效果,聯(lián)合應(yīng)用不僅顯著抑制了PPO和POD等關(guān)鍵酶活性,而且有效地緩解了對細胞膜的損傷,保持了其完整性和通透性,同時還提高了貯藏期間的抗氧化能力。
2.1.2 低溫處理 低溫貯藏是保持鮮切馬鈴薯品質(zhì)的重要方法,低溫能延緩果蔬采摘后成熟,同時也能抑制病原菌生長。低溫貯藏能減緩細胞呼吸速率,保持鮮切產(chǎn)品的新鮮度,也可以延緩組織軟化并改變其色澤變化速度,還能讓微生物生長緩慢,避免褐變現(xiàn)象發(fā)生。在合適溫度區(qū)間內(nèi),貯藏溫度越低,保鮮效果越好,但如果超過此溫度范圍,就容易產(chǎn)生凍害[49]。馬鈴薯在4 ℃低溫貯藏中,還原糖含量表現(xiàn)為緩慢升高到快速升高;將部分馬鈴薯放回20 ℃復(fù)溫貯藏,還原糖含量下降,并且低于結(jié)束4 ℃貯藏時馬鈴薯還原糖的含量。將兩種不同貯藏環(huán)境的馬鈴薯在相同條件下油炸,發(fā)現(xiàn)經(jīng)復(fù)溫處理的馬鈴薯不易發(fā)生褐變,且品質(zhì)更佳[50]。
2.1.3 高壓處理 高壓處理(high pressure,HP)是通過冷巴氏殺菌過程延長水果產(chǎn)品保質(zhì)期的非熱替代方法[51]。該技術(shù)的主要優(yōu)點在于其能夠維持色素、揮發(fā)物、維生素和其他能促進健康的化合物不受影響[52-53]。然而,由于PPO耐壓,不能完全避免褐變反應(yīng),因此需要將HP與其他技術(shù)相結(jié)合,如在具有滲透性的薄膜中包裝[54]。在貯存過程中,通過在HP之前應(yīng)用滲透脫水(osmotic dehydration,OD)對氧氣的有限獲取和通過應(yīng)用HP使PPO部分失活,可以防止褐變。這種策略可以幫助產(chǎn)品暴露于空氣后保持產(chǎn)品的顏色[53]。黃歡等[55]研究了超高壓(HPP,100~600 MPa,10 min)對鮮切馬鈴薯色澤、硬度、咀嚼度、細胞壁相關(guān)酶活性及多糖組成的影響,結(jié)果表明,HPP在壓力≥500 MPa下對鮮切馬鈴薯的褐變抑制效果較好,300 MPa時褐變嚴重且程度高于對照。
2.1.4 高氧技術(shù) 在果蔬的保存過程中通過高于60%氧濃度連續(xù)處理,能促進抗氧化能力和總酚含量的增加[56]。60%~100%的氧連續(xù)處理也能顯著抑制果實腐爛、呼吸和乙烯產(chǎn)生速率,并能滅活病原菌[57]。這是由于氧化還原生物系統(tǒng)和膜的完整性導(dǎo)致高氧誘導(dǎo)的抗氧化能力增加[58]。此外,作為一種非生物脅迫,高氧處理不可避免地調(diào)節(jié)活性氧(ROS)和氧化還原生物系統(tǒng)[59]。然而,短時間高氧預(yù)處理對鮮切馬鈴薯褐變影響的報道較少。Liu等[41]通過研究4 ℃鮮切馬鈴薯片中PPO、POD和PAL活性、總酚含量、膜滲透性、MDA含量和抗氧化能力,評價短時間高氧預(yù)處理對抗褐變的影響,結(jié)果表明,80%的氧預(yù)處理不僅能抑制PPO活性,而且能顯著提高抗氧化能力,在貯存時間內(nèi)PAL、POD活性和總苯酚的底物生成略有增加。同時,在高氧預(yù)處理條件下,MDA的積累明顯受到抑制,細胞完整性保持較好。總的來說,短時間高氧預(yù)處理是一種簡單、安全、低成本、方便的抗褐變方法,有助于鮮切馬鈴薯加工。
2.1.5 氣調(diào)包裝 氣調(diào)包裝是通過控制果蔬包裝內(nèi)氣體的成分及含量,降低果蔬呼吸作用,以實現(xiàn)減少果蔬營養(yǎng)成分流失和延長貨架期的目的。韋雪等[60]研究表明,氣調(diào)參數(shù)30% CO2能抑制鮮切馬鈴薯氧化酶的活性,有效抑制馬鈴薯褐變且保持較好的硬度、脆性。Ayon-Reyna等[61]研究表明,通過氣調(diào)結(jié)合異抗壞血酸和N-乙酰半胱氨酸可降低鮮切菠蘿褐變指數(shù)。Shen等[62]將鮮切馬鈴薯加壓處理后,在4 ℃條件下保存在體積分數(shù)為4% O2 + 2% CO2 + 94% N2環(huán)境中,能很好地保持鮮切馬鈴薯的硬度和顏色。趙欣等[63]在4 ℃條件下, 通過體積分數(shù)比40% CO2 + 50% O2 + 10% N2混合氣體包裝鮮切馬鈴薯片,能有效抑制PPO和POD活性、微生物的增長與MDA的積累,鮮切馬鈴薯片在16 d內(nèi)保持較好的感官品質(zhì)。
2.2 化學(xué)制劑控制褐變技術(shù)
2.2.1 無機物控制褐變技術(shù) 以化合物為基礎(chǔ)控制酶促褐變的方法主要是添加PPO抑制劑,水果和蔬菜剝皮或鮮切后,在含有化學(xué)合成PPO抑制劑的水溶液中浸漬處理或在可食用涂料配方中加入抗褐變劑[64]。廣泛用于抑制酶促褐變的添加劑包括亞硫酸鹽和抗壞血酸。用于食品添加劑的不同亞硫酸鹽有亞硫酸鈉、焦亞硫酸鈉和亞硫酸氫鈉。這些鹽溶解產(chǎn)生SO3?和HSO3?,能不可逆抑制PPO活性,減少鄰醌類物質(zhì)生成,從而逆轉(zhuǎn)酶促反應(yīng),并在亞硫酸鹽和鄰醌類之間形成加成產(chǎn)物,防止進一步反應(yīng)生成棕色色素[65]。但由于存在健康風(fēng)險,在食品中使用亞硫酸鹽存在爭議[66]??箟难嵋种坪肿兪峭ㄟ^由PPO形成的鄰醌被還原為前體鄰二酚,隨后再次被氧化。這種氧化還原循環(huán)一直持續(xù)到所有的抗壞血酸消耗后,但棕色色素仍然形成。因此,抗壞血酸可以延緩褐變,但不抑制酶活性[67]。檸檬酸是一種非特異性的酶失活劑,可通過降低PPO的pH而使酶失活[68]。環(huán)糊精的疏水核心可以與包括酚類底物在內(nèi)的幾種分子形成絡(luò)合物,從而防止其氧化成醌,形成棕色色素[69]。螯合劑EDTA和草酸也可通過將銅離子捕獲在酶的活性部位,從而抑制酶的活性[70-71]。硫醇是具有巰基官能團(-SH)的化合物,如谷胱甘肽(GSH)、L-半胱氨酸(CYS)和N-乙酰半胱氨酸(NAC),是一種很好的酶促褐變抑制劑。Cerit等[72]研究比較了焦亞硫酸鈉和硫醇化合物谷胱甘肽(GSH)、L-半胱氨酸(CYS)和N-乙酰半胱氨酸(NAC)對馬鈴薯鮮切1、24和48 h后酶促褐變、抗氧化酶活性、總酚酸和抗壞血酸含量的影響,結(jié)果表明,含2.0%NAC、1.0% CYS和2.0% CYS的溶液可抑制酶促褐變,顯著提高鮮切馬鈴薯的殘留硫醇和抗壞血酸含量及抗氧化酶活性,而GSH對褐變無明顯的抑制作用。
2.2.2 有機物控制褐變技術(shù) 氨基酸在鮮切產(chǎn)品的酶促褐變中起重要作用。氨基酸可通過與醌類反應(yīng)和影響PPO活性參與酶促褐變。氨基酸與醌類化合物結(jié)合,能加速褐變,或作為螯合劑形成無色加合物,減少褐變[73]。PPO是馬鈴薯褐變中起核心作用的酶,是一種低聚金屬酶,其活性位點包含兩個銅離子,每個銅離子與3個組氨酸殘基配位[66]。PPO催化酚類底物被分子氧氧化,得到高活性的有色鄰醌,其可進行不可逆的非酶自聚合或與其他酚類、氨基酸或蛋白質(zhì)反應(yīng)產(chǎn)生棕色色素[74]。PPO主要存在細胞器的細胞膜上,如線粒體、過氧化物酶體和葉綠體類囊體。酶促反應(yīng)發(fā)生在細胞破裂時,酶與液泡中的酚類化合物接觸,作為植物致病防御系統(tǒng)的一部分[75]。氨基酸和蛋白質(zhì)可能與醌類發(fā)生反應(yīng),促進褐變過程,或作為螯合劑,抑制褐變[76]。L-半胱氨酸標記明顯抑制了生菜的PPO活性[77]。L-半胱氨酸作為非競爭性抑制劑抑制PPO活性,降低了黃梨的褐變[78]。精氨酸通過抑制酚類化合物的合成來抑制鮮切蛇皮果的褐變[79]。精氨酸和賴氨酸的共同作用顯著抑制了鮮切蘋果的褐變[80]。10 g·L-1的谷氨酸處理顯著抑制了茄子的褐變[81]。10 g·L-1谷氨酸和10 g·L-1甜菜堿的組合可顯著抑制雙孢蘑菇的褐變[82]。
此外,甘氨酸、苯丙氨酸、蛋氨酸、纈氨酸、谷氨酸和L-半胱氨酸也可以抑制鮮切馬鈴薯的褐變[73]。最近的研究表明,90 mmol·L-1脯氨酸處理顯著降低了鮮切馬鈴薯的褐變[83]。50 g·L-1氯化鈉處理顯著抑制鮮切馬鈴薯的褐變,并誘導(dǎo)內(nèi)源性谷氨酸合成[84]。10 g·L-1天冬氨酸處理通過降低pH和螯合銅離子(Cu2+)來抑制PPO活性,從而抑制鮮切馬鈴薯的褐變[18]。15 g·L-1異亮氨酸處理通過螯合Cu2+,并與PPO的氨基酸殘基形成相互作用力,抑制PPO活性,從而抑制了鮮切馬鈴薯褐變[85]。高濃度的甘氨酸、纈氨酸、蛋氨酸和苯丙氨酸通過形成彩色的兒茶酚-氨基酸加合物誘導(dǎo)褐變,而低濃度則抑制馬鈴薯褐變[73]。15 g·L-1的谷氨酸處理4 min,可以抑制總酚的積累,并降低pH和螯合Cu2+來調(diào)節(jié)16個游離氨基酸的含量,抑制PPO活性[86]。
2.2.3 植物提取物控制褐變技術(shù) 目前,許多植物提取物已被證明可以有效抑制PPO活性,緩解酶促褐變[87-88]。綠茶提取物對新鮮蘋果片具有較強的抗褐變作用,這是由于提取物中兒茶素對PPO活性具有競爭性的抑制作用[91]。杧果皮提取物(0.04 g·mL-1)由于原兒茶酚、杧果苷的存在,可以競爭性地抑制馬鈴薯PPO活性[89]。洋蔥和大蒜提取物的抗褐變活性主要是由于硫化合物對PPO活性的抑制作用[90-91]。Sukhonthad等[92]研究了全脂和商業(yè)脫脂米糠提取物(RBE和CDRBE)對馬鈴薯和蘋果酶促褐變的抑制能力,與CDRBE相比,RBE對馬鈴薯和蘋果中PPO活性和褐變的抑制作用更為有效;采用HPLC鑒定了RBE和CDRBE中的5種酚類化合物(原兒茶酸、香草酸、對香豆酸、阿魏酸和芥子酸);然后利用一個模型系統(tǒng)評估了他們在抑制中的重要作用,發(fā)現(xiàn)RBE中的阿魏酸和CDRBE中的對香豆酸在馬鈴薯和蘋果的酶促褐變抑制中具有活性,其中對香豆酸對馬鈴薯和蘋果PPO的抑制作用最強;幾乎所有酚類化合物對馬鈴薯和蘋果PPO的抑制作用均強于100 μg·mL-1的檸檬酸。Liu等[93]研究表明,馬齒莧水提取物(0.5%,w)對新鮮切割馬鈴薯的切片褐變程度、PPO、POD和PAL活性表現(xiàn)出有效的抑制作用,其自由基清除能力在多酚(如香蘭素、3-香豆酸、13s-羥基十八二烯酸、阿魏酸)和生物堿(如甜菜堿、2-脫氧肌苷、三烯堿、N-methylhernagine)的褐變抑制中起主要作用。Zhang等[94]研究了沙棘葉提取物(以花茶素、金絲桃素、沒食子酸、木麻黃素和異鼠李素為沙棘葉提取物的主要成分)對鮮切馬鈴薯褐變的影響,結(jié)果表明,與沙棘果實提取物相比,沙棘葉提取物對鮮切馬鈴薯的褐變有顯著的抑制作用。進一步研究表明,沙棘葉提取物對PPO活性具有競爭性抑制作用,IC50濃度值為0.7 mg·mL-1。分子對接結(jié)果表明,沒食子酸能穩(wěn)定地結(jié)合在PPO的活性位點上,而異鼠李素對PPO的親和力較低。以上結(jié)果表明,沙棘葉提取物通過降低過氧化物酶和苯丙氨酸解氨酶活性,降低酚類物質(zhì)含量,提高抗氧化能力,從而抑制了鮮切馬鈴薯的褐變。
2.2.4 納米材料控制褐變技術(shù) 納米技術(shù)是通過研究和開發(fā)長度為1~100 nm的納米材料來延長食品保質(zhì)期的一項新興技術(shù)[95]。納米顆??梢燥@著地改變特定材料的物理和化學(xué)性質(zhì),如提高機械強度、熱穩(wěn)定性、電導(dǎo)率等[96]。早期對銀納米顆粒(101~109 nm)的研究表明,其對蔬菜汁的保存效果良好[97]。應(yīng)用Ag-PVP涂層有利于延長鮮切蘆筍保質(zhì)期,2 ℃和10 ℃環(huán)境下分別可以延長25和20 d,而未應(yīng)用Ag-PVP涂層的對照組在2 ℃和10 ℃環(huán)境下分別可保存15和10 d[98]。另外一種與MAP結(jié)合的纖維素切片納米顆粒混合材料,將甜瓜的保質(zhì)期延長了5 d[99]。
氧化鋅納米顆粒也具有抑制微生物生長的潛力。Li等[100]開發(fā)了一種新型聚氯乙烯薄膜,與氧化鋅納米顆粒混合用于保存鮮切蘋果。結(jié)果表明,與對照(聚氯乙烯薄膜包裝)相比,氧化鋅納米包裝使鮮切富士蘋果的衰變率顯著降低了21.9%,保質(zhì)期延長了6 d。Meng等[101]報道了氧化鋅納米顆粒涂層結(jié)合超聲可將鮮切獼猴桃的保存壽命延長4 d。此外,TiO2納米顆粒涂層定向聚丙烯(OPP)包裝膜能使大腸桿菌從6.4下降到4.9 log CFU·g-1,而未涂層OPP薄膜袋中的樣品從6.4下降到6.1 log CFU·g-1[102]。Rabea等[103]通過化學(xué)方式合成了CuO 和MgO金屬氧化物納米顆粒,研究其對馬鈴薯褐腐病的影響,結(jié)果表明,在質(zhì)量濃度為3 mg·mL-1時,CuO-NPs 和MgO-NPs對馬鈴薯的生長有強烈的抑制作用,抑制圈(ZOI)分別為19.3和17.0 mm;CuO-NPs和MgO-NPs的最低抑菌質(zhì)量濃度(MIC)和最低殺菌質(zhì)量濃度(MBC)分別為0.50、0.60和0.60、0.75 mg·mL-1。
2.3 基因工程褐變控制技術(shù)
PPO是鮮切馬鈴薯塊莖酶促褐變的關(guān)鍵酶。Bachem等[104]利用反義基因技術(shù)降低StPPO的表達量,可以減輕馬鈴薯的褐變發(fā)生。Coetzer等[105]將番茄PPO反義基因轉(zhuǎn)化馬鈴薯,可以有效抑制馬鈴薯多酚氧化酶的活性,從而降低褐變程度。進一步的研究表明,在馬鈴薯中發(fā)現(xiàn)了12個PPO基因,即StPPO1、StPPO2(StPOT32)、StPPO3(StPOT33)、StPPO4~StPPO12[106]。然而,通過人工microRNA(amiRNA)技術(shù)發(fā)現(xiàn)4種StPPOs(即StPPO1到StPPO4)在塊莖中高表達,其蛋白含量和酶活性負責(zé)馬鈴薯塊莖的酶促褐變[107]。陳明俊[108]利用CRISPR/Cas9技術(shù)編輯StPOT32基因獲得突變株,較野生型PPO活性和褐變強度降低,更晚發(fā)生褐變且褐變程度更低。方圓等[109]利用RNAi和Gene-Deletor技術(shù)對StPOT32基因構(gòu)建干擾載體,轉(zhuǎn)基因馬鈴薯塊莖較野生型對照PPO活性和褐變指數(shù)均大幅降低。除PPO基因外,天冬氨酸蛋白酶抑制劑基因(StASPI)的過表達也抑制了鮮切馬鈴薯的酶促褐變[110]。Li等[111]過表達StSN2通過提高抗氧化酶活性,降低酚類和可溶性醌含量,同時改變了重要的激酶和其他蛋白磷酸化水平,從而抑制了鮮切馬鈴薯的酶促褐變。Shi等[112]通過CRISPR/ Cas9構(gòu)建StPHB3突變體,結(jié)果表明,突變體馬鈴薯塊莖中StPHB3的轉(zhuǎn)錄水平有所提高。StPHB3突變提高抗褐變活性,MDA含量降低,PPO和POD活性受到抑制,酚底物含量增加,有色醌產(chǎn)物形成減少,最終緩解鮮切馬鈴薯褐變。此外,還發(fā)現(xiàn)StPHB3定位于葉綠體,并與StPOT32相互作用,而StPHB3的突變導(dǎo)致了PPO含量的降低,表明PPO的激活受到StPHB3的調(diào)控。
3 展 望
筆者介紹了馬鈴薯褐變發(fā)生的機制,綜述了近年來鮮切馬鈴薯褐變控制技術(shù)的最新研究進展,其中物理控制技術(shù)包括超聲、低溫、高壓、高氧和氣調(diào)包裝等處理;化學(xué)制劑控制褐變技術(shù)涉及無機物、有機物、植物提取物和納米材料;基因工程技術(shù)包括反義基因、人工microRNA(amiRNA)、基因過表達、基因編輯(CRISPR/ Cas9)和RNAi技術(shù)等。每一種控制褐變的技術(shù)都有其優(yōu)點和局限性,加工過程中發(fā)生的褐變問題仍然需要進一步研究,如何在不影響感官和營養(yǎng)品質(zhì)的情況下,延長鮮切產(chǎn)品的保質(zhì)期,未來的研究應(yīng)著眼于通過這些新技術(shù)的復(fù)合處理來實現(xiàn),這與王海艷等[7]的觀點相一致。同時還應(yīng)加強這些新技術(shù)在有效性、成本效益比和操作方便性等方面的研究。目前很多新技術(shù)的應(yīng)用仍處于實驗室早期階段,這需要在今后的工作中以試點規(guī)模和工業(yè)規(guī)模進行廣泛的試驗。以食品安全為導(dǎo)向的技術(shù)被認為優(yōu)于以便利性為導(dǎo)向的技術(shù),因此,有關(guān)部門須對納米材料等新技術(shù)進行潛在毒性和綜合風(fēng)險方面的評估。
此外,還可以通過遺傳育種來改良馬鈴薯抗褐變能力。近年來,筆者也對一些馬鈴薯材料褐變抗性進行了鑒選[113-114],篩選出的高抗褐變材料已用于新種質(zhì)創(chuàng)制,易褐變材料結(jié)合已報道的褐變相關(guān)基因為更好地了解馬鈴薯褐變分子機制奠定了基礎(chǔ),也為未來的遺傳改良工作提供借鑒與指導(dǎo)。馬鈴薯褐變研究的不斷深入和突破,將為改善馬鈴薯品質(zhì)和提高市場價值提供重要的科學(xué)依據(jù)和技術(shù)支持。
參考文獻
[1]"" GUPTA U C,GUPTA S C.The important role of potatoes,an underrated vegetable food crop in human health and nutrition[J].Current Nutrition and Food Science,2019,15(1):11-19.
[2]"" SHEN X,ZHANG M,F(xiàn)AN K,et al.Effects of ε-polylysine/chitosan composite coating and pressurized argon in combination with MAP on quality and microorganisms of fresh-cut potatoes[J].Food and Bioprocess Technology,2020,13(1):145-158.
[3]"" KIM H J,PARK K M,JEONG M C,et al.Effect of combined washing with heat and microbubbles water on the quality of fresh-cut lettuce[J].Korean Journal of Food Preservation,2020,27(2):170-177.
[4]"" 蘇霞,吳厚玖.橙汁非酶褐變機制及控制措施[J].食品與發(fā)酵工業(yè),2011,37(7):148-151.
[5]"" TOIVONEN P M A,BRUMMELL D A.Biochemical bases of appearance and texture changes in fresh-cut fruit and vegetables[J].Postharvest Biology and Technology,2008,48(1):1-14.
[6]"" LóPEZ-SERRANO M,BARCELó A R.Comparative study of the products of the peroxidase-catalyzed and the polyphenoloxidase-catalyzed (+)-catechin oxidation.:Their possible implications in strawberry (Fragaria × ananassa) browning reactions[J].Journal of Agricultural and Food Chemistry,2002,50(5):1218-1224.
[7]"" 王海艷,田國奎,王立春,等.鮮切馬鈴薯加工及貨架期品質(zhì)控制的研究進展[J].中國瓜菜,2023,36(10):10-15.
[8]"" TIWARI P,JOSHI A,VARGHESE E,et al.Process standardization and storability of calcium fortified potato chips through vacuum impregnation[J].Journal of Food Science and Technology-Mysore,2018,55(8):3221-3231.
[9]"" NASCIMENTO R F,CANTERI M H G,DO NASCIMENTO R F.Use of sodium metabisulfite and ascorbic acid as anti-browning agents in processed potatoes[J].British Food Journal,2020,122(2):380-389.
[10] BETHKE P C.Progress and successes of the specialty crop research initiative on acrylamide reduction in processed potato products[J].American Journal of Potato Research,2018,95(4):328-337.
[11] DAMODARAN S,PARKIN K L,F(xiàn)ENNEMA O R.Fennema’s Food Chemistry[N].Boca Raton:CRC Press,2017.
[12] LEDL F,SCHLEICHER E.New aspects of the Maillard reaction in foods and in the human body[J].Angewandte Chemie,1990,29(6):565-594.
[13] ACEVEDO N C,SCHEBOR C,BUERA P.Non-enzymatic browning kinetics analyzed through water-solids interactions and water mobility in dehydrated potato[J].Food Chemistry,2008,108(3):900-906.
[14] AJANDOUZ E H,TCHIAKPE L S,DALLE ORE F,et al.Effects of pH on caramelization and Maillard reaction kinetics in fructose-lysine model systems[J].Journal of Food Science,2001,66(7):926-931.
[15] BAARDSETH P,BLOM H,SKREDE G,et al.Lactic acid fermentation reduces acrylamide formation and other Maillard reactions in French fries[J].Journal of Food Science,2006,71(1):28-33.
[16] LI B H,F(xiàn)U Y J,XI H,et al.Untargeted metabolomics using UHPLC-HRMS reveals metabolic changes of fresh-cut potato during browning process[J].Molecules,2023,28(8):3375.
[17] DONG T T,CAO Y,JIANG C Z,et al.Cysteine protease inhibitors reduce enzymatic browning of potato by lowering the accumulation of free amino acids[J].Journal of Agricultural and Food Chemistry,2020,68(8):2467-2476.
[18] FENG Y Y,LIU Q Q,LIU P,et al.Aspartic acid can effectively prevent the enzymatic browning of potato by regulating the generation and transformation of brown product[J].Postharvest Biology and Technology,2020,166:111209.
[19] MA L,ZHANG M,BHANDARI B,et al.Recent developments in novel shelf life extension technologies of fresh-cut fruits and vegetables[J].Trends in Food Science and Technology,2017,64:23-38.
[20] WANG Q G,CAO Y,ZHOU L L,et al.Effects of postharvest curing treatment on flesh colour and phenolic metabolism in fresh-cut potato products[J].Food Chemistry,2015,169:246-254.
[21] MARTINEZ M V,WHITAKER J R.The biochemistry and control of enzymatic browning[J].Trends in Food Science and Technology,1995,6:195-200.
[22] 李利華.萵筍多酚氧化酶的酶學(xué)特性研究[J].保鮮與加工,2018,18(1):71-75.
[23] LI D,CHENG Y D,DONG Y,et al.Effects of low temperature conditioning on fruit quality and peel browning spot in ‘Huangguan’ pears during cold storage[J].Postharvest Biology and Technology,2017,131:68-73.
[24] LI D D,YE Q Y,JIANG L,et al.Effects of nano-TiO2-LDPE packaging on postharvest quality and antioxidant capacity of strawberry (Fragaria ananassa Duch.) stored at refrigeration temperature[J].Journal of the Science of Food and Agriculture,2017,97(4):1116-1123.
[25] 張學(xué)杰,屈冬玉,金黎平.馬鈴薯酶褐變機理及其控制途徑[J].中國馬鈴薯,2000(3):158-161.
[26] CANTOS E,TUDELA J A,GIL M I,et al.Phenolic compounds and related enzymes are not rate-limiting in browning development of fresh-cut potatoes[J].Journal of Agricultural and Food Chemistry,2002,50(10):3015-3023.
[27] MCEVILY A J,IYENGAR R,OTWELL W S.Inhibition of enzymatic browning in foods and beverages[J].Critical Reviews in Food Science and Nutrition,1992,32(3):253-273.
[28] CAVALCANTI F R,JOSé T A O,MARTINS-MIRANDA A S,et al.Superoxide dismutase,catalase and peroxidase activities do not confer protection against oxidative damage in salt-stressed cowpea leaves[J].New Phytologist,2010,163(3):563-571.
[29] KONG X M,WEI B D,GAO Z,et al.Changes in membrane lipid composition and function accompanying chilling injury in bell peppers[J].Plant and Cell Physiology,2018,59(1):167-178.
[30] MAO L C,PANG H Q,WANG G Z,et al.Phospholipase D and lipoxygenase activity of cucumber fruit in response to chilling stress[J].Postharvest Biology and Technology,2007,44(1):42-47.
[31] LIN Y F,CHEN M Y,LIN H T,et al.Phomopsis longanae-induced pericarp browning and disease development of longan fruit can be alleviated or aggravated by regulation of ATP-mediated membrane lipid metabolism[J].Food Chemistry,2018,269:644-651.
[32] CONCONI A,MIQUEL M,BROWSE J A,et al.Intracellular levels of free linolenic and linoleic acids increase in tomato leaves in response to wounding[J].Plant Physiology,1996,111(3):797-803.
[33] GAO H,CHAI H K,CHENG N,et al.Effects of 24-epibrassinolide on enzymatic browning and antioxidant activity of fresh-cut lotus root slices[J].Food Chemistry,2017,217:45-51.
[34] DRAPER H H,HADLEY M.Malondialdehyde determination as index of lipid peroxidation[J].Methods in Enzymology,1990,186:421-431.
[35] SUN H J,ZHOU X,ZHOU Q,et al.Disorder of membrane metabolism induced membrane instability plays important role in pericarp browning of refrigerated ’Nanguo’ pears[J].Food Chemistry,2020,320:126684.
[36] SHEWFELT R L,DEL ROSARIO B A.The role of lipid peroxidation in storage disorders of fresh fruits and vegetables[J].HortScience,2000,35(4):575-579.
[37] JIANG J,JIANG L,LUO H B,et al.Establishment of a statistical model for browning of fresh-cut lotus root during storage[J].Postharvest Biology and Technology,2014,92:164-171.
[38] YILDIZ G,AADIL R M.Comparative analysis of antibrowning agents,hot water and high-intensity ultrasound treatments to maintain the quality of fresh-cut mangoes[J].Journal of Food Science and Technology-Mysore,2022,59(1):202-211.
[39] RICCI I,AMODIO M L,COLELLI G.Influence of pre-cutting operations on quality of fresh-cut artichokes (Cynara scolymus L.):Effect of storage time and temperature before cutting[J].Postharvest Biology and Technology,2013,85:124-131.
[40] DERMESONLOUOGLOU E K,ANGELIKAKI F,GIANNAKOUROU M C,et al.Minimally processed fresh-cut peach and apricot snacks of extended shelf-life by combined osmotic and high pressure processing[J].Food and Bioprocess Technology,2019,12(3):371-386.
[41] LIU X,WANG T,LU Y Z,et al.Effect of high oxygen pretreatment of whole tuber on anti-browning of fresh-cut potato slices during storage[J].Food Chemistry,2019,301:125287.
[42] ALENYOREGE E A,MA H L,AHETO J H,et al.Effect of sequential multi-frequency ultrasound washing processes on quality attributes and volatile compounds profiling of fresh-cut Chinese cabbage[J].LWT-Food Science and Technology,2020,117:108666.
[43] MIANO A C,IBARZ A,AUGUSTO P E D.Ultrasound technology enhances the hydration of corn kernels without affecting their starch properties[J].Journal of Food Engineering,2017,197:34-43.
[44] ERCAN S S,SOYSAL C.Effect of ultrasound and temperature on tomato peroxidase[J].Ultrasonics Sonochemistry,2011,18(2):689-695.
[45] JOSé J F B D,DE ANDRADE N J,RAMOS A M,et al.Decontamination by ultrasound application in fresh fruits and vegetables[J].Food Control,2014,45:36-50.
[46] FAN K,ZHANG M,BHANDARI B,et al.A combination treatment of ultrasound and ε-polylysine to improve microorganisms and storage quality of fresh-cut lettuce[J].LWT-Food Science and Technology,2019,113:108315.
[47] WANG D,CHEN L K,MA Y,et al.Effect of UV-C treatment on the quality of fresh-cut lotus (Nelumbo nucifera Gaertn.) root[J].Food Chemistry,2019,278:659-664.
[48] ZHU Y X,DU X R,ZHENG J X,et al.The effect of ultrasonic on reducing anti-browning minimum effective concentration of purslane extract on fresh-cut potato slices during storage[J].Food Chemistry,2021,343:128401.
[49] 關(guān)正萍,郭少玨,肖春玲,等.低溫處理對鮮切馬鈴薯片保鮮的影響[J].江蘇農(nóng)業(yè)科學(xué),2020,48(15):230-234.
[50] 姚黎霞.低溫貯藏對甘薯和馬鈴薯及加工制品糖含量的影響[D].杭州:浙江農(nóng)林大學(xué),2019.
[51] DENOYA G I,VAUDAGNA S R,CHAMORRO V C,et al.Suitability of different varieties of peaches for producing minimally processed peaches preserved by high hydrostatic pressure and selection of process parameters[J].LWT– Food Science and Technology,2017,78:367-372.
[52] DENOYA G I,NANNI M S,APOSTOLO N M,et al.Biochemical and microstructural assessment of minimally processed peaches subjected to high-pressure processing:Implications on the freshness conditions[J].Innovative Food Science and Emerging Technologies,2016,36:212-220.
[53] DENOYA G I,POLENTA G A,APOSTOLO N M,et al.Optimization of high pressure hydrostatic pressure processing for the preservation of minimally processed peach pieces[J].Innovative Food Science and Emerging Technologies,2016,33:84-93.
[54] PERRERA N,GAMAGE T V,WAKELING L,et al.Colour and texture of apples high pressure processed in pineapple juice[J].Innovative Food Science and Emerging Technologies,2010,11(1):39-46.
[55] 黃歡,王紹帆,韓育梅.超高壓處理對鮮切馬鈴薯質(zhì)地及細胞壁多糖含量的影響[J].食品工業(yè)科技,2020,41(2):258-266.
[56] ZHENG Y H,WANG C Y,WANG S Y,et al.Effect of high-oxygen atmospheres on blueberry phenolics,anthocyanins,and antioxidant capacity[J].Journal of Agricultural and Food Chemistry,2003,51(24):7162-7169.
[57] GEYSEN S,ESCALONA V H,VERLINDEN B E,et al.Modelling the effect of super-atmospheric oxygen and carbon dioxide concentrations on the respiration of fresh-cut butterhead lettuce[J].Journal of the Science of Food and Agriculture,2007,87(2):218-226.
[58] OMS-OLIU G,ODRIOZOLA-SERRANO I,SOLIVA-FORTUNY R,et al.Antioxidant content of fresh-cut pears stored in high-O2 active packages compared with conventional low-O2 active and passive modified atmosphere packaging[J].Journal of Agricultural and Food Chemistry,2008,56(3):932-940.
[59] LI X H,JIANG Y Q,LI W L,et al.Effects of ascorbic acid and high oxygen modified atmosphere packaging during storage of fresh-cut eggplants[J].Food Science and Technology International,2014,20(2):99-108.
[60] 韋雪,趙曉燕,王丹,等.不同CO2比例的鮮切馬鈴薯氣調(diào)保鮮效果[J].現(xiàn)代食品科技,2023,39(5):148-156.
[61] AYON-REYNA L E,AYON-REYNA L G,LOPEZ-LOPEZ M E,et al.Changes in ascorbic acid and total phenolics contents associated with browning inhibition of pineapple slices[J].Food Science and Technology,2019,39(3):531-537.
[62] SHEN X,ZHANG M,DEVAHASTIN S,et al.Effects of pressurized argon and nitrogen treatments in combination with modified atmosphere on quality characteristics of fresh-cut potatoes[J].Postharvest Biology and Technology,2019,149:159-165.
[63] 趙欣,周婧,陳湘寧,等.OPP/CPP膜中不同氣體比例對鮮切馬鈴薯片保鮮的影響[J].食品工業(yè)科技,2017,38(17):207-211.
[64] OMS-OLIU G,ROJAS-GRAü M A,GONZáLEZ L A,et al.Recent approaches using chemical treatments to preserve quality of fresh-cut fruit:A review[J].Postharvest Biology and Technology,2010,57(3):139-148.
[65] FERRER O J,OTWELL W S,MARSHALL M R.Effect of bisulfite on lobster shell phenoloxidase[J].Journal of Food Science,1989,54:478-480.
[66] WILSON B G,BAHNA S L.Adverse reactions to food additives[J].Annals of Allergy Asthma and Immunology,2005,95(6):499-507.
[67] CHANG T S.An updated review of tyrosinase inhibitors[J].International Journal of Molecular Sciences,2009,(6):2440-2475.
[68] LIU W,ZOU L Q,LIU J P,et al.The effect of citric acid on the activity,thermodynamics and conformation of mushroom polyphenoloxidase[J].Food Chemistry,2013,140(1/2):289-295.
[69] LANTE A,ZOCCA F.Effect of β-cyclodextrin addition on quality of precooked vacuum packed potatoes[J].LWT-Food Science and Technology,2010,43(3):409-414.
[70] GUIAMBA I R F,SVANBERG U.Effects of blanching,acidification,or addition of EDTA on vitamin C and β-carotene stability during mango purée preparation[J].Food Science and Nutrition,2016,4(5):706-715.
[71] SON S M,MOON K D,LEE C Y.Rhubarb juice as a natural antibrowning agent[J].Journal of Food Science,2000,65(8):1288-1289.
[72] CERIT ?,PFAFF A,ERCAL N,et al.Postharvest application of thiol compounds affects surface browning and antioxidant activity of fresh-cut potatoes[J].Journal of Food Biochemistry,2020,44(10):e13378.
[73] ALI A,YEOH W K,F(xiàn)ORNEY C,et al.Advances in postharvest technologies to extend the storage life of minimally processed fruits and vegetables[J].Critical Reviews in Food Science and Nutrition,2019,58(15):2632-2649.
[74] GACCHE R N,SHETE A M,DHOLE N A,et al.Reversible inhibition of polyphenol oxidase from apple using L-cysteine[J].Indian Journal of Chemical Technology,2006,13(5):459-463.
[75] SCUDERI D,RESTUCCIA C,CHISARI M,et al.Salinity of nutrient solution influences the shelf-life of fresh-cut lettuce grown in floating system[J].Postharvest Biology and Technology,2011,59(2):132-137.
[76] ALTUNKAYA A.Effect of whey protein concentrate on phenolic profile and browning of fresh-cut lettuce (Lactuca sativa)[J].Food Chemistry,2014,148:427.
[77] ALTUNKAYA A,GOKMEN V.Effect of various inhibitors on enzymatic browning,antioxidant activity and total phenol content of fresh lettuce (Lactuca sativa)[J].Food Chemistry,2008,107(3):1173-1179.
[78] ZHOU X R,XIAO Y J,MENG X H,et al.Full inhibition of Whangkeumbae pear polyphenol oxidase enzymatic browning reaction by L-cysteine[J].Food Chemistry,2018,266:1-8.
[79] PRABASARI I,UTAMA N A,WIJAYANTI E P,et al.L-arginine to inhibit browning on fresh-cut salacca (Salacca edulis Reinw)[J].IOP Conference Series:Earth and Environmental Science,2020,458:012027.
[80] LIU P,SUN Y X,GU X P,et al.Effect of lysine combined with arginine treatment on browning inhibition of the fresh-cut apple[J].Storage and Process,2020,20(5):1-8.
[81] BARBAGALLO R N,CHISARI M,CAPUTA G.Effects of calcium citrate and ascorbate as inhibitors of browning and softening in minimally processed ‘Birgah’ eggplants[J].Postharvest Biology and Technology,2012,73:107-114.
[82] 楊慧,王趙改,李靜,等.不同抑制劑控制雙孢蘑菇褐變的研究[J].農(nóng)產(chǎn)品加工(學(xué)刊),2013,316:8-11.
[83] LIU P,XU N,LIU R F,et al.Exogenous proline treatment inhibiting enzymatic browning of fresh-cut potatoes during cold storage[J].Postharvest Biology and Technology,2022,184:111754.
[84] MA Y R,WANG H Y,YAN H,et al.Pre-cut NaCl solution treatment effectively inhibited the browning of fresh-cut potato by influencing polyphenol oxidase activity and several free amino acids contents[J].Postharvest Biology and Technology,2021,178:111543.
[85] MENG Z,DONG T T,MALIK A U,et al.Harvest maturity affects the browning of fresh-cut potatoes by influencing contents of amino acids[J].Postharvest Biology and Technology,2021,173:111404.
[86] SONG Z Y,QIAO J,TIAN D D,et al.Glutamic acid can prevent the browning of fresh-cut potatoes by inhibiting PPO activity and regulating amino acid metabolism[J].LWT-Food Science and Technology,2023,180:114735.
[87] KLIMCZAK I,GLISZCZYNSKA-SWIG?O A.Green tea extract as an anti-browning agent for cloudy apple juice[J].Journal of the Science of Food and Agriculture,2017,97(5):1420-1426.
[88] TINELLO F,LANTE A.Recent advances in controlling polyphenol oxidase activity of fruit and vegetable products[J].Innovative Food Science and Emerging Technologies,2018,50:73-83.
[89] JIRASUTEERUK C,TEERAKULKAIT C.Ultrasound-assisted extraction of phenolic compounds from mango (Mangifera indica cv.Chok Anan) peel and its inhibitory effect on enzymatic browning of potato puree[J].Food Technology and Biotechnology,2019,57(3):350-357.
[90] PENG X L,LI R,ZOU R,et al.Allicin inhibits microbial growth and oxidative browning of fresh-cut lettuce (Lactuca sativa) during refrigerated storage[J].Food and Bioprocess Technology,2014,7(6):1597-1605.
[91] ROL?AN E,S′ANCHEZ-MORENO C,DE ANCOS B,et al.Characterisation of onion (Allium cepa L.) by-products as food ingredients with antioxidant and antibrowning properties[J].Food Chemistry,2008,108(3):907-916.
[92] SUKHONTHARA S,KAEWKA K,THEERAKULKAIT C.Inhibitory effect of rice bran extracts and its phenolic compounds on polyphenol oxidase activity and browning in potato and apple puree[J].Food Chemistry,2016,190:922-927.
[93] LIU X,YANG Q,LU Y Z,et al.Effect of purslane (Portulaca oleracea L.) extract on anti-browning of fresh-cut potato slices during storage[J].Food Chemistry,2019,283:445-453.
[94] ZHANG Z M,PENG Y,MENG W B,et al.Browning inhibition of seabuckthorn leaf extract on fresh-cut potato sticks during cold storage[J].Food Chemistry,2022,389:133076.
[95] MIHINDUKULASURIYA S D F,LIM L T.Nanotechnology development in food packaging:A review[J].Trends in Food Science and Technology,2014,40(2):149-167.
[96] KALIA A,PARSHAD V R.Novel trends to revolutionize preservation and packaging of fruits/fruit products:Microbiological and nanotechnological perspectives[J].Critical Reviews in Food Science and Nutrition,2015,55(2):159-182.
[97] ZHANG M,DUAN Z H,SHAN W,et al.A study on the preservation of vegetable juices using quasi-nanoscale silver particles[J].International Journal of Food Engineering,2005,1(2):4.
[98] AN J S,ZHANG M,WANG S J,et al.Physical,chemical and microbiological changes in stored green asparagus spears as affected by coating of silver nanoparticles-PVP[J].LWT - Food Science and Technology,2008,41(6):1100-1107.
[99] FERNANDEZ A,PICOUET P,LLORET E.Cellulose-silver nanoparticle hybrid materials to control spoilage-related microflora in absorbent pads located in trays of fresh-cut melon[J].International Journal of Food Microbiology,2010,142(1/2):222-228.
[100]""""" LI X H,LI W L,JIANG Y H,et al.Effect of nano-ZnO coated active packaging on quality of fresh-cut ‘Fuji’ apple[J].International Journal of Food Science and Technology,2011,46(9):1947-1955.
[101]""""" MENG X Y,ZHANG M,ADHIKARI B.The effects of ultrasound treatment and nano-zinc oxide coating on the physiological activities of fresh-cut kiwifruit[J].Food and Bioprocess Technology,2014,7(1):126-132.
[102]""""" CHAWENGKIJWANICH C,HAYATA Y.Development of TiO2 powder-coated food packaging film and its ability to inactivate Escherichia coli in vitro and in actual tests[J].International Journal of Food Microbiology,2008,123(3):288-292.
[103]"RABEA A,NAEEM E,BALABEL N M,et al.Management of potato brown rot disease using chemically synthesized CuO-NPs and MgO-NPs[J].Botanical Studies,2023,64(1):20.
[104]""""" BACHEM C W B,SPECHMANN G J,VANDER C G.Antisense expression of polyphenol oxidase gene inhibit browsing of transgenic potato[J].Bio-Technology,1994,2:1101-1105.
[105]""""" COETZER C,CORSINI D,LOVE S,et al.Control of enzymatic browning in potato (Solanuam tuberosum L.) by sense and antisense RNA from tomato polyphenol axidase[J].Journal of Agriculture and Food Chemistry,2001,49(2):652-657.
[106]""""" 王麗,王萬興,索海翠,等.馬鈴薯多酚氧化酶基因家族生物信息學(xué)及表達分析[J].湖南農(nóng)業(yè)大學(xué)學(xué)報(自然科學(xué)版),2019,45(6):601-610.
[107]""""" CHI M,BHAGWAT B,LANE W D,et al.Reduced polyphenol oxidase gene expression and enzymatic browning in potato (Solanum tuberosum L.) with artificial microRNAs[J].BMC Plant Biology,2014,14:62.
[108]""""" 陳明?。畱?yīng)用基因編輯技術(shù)抑制馬鈴薯多酚氧化酶的研究[D].貴陽:貴州大學(xué),2018.
[109]""""" 方圓.利用RNAi和Gene-Deletor技術(shù)創(chuàng)制抗褐化馬鈴薯新種質(zhì)[D].貴陽:貴州大學(xué),2023.
[110]"""""" DONG T T,CAO Y,LI G C,et al.A novel aspartic protease inhibitor inhibits the enzymatic browning of potatoes[J].Postharvest Biology and Technology,2021,172:111353.
[111]"""""" LI L Q,MU Y L,CHEN J,et al.Molecular mechanism by which StSN2 overexpression inhibits the enzymatic browning of potato[J].Postharvest Biology and Technology,2023,203:112416.
[112]"""""" SHI J K,XIE W X,LI S N,et al.Prohibitin StPHB3 affects the browning of fresh-cut potatoes via influencing antioxidant capacity and polyphenol oxidase activation[J].Postharvest Biology and Technology,2024,207:112598.
[113]"""""" 陳明俊,羅小波,曹貞菊,等.基于主成分分析和隸屬函數(shù)法對不同馬鈴薯酶促褐變評價[J].中國蔬菜,2024(4):85-92.
[114]"""""" 陳明俊,舒啟瓊,徐建飛,等.抗褐變馬鈴薯品種(系)鑒定與篩選[J].作物學(xué)報,2020,46(8):1208-1216.
DOI:10.16861/j.cnki.zggc.2024.0403
Research progress of mechanisms and control strategies for potato browning
CAO Zhenju1, CHEN Mingjun1, LUO Xiaobo1, LI Biao1, LI Fei2
(1. Guizhou Institute of Biotechnology/Guizhou Institute of Potato/Guizhou Institute of Food Processing, Guiyang 550009, Guizhou, China; 2. Institute of Horticulture, Guizhou Academy of Agricultural Sciences, Guiyang 550006, Guizhou, China)
Abstract: Enzymatic browning during processing and storage of fresh-cut potatoes seriously affects product quality and market value. Many studies have been conducted on browning control to address this issue. This review examines the mechanisms of browning in fresh-cut potatoes and the control techniques for browning both domestically and internationally. Physical control techniques include ultrasound, low temperature, high pressure, high oxygen, and modified atmosphere packaging. Chemical agent control methods involve the application of inorganic and organic compounds, plant extracts, and nanomaterials. Genetic engineering approaches encompass antisense gene technology, artificial microRNA(amiRNA)technology, gene overexpression, gene editing(CRISPR/Cas9), and RNA interference(RNAi)technology. This paper summarizes the latest advancements in technologies for controlling browning in fresh-cut potatoes and offers recommendations and perspectives to guide further in-depth research on browning inhibition of fresh cut potatoes in the future.
Key words: Potato; Enzymatic browning; Control strategy