摘要: 土壤磷素地表徑流提取系數(shù)(phosphorus extraction coefficient,ECp) 是模擬表層土壤可溶性磷隨地表徑流遷移,估算農(nóng)業(yè)磷非點(diǎn)源污染負(fù)荷模型中的一個(gè)重要參數(shù)。當(dāng)前ECp 的相關(guān)研究存在內(nèi)涵模糊,確定方法各異,變異范圍和影響機(jī)制也不夠清晰等問(wèn)題。本文梳理了國(guó)內(nèi)外相關(guān)研究中ECp 的提取方法、影響因素,為提高農(nóng)業(yè)磷非點(diǎn)源污染評(píng)估的精度提供理論依據(jù)。ECp 定義為地表徑流溶解態(tài)磷(dissolved phosphorus,DP) 濃度與表層土壤可溶性磷含量的比率。該系數(shù)通常基于降雨試驗(yàn),通過(guò)建立地表徑流DP 和表層土壤磷含量的線性回歸方程,用回歸線的斜率表示ECp,因此其概念本質(zhì)主要體現(xiàn)在統(tǒng)計(jì)學(xué)意義上。ECp 受降雨、土壤、植被覆蓋和農(nóng)田管理措施等多種因素影響,變異范圍較大。ECp 通常與土壤黏粒含量、吸附性、植被覆蓋度等因素呈反比,而與土壤初始含水量呈正比。非石灰性土壤ECp 值一般大于石灰性土壤。為簡(jiǎn)化計(jì)算,ECp 在NPS 污染模型中通常被設(shè)為一個(gè)定值。例如,在化學(xué)物質(zhì)、徑流和土壤侵蝕 (chemicals, runoff, and erosion fromagriculture management,CREAMS) 及農(nóng)業(yè)非點(diǎn)源 (agricultural nonpoint source,AGNPS) 模型中,ECp 值設(shè)為7.5,而在土壤侵蝕和作物生產(chǎn)力評(píng)價(jià) (erosion/productivity impact calculator,EPIC) 和水土評(píng)估工具 (soil andwater assessment tools, SWAT) 模型中,ECp 值則設(shè)為5.7。因此,未來(lái)研究仍需重視ECp 的物理內(nèi)涵,精準(zhǔn)測(cè)算多次降雨平均和動(dòng)態(tài)ECp,闡明土壤磷素地表徑流提取的動(dòng)力機(jī)制;加強(qiáng)地表徑流和表層土壤中可溶性磷素含量間的非線性關(guān)系的研究,提高ECp 值確定方法的適用性;深入分析不同區(qū)域ECp 的變異特征和影響因素,針對(duì)施肥頻繁且易發(fā)生復(fù)雜強(qiáng)烈水力侵蝕的坡耕地,尤其需要提出ECp 的校正值;用核定后或者監(jiān)測(cè)獲得的ECp 統(tǒng)計(jì)值代替現(xiàn)有NPS 污染模型中的常數(shù),以提高土壤磷素流失負(fù)荷模擬精度。
關(guān)鍵詞: 土壤磷素; 地表徑流; 提取系數(shù); 農(nóng)業(yè)非點(diǎn)源污染
降雨條件下土壤中磷素的溶出和遷移是農(nóng)業(yè)非點(diǎn)源污染(non-point source, NPS) 的一條重要途徑,是導(dǎo)致土壤質(zhì)量退化、養(yǎng)分有效性降低、地表水體污染和生態(tài)環(huán)境惡化的主要原因之一[1?2]。許多研究發(fā)現(xiàn),地表徑流中磷素濃度(dissolved phosphorus, DP)與表層土壤可溶性磷含量存在顯著相關(guān)性,可以用來(lái)預(yù)測(cè)地表徑流DP 負(fù)荷量,因而提出了土壤磷素地表徑流提取系數(shù)(phosphorus extraction coefficient,ECp) 的概念[3?5]。ECp 的提出基于一個(gè)核心假設(shè),即在產(chǎn)流條件下,表層土壤磷素在固液相之間存在一個(gè)相對(duì)平衡比例,地表徑流中的DP 主要來(lái)自于土壤水?徑流中可溶性磷素的分子擴(kuò)散作用。地表徑流DP 濃度與表層土壤可溶性磷素含量的比率,即為磷素提取系數(shù)ECp。在國(guó)外許多NPS 污染和水土流失評(píng)價(jià)機(jī)理模型中,地表徑流DP 流失模塊都采用了E C p 來(lái)測(cè)算土壤可溶性磷素向地表徑流的遷移量[6?9]。在這些模型中,DP 流失量均為表層土壤可溶性磷素濃度、地表徑流量和ECp 的乘積,趨向于認(rèn)為ECp 為一個(gè)常數(shù)。
自20 世紀(jì)70 年代后期,國(guó)際上開(kāi)始土壤磷素流失機(jī)理方面的研究,并將相關(guān)成果應(yīng)用到一些NPS 污染模型中[2, 10]。進(jìn)入80 年代末,NPS 污染模型開(kāi)始與地理信息系統(tǒng)結(jié)合并快速發(fā)展,模型模擬尺度進(jìn)一步擴(kuò)大,引發(fā)了學(xué)者們對(duì)污染物負(fù)荷模型參數(shù)精度研究的關(guān)注[8?9]。自90 年代中后期到21 世紀(jì)初,ECp 影響因素和變異范圍研究進(jìn)入活躍期,然而,近10 年來(lái)相關(guān)研究較少,這主要?dú)w因于兩方面的挑戰(zhàn):首先,ECp 影響因素多且具有較多的不確定性,其率定通常需要借助大量的室內(nèi)或田間降雨試驗(yàn),難度較大;其二,大型NPS 污染機(jī)理模型往往集成了復(fù)雜的水文、侵蝕和污染物遷移過(guò)程,其在流域月年尺度的模擬效果好于地塊尺度單場(chǎng)降雨[2],表明較長(zhǎng)時(shí)間和較大空間尺度的模擬一定程度上會(huì)降低部分參數(shù)的敏感性,尤其是類似于ECp 之類基于小尺度試驗(yàn)結(jié)果的參數(shù)。隨著NPS 污染模型研究的不斷深入,模型中一些缺失或簡(jiǎn)化的模塊已經(jīng)不利于進(jìn)一步揭示NPS 污染的復(fù)雜機(jī)理[1]。與發(fā)達(dá)國(guó)家相比,我國(guó)NPS 污染模型研究始于20 世紀(jì)80 年代的湖泊富營(yíng)養(yǎng)化調(diào)查,土壤磷素流失機(jī)理研究在90 年代才開(kāi)始起步[10?11]。雖然近年來(lái)NPS 污染模型發(fā)展迅速,但主要依賴國(guó)外已有模型開(kāi)展應(yīng)用研究,較少結(jié)合我國(guó)特定區(qū)域?qū)嶋H情況,對(duì)模型模塊或參數(shù)進(jìn)行必要的修正或改進(jìn),在土壤磷素地表流失方面更關(guān)注泥沙吸附態(tài)磷素的流失。
ECp 和測(cè)算泥沙吸附態(tài)磷素流失量的磷素泥沙富集率(phosphorus enrichment ration,ERp) 一樣,都是揭示降雨條件下土壤磷素流失機(jī)制和估算磷素輸出量的重要參數(shù),反映了土壤、水文條件、地形地貌和農(nóng)田管理措施等因素的綜合影響。然而,在現(xiàn)有研究中關(guān)于ECp 的研究成果遠(yuǎn)不及ERp 豐富,尤其在國(guó)內(nèi)學(xué)術(shù)界的相關(guān)研究更少。因此,本文針對(duì)近年來(lái)土壤ECp 的研究現(xiàn)狀和進(jìn)展進(jìn)行綜述,提出今后的研究方向。這既有助于詮釋表層土壤磷素在水土界面的遷移過(guò)程和機(jī)制,還可為提高農(nóng)業(yè)NPS污染模型的模擬精度,促進(jìn)坡耕地水土資源保護(hù)和農(nóng)田養(yǎng)分有效管理提供科學(xué)依據(jù)。
1 土壤磷素地表徑流提取系數(shù)內(nèi)涵與確定方法
1.1 土壤磷素地表徑流提取系數(shù)內(nèi)涵
ECp 概念是在模擬表層土壤溶質(zhì)隨地表徑流遷移研究中被提出的。早在1967 年,Huff 等[12]認(rèn)為能夠與水相互作用的表層土壤是土壤懸浮微粒的“有效”部分。Bailey 等[13]在1974 年提出土壤表層存在一定厚度的混合層(mixing zone),是表層土壤可溶性物質(zhì)能夠參與地表徑流遷移的關(guān)鍵土層,厚度為0.2~0.6 cm。Frere[14]通過(guò)模擬試驗(yàn),發(fā)現(xiàn)該混合層厚度一般不超過(guò)1 cm。Donigian 等[15]在1977 年研發(fā)農(nóng)業(yè)徑流管理模型(agricultural runoff management, ARM)時(shí),假定混合層內(nèi)雨水與土壤水完全混合,徑流、入滲水、土壤水中可溶性物質(zhì)數(shù)量或濃度相等。Knisel[16]在1980 年研發(fā)農(nóng)業(yè)管理中化學(xué)物質(zhì)、徑流和土壤侵蝕(chemicals, runoff, and erosion from agriculturemanagement, CREAMS) 模型中,也認(rèn)為產(chǎn)流條件下表層土壤物質(zhì)固液相存在一個(gè)相對(duì)平衡的比例,地表徑流溶解態(tài)物質(zhì)主要來(lái)自于土壤水?徑流中可溶性物質(zhì)的分子擴(kuò)散作用。為了測(cè)算土壤溶質(zhì)水土界面遷移量,學(xué)者將地表徑流與表層土壤可溶性物質(zhì)濃度的比率定義為地表徑流提取系數(shù)(extraction coefficient,EC),磷素徑流提取系數(shù)ECp 即為地表徑流DP 濃度與表層土壤可溶性磷素濃度的比率[5, 16]。
為了簡(jiǎn)化模擬過(guò)程,ARM 模型將ECp 認(rèn)定是一個(gè)常數(shù),如在估算Watkinsville Georgia 地區(qū)田間土壤養(yǎng)分流失量時(shí),ECp 采用的是常數(shù)0.075[15](和后期Sharpley 等[7]和Vadas 等[17]研究保持一致,統(tǒng)一量綱折算后為7.5),與氮的EC 值一樣。CREAMS 模型認(rèn)為,EC 與土壤孔隙度有關(guān),對(duì)于給定土壤,EC可視為常數(shù)[16]。在磷素流失負(fù)荷模擬中,ECp 主要依據(jù)地表徑流DP 與表層土壤可溶性磷素濃度的相關(guān)關(guān)系測(cè)算,因此其概念主要體現(xiàn)在統(tǒng)計(jì)學(xué)意義上[3, 18]。ECp 是估算土壤磷素在水土界面遷移負(fù)荷量的關(guān)鍵因子,是否具有明確的物理意義,還有待深入研究。
1.2 土壤磷素地表徑流提取系數(shù)確定方法
ECp 確定方法是在NPS 污染模型的建立和發(fā)展過(guò)程中提出的,主要通過(guò)天然或模擬降雨試驗(yàn)觀測(cè)數(shù)據(jù)測(cè)算。土壤可溶性磷素包括液相磷和弱吸附性磷,是土壤活性磷,又稱生物有效磷(bio-availablephosphorus,BAP) 的主要組成部分[19?21],因此可直接利用土壤BAP 預(yù)測(cè)地表DP 流失量。很多學(xué)者認(rèn)為,隨著表層土壤有效磷BAP 增加,地表徑流中DP 也會(huì)增加,兩者呈顯著的線性相關(guān)關(guān)系[3, 5, 17, 22?23]。因此,可根據(jù)試驗(yàn)數(shù)據(jù)建立徑流DP 和土壤有效磷BAP的線性回歸方程,縱軸與橫軸分別代表徑流DP 濃度(μg/L) 和土壤有效磷BAP 濃度(mg/kg),回歸線的斜率為ECp。有學(xué)者認(rèn)為土壤磷素隨地表徑流遷移量變異性很大,不宜用一種或平均的關(guān)系來(lái)解釋土壤和徑流DP 之間的相關(guān)性[21, 24]。Sharpley 等[2, 24]通過(guò)分析實(shí)測(cè)數(shù)據(jù)發(fā)現(xiàn),地表徑流和土壤中磷素除線性相關(guān)外,還有指數(shù)和分段線性相關(guān)等關(guān)系。Ramíre-Závila 等[21]發(fā)現(xiàn),降雨前施入有機(jī)磷和無(wú)機(jī)磷都會(huì)使徑流中DP 濃度顯著增加,土壤BAP 與徑流DP 不再呈線性相關(guān)關(guān)系,因此無(wú)法用這種方法測(cè)算ECp。
2 土壤磷素地表徑流提取系數(shù)的測(cè)算結(jié)果與影響因素
2.1 土壤磷素地表徑流提取系數(shù)測(cè)算結(jié)果
土壤BAP 的浸提測(cè)試方法較多,所測(cè)定的并不是土壤中某一形態(tài)的磷,也不具有真正“數(shù)量”的概念,只是代表土壤的相對(duì)供磷水平[24?26]。研究人員通過(guò)多種土壤浸提方法(如Bray-Kurtz 法[27]、Mehlich-3 法[ 2 8 ]、Morgan 法[ 2 9 ]、Olsen 法[ 3 0 ]和蒸餾水浸提法[ 3 1 ]等) 來(lái)獲得浸提液并測(cè)定表層土壤BAP 含量,進(jìn)而確定ECp。Fang 等[ 2 3 ]利用長(zhǎng)×寬×高=0.61 m×0.15 m×0.10 m、坡度4% 的土槽,在60 mm/h 降雨強(qiáng)度下進(jìn)行30 min 室內(nèi)模擬降雨試驗(yàn),發(fā)現(xiàn)不同提取方法測(cè)得的土壤BAP 濃度與徑流中DP 濃度的線性回歸方程斜率存在較大差異,通過(guò)徑流DP 與Mehlich-3 法、Olsen 法和Bray-Kurtz 法土壤BAP 計(jì)算得出ECp 分別為5.83、9.41 和9.86。檢索90 年代以來(lái)的ECp 相關(guān)文獻(xiàn),遴選一個(gè)月內(nèi)未施肥土壤試驗(yàn)的分析結(jié)果,我們也發(fā)現(xiàn)ECp 與土壤BAP 浸提測(cè)樣方法有關(guān)(表1)。例如,Bray-1 法[27]的ECp 為0.6~15.0,Mehlich-3 法[28]的ECp 為0.4~7.0,由去離子水浸提法的ECp 為4.3~28.1,Olsen 法[30]的ECp 則為3.3~9.3,這些結(jié)果均存在一定的變異。通過(guò)土槽試驗(yàn)獲得的結(jié)果中,大部分Mehlich-3 法測(cè)得的ECp為1.5~2.6[4, 32?33]。Fang 等[23]所得的ECp 為5.8,Allen等[34]所得ECp 最大值為4.0,這可能與土壤磷含量范圍(前者為0~150 mg/kg,后者為0~800 mg/kg) 的差異有關(guān)。在田間耕地試驗(yàn)獲得的結(jié)果中,Mehlich-3法得到的ECp 范圍主要集中在1.2~3.0。Cox 等[35]基于5 次5% 黏粒含量土壤的降雨試驗(yàn)數(shù)據(jù),計(jì)算得到ECp 值為3.9,可能是黏粒含量低導(dǎo)致土壤磷吸附能力較弱,土壤磷素更容易被地表徑流解吸[36]。當(dāng)土壤磷含量存在垂直分層時(shí),表層土壤中磷含量通常最高,并隨深度增加而降低。因此,可以從較淺表土層中提取出比深層土壤更多的磷素,由前者測(cè)算出的ECp 一般會(huì)低于后者。根據(jù)Torbert 等[37]研究,對(duì)于石灰性和非石灰性土壤,利用0—15 cm 土層土壤磷含量測(cè)算的ECp 分別為0—2.5 cm 土層的6.76和14.93 倍。Vadas 等[17]分析了美國(guó)9 個(gè)州土壤ECp的測(cè)算結(jié)果,發(fā)現(xiàn)不同土壤Mehlich-3 法所測(cè)ECp取值范圍為1.2~3.0,水浸提法所測(cè)ECp 取值在6.0~18.3;對(duì)所有觀測(cè)數(shù)據(jù)進(jìn)行線性回歸分析后,測(cè)出Mehlich-3 法所測(cè)ECp 值為2.0,水浸提法測(cè)的ECp 值為11.2,接近上述變異范圍的平均值,因此提出對(duì)于大多數(shù)土壤、水文和農(nóng)田管理?xiàng)l件,在用模型估算土壤磷素地表流失量時(shí),ECp 值可采用2.0 或者11.2。根據(jù)Mehlich[28]研究,土壤中不穩(wěn)定無(wú)機(jī)磷含量是Mehlich3-P 的一半,因此Vadas 等[38]認(rèn)為土壤不穩(wěn)定無(wú)機(jī)磷ECp 取值4 比較合適。由于試驗(yàn)條件的差異 (表1),所測(cè)算的ECp 值通常無(wú)法直接比較,在具體區(qū)域應(yīng)用時(shí)應(yīng)充分調(diào)研和分析,以確定ECp 的合理取值。
2.2 土壤磷素地表徑流提取系數(shù)影響因素
土壤磷素地表流失量的影響因素很多,包括降雨[50]、土壤[51]、植被[52]、地形條件[53]、耕作方法、施肥[2, 54]等,這方面研究已經(jīng)取得了較為豐富的成果,而ECp 影響因素的研究相對(duì)較少。已有研究表明,ECp 受降雨條件[55]、徑流量[43]、土壤黏粒含量[35]、施肥量[49]、土壤吸附能力[56]、土壤CaCO3 含量[37]、土壤初始含水量[22]和農(nóng)藝管理措施[17, 36]等因素的影響,其數(shù)值具有一定的變異性。ECp 主要取決于地表徑流DP 與表層土壤中可溶性磷素濃度的比值,在某種情況下如果兩者都增加,則難以明確ECp 的變化結(jié)果。比如施肥會(huì)增加表層土壤可溶性磷的含量,但地表徑流DP 濃度也會(huì)隨之增加,因此ECp 值是否增加存在不確定性[4, 49]。目前較為一致的結(jié)論是ECp與土壤黏粒含量、吸附性、植被覆蓋度等呈負(fù)相關(guān),與土壤初始含水量呈正相關(guān)[22, 35, 43, 49, 55?58]。此外,非石灰性土壤ECp 大于石灰性土壤[37]。Sharpley 等[24]通過(guò)分析1975—1991 年草地和耕地土壤磷素流失試驗(yàn)數(shù)據(jù),測(cè)算出草地ECp 值為4.1~7.0,耕地為8.3~12.5,草地的平均ECp 值(6.0) 低于耕地(10.5),表明耕地土壤磷素地表徑流遷移風(fēng)險(xiǎn)大于草地。對(duì)于近期施過(guò)肥的土壤,當(dāng)土壤中的磷含量達(dá)到一定水平時(shí),土壤對(duì)磷素的吸持能力接近飽和,此時(shí)磷素的流失量會(huì)隨著土壤磷含量提高而急劇增加[ 2 , 5 4 ]。Sharpley[56]在10 種土壤中施入不同量的有機(jī)肥后研究發(fā)現(xiàn),土壤磷吸附度低的土壤類型下地表徑流DP 濃度較高,ECp 與土壤飽和度的對(duì)數(shù)值呈極顯著的負(fù)線性相關(guān)關(guān)系。Knisel[16]在測(cè)算土壤磷素流失量時(shí),用磷素土壤分配系數(shù)(phosphorus soil partitioningcoefficient, PHOSKD) 表示表層1 cm 土壤可溶性磷素含量與地表徑流DP 濃度的比值,發(fā)現(xiàn)PHOSKD 為ECp 倒數(shù)的1000 倍,認(rèn)為PHOSKD 與土壤黏粒含量有關(guān)。
許多研究表明,降雨條件下土壤磷素的流失形態(tài)主要以泥沙顆粒態(tài)為主,徑流DP 的流失量較少[59?62]。但受地被覆蓋、施肥耕作和侵蝕等因素影響,DP 流失比例有時(shí)最大可達(dá)87.7%,而低的不足1%,變異范圍較大[63?65]。尤其是當(dāng)坡面發(fā)生強(qiáng)烈侵蝕后,土壤弱吸附性磷素會(huì)被徑流沖刷—解吸進(jìn)入地表徑流;當(dāng)表層土壤被剝蝕后,混合層以下的可溶性磷素也會(huì)通過(guò)對(duì)流?彌散等作用進(jìn)入地表徑流,引起徑流DP濃度急劇增高[66?67]。Sharpley 等[41]通過(guò)對(duì)比Pote 等[22]、McDowell 等[4]和Sharpley 等[68]關(guān)于草場(chǎng)、免耕、少耕和傳統(tǒng)耕作農(nóng)田的試驗(yàn)結(jié)果,發(fā)現(xiàn)耕作土壤ECp是草地的4.96 倍,認(rèn)為增加地表土壤覆蓋率減少了土壤和降雨徑流的相互作用,減少了土壤侵蝕量,ECp 也隨之減少,提出ECp 值與侵蝕模數(shù)(erosionmodulus,Em) 呈指數(shù)相關(guān),方程為ECp=1.25 Em 0.30(R2=0.90)。Little 等[69]根據(jù)Alberta 流域春季融雪和夏季天然降雨試驗(yàn),測(cè)算出不同施肥量坡地ECp 值均高于Wright 等[70]利用該流域土壤進(jìn)行室內(nèi)模擬降雨試驗(yàn)的結(jié)果,可能是大尺度天然降雨下土壤侵蝕量更大的緣故。
3 土壤磷素地表徑流提取系數(shù)應(yīng)用
降雨產(chǎn)流條件下土壤溶質(zhì)坡面流失受到多種因素影響,基于降雨—徑流—土壤混合層的物理模型[ 7 1 ? 7 3 ]雖然對(duì)過(guò)程有很好的機(jī)理模擬,但其過(guò)于復(fù)雜,使其在污染物流失量模擬預(yù)測(cè)中不易推廣。磷指數(shù)法[74?75]測(cè)算的并不是磷的實(shí)際流失量,而是反映磷潛在流失風(fēng)險(xiǎn)高低的相對(duì)值;基于土地利用分類的磷素輸出系數(shù)法[76?77]假定相同土地利用類型的輸出系數(shù)固定不變,污染物輸出量與該類土地的面積呈線性關(guān)系,對(duì)降雨、土壤和農(nóng)業(yè)管理等因素的影響考慮不足。因此,土壤侵蝕和作物生產(chǎn)力評(píng)價(jià)(erosion/productivity impact calculator, EPIC) 模型[78]、農(nóng)業(yè)非點(diǎn)源(agricultural nonpoint source, AGNPS) 污染模型[79]和水土評(píng)估工具(soil and water assessmenttools, SWAT)[80?81]等模型普遍采用了CREAMS 模型中的提取系數(shù)法(表2)。在這些模型中,地表徑流DP流失量均為表層土壤可溶性磷濃度與地表徑流量和ECp 的乘積,各模型趨向于認(rèn)為ECp 為一個(gè)常數(shù)[40]。SWAT[82?83]和EPIC[78]模型中地表徑流DP 測(cè)算則采用了ECp 的倒數(shù),系統(tǒng)默認(rèn)是常數(shù)175 (按量綱折算成ECp 為5.7),用戶亦可自行調(diào)整。
基于Lake Allatoona 流域土壤各種形態(tài)磷素含量[82]和該流域徑流DP 與不同測(cè)試方法BAP 的相關(guān)關(guān)系[ 4 5 ],Radcliffe 等[ 8 3 ]推算出該區(qū)域強(qiáng)風(fēng)化土壤ECp 的閾值范圍為4.14~9.80,折算成磷素土壤分配系數(shù)PHOSKD 為102~242,平均值接近SWAT 模型中的系統(tǒng)默認(rèn)值(175)。但在Sharpley 等[82]關(guān)于微風(fēng)化或鈣質(zhì)土壤的研究結(jié)果中,PHOSKD 值分別為55 和42,與175 差異較大。農(nóng)業(yè)管理系統(tǒng)中地下水污染負(fù)荷(groundwater loading effects of agriculturalmanagement systems, GLEAMS)[57]和區(qū)域非點(diǎn)源流域環(huán)境響應(yīng)(areal nonpoint source watershed environmentresponse simulation, ANSWERS )[ 5 8 ]模型均采用了Knisel 等[ 1 6 ]提出的PHOSKD 參數(shù),計(jì)算公式為PHOSKD=100+2.5×土壤黏粒含量,可知PHOSKD 都大于100,折算成ECp 后小于10。在上述模型中,磷素泥沙富集率ERp 均為變量。CREAMS 模型[16]設(shè)定ERp 與土壤侵蝕模數(shù)呈對(duì)數(shù)線性關(guān)系,AGNPS 模型在此基礎(chǔ)上增加了土壤質(zhì)地因子[77],EPIC 模型[78]和SWAT 模型[80]均認(rèn)為ERp 與徑流含沙量有關(guān)。這與ECp 或其倒數(shù)為一常數(shù)或接近常數(shù)不同。
4 主要問(wèn)題與研究展望
4.1 土壤磷素徑流提取系數(shù)的內(nèi)涵及確定方法
現(xiàn)有研究中ECp 通常是基于多場(chǎng)次降雨試驗(yàn),根據(jù)土壤?徑流磷素含量相關(guān)關(guān)系確定,更多體現(xiàn)統(tǒng)計(jì)學(xué)意義[2?4, 18]。然而,由于缺少對(duì)ECp 的物理內(nèi)涵及其影響因素研究,無(wú)法更好地揭示地表徑流對(duì)土壤磷素提取的過(guò)程和機(jī)理。未來(lái)研究應(yīng)聚焦于明確物理意義的ECp,測(cè)算各場(chǎng)次降雨的平均ECp (即地表徑流DP 平均濃度與表層土壤BAP 含量比值) 和動(dòng)態(tài)ECp (即各采樣時(shí)段徑流DP 濃度與表層土壤BAP含量比值)。使ECp 既可反映表層土壤磷素在土水界面的流失風(fēng)險(xiǎn)和地表流失量,亦可闡述土壤磷素地表徑流提取的動(dòng)力機(jī)制和影響因素。此外受土壤侵蝕、施肥和水文條件等因素影響,徑流DP 濃度與表層土壤BAP 含量并不一定為線性相關(guān),存在徑流DP濃度突然增加的“突變點(diǎn)”現(xiàn)象[2, 69, 84]。因此,需要通過(guò)模擬和自然降雨試驗(yàn),基于徑流DP 與土壤BAP平均濃度的線性和非線性相關(guān)關(guān)系,更新拓展統(tǒng)計(jì)意義ECp 的確定方法,提高其在NPS 污染模型中的適用性。
4.2 降雨條件下土壤磷素徑流提取的動(dòng)力機(jī)制
磷素在土壤中容易被固定,施入的磷肥很難向土壤深層遷移,因此土壤磷素流失與土壤侵蝕過(guò)程關(guān)系密切[85?86]。目前,針對(duì)水蝕條件下土壤磷素流失機(jī)制研究和模擬,主要集中在濺蝕或?yàn)R蝕?片蝕過(guò)程,較少深入分析細(xì)溝侵蝕產(chǎn)生之后水沙急劇變化對(duì)不同形態(tài)磷流失動(dòng)態(tài)的影響和復(fù)雜機(jī)制[67]?,F(xiàn)有ECp 理論研究大多基于小坡長(zhǎng)、緩坡度、裸地飽和土壤且土壤侵蝕可忽略不計(jì)的模擬降雨試驗(yàn)數(shù)據(jù),假定表層土壤磷素固液相存在一個(gè)相對(duì)平衡的比例,并認(rèn)為表層土壤可溶性磷主要以分子擴(kuò)散作用進(jìn)入地表水體[23, 31, 35, 37],缺少水蝕條件下地表徑流對(duì)土壤磷素提取的多種動(dòng)力機(jī)制研究。因此,今后在施肥頻繁和侵蝕強(qiáng)度較大區(qū)域,應(yīng)該結(jié)合坡面水力侵蝕演變過(guò)程,探討ECp 與試驗(yàn)處理、坡面徑流含沙量和產(chǎn)沙率等水沙輸移參數(shù)的作用關(guān)系,揭示ECp 對(duì)復(fù)雜水力侵蝕的響應(yīng)特征和動(dòng)力機(jī)制。
4.3 土壤磷素徑流提取系數(shù)的影響因素和變異特征
現(xiàn)有ECp 研究雖然實(shí)現(xiàn)了簡(jiǎn)化表征地表徑流DP流失過(guò)程的目的,但將多種影響因素試驗(yàn)數(shù)據(jù)混在一起分析,對(duì)單因素的量化研究不足,無(wú)法闡明各因素對(duì) ECp 的影響機(jī)制。此外,由于試驗(yàn)設(shè)置不同,無(wú)法直接分析所測(cè)算ECp 值的合理性,在具體NPS 污染模型區(qū)域應(yīng)用時(shí)也缺乏足夠的遴選依據(jù)。因此,應(yīng)該先從 ECp 早期的研究尺度—坡地開(kāi)始,細(xì)化試驗(yàn)處理和控制水平,注重降雨、土壤、植被覆蓋、地形地貌和農(nóng)業(yè)管理措施等單因素對(duì) ECp 的影響,確定ECp 的變異范圍和離散特征,構(gòu)建研究區(qū)域ECp 與試驗(yàn)處理的對(duì)照表。同時(shí),應(yīng)將研究尺度從坡地?cái)U(kuò)大到坡溝系統(tǒng)或流域尺度,確定ECp 的空間變異性,拓展土壤磷素地表徑流提取的影響機(jī)制研究。
4.4 土壤磷素徑流提取系數(shù)在NPS 污染模型中的應(yīng)用
現(xiàn)有NPS 污染模型為了簡(jiǎn)化土壤磷素水土界面遷移過(guò)程,大多將ECp 定義為一個(gè)常數(shù)或者與土壤有關(guān)的變量[79?81]。國(guó)外有學(xué)者在應(yīng)用上述模型時(shí),會(huì)根據(jù)已有研究和觀測(cè)結(jié)果確定合理的ECp 取值[17, 38, 83]。我國(guó)的NPS 污染監(jiān)測(cè)站點(diǎn)密度較低,基礎(chǔ)研究數(shù)據(jù)較為欠缺,給模型應(yīng)用帶來(lái)一定的困難[11]。學(xué)者們通常是直接采用NPS 污染模型中系統(tǒng)默認(rèn)的ECp值[87?88],或者通過(guò)降雨試驗(yàn)觀測(cè)不同條件下土壤磷素流失量和濃度的變化[89?90],鮮有將兩者結(jié)合起來(lái)核算ECp 值。未來(lái)研究應(yīng)一方面著重于開(kāi)展多因素、長(zhǎng)序列試驗(yàn)研究,核定統(tǒng)計(jì)學(xué)意義ECp 的變異范圍,為現(xiàn)有NPS 污染模型中地表徑流DP 流失參數(shù)率定提供依據(jù)。同時(shí),還應(yīng)結(jié)合試驗(yàn)研究,構(gòu)建有物理意義的ECp 與關(guān)鍵影響因素的方程,進(jìn)一步驗(yàn)證后,將其作為一個(gè)物理變量嵌入到NPS 污染模型磷素流失模塊中,改進(jìn)這些模型并提高其模擬精度。
參 考 文 獻(xiàn):
[ 1 ]Ge X F, Chen X Y, Liu M X, et al. Toward a better understanding ofphosphorus nonpoint source pollution from soil to water and theapplication of amendment materials: Research trends[J]. Water, 2023,15(8): 1531.
[ 2 ]Sharpley A N, McDowell R W, Weld J L, Kleinman P J A. Assessingsite vulnerability to phosphorus loss in an agricultural watershed[J].Journal of Environmental Quality, 2001, 30(6): 2026?2036.
[ 3 ]Hartz T K, Johnstone P R. Relationship between soil phosphorusavailability and phosphorus loss potential in runoff and drainage[J]. Informa UK Limited, 2006, 37(11): 1525?1536.
[ 4 ]McDowell R W, Sharpley A N. Approximating phosphorus releasefrom soils to surface runoff and subsurface drainage[J]. Journal ofEnvironmental Quality, 2001, 30(2): 508?520.
[ 5 ]Daniel T C, Edwards D R, Sharpley A N. Effect of extractable soilsurface phosphorus on runoff water quality[J]. Transactions of theASAE, 1993, 36(4): 1079?1085.
[ 6 ]Wang Z Z, Zhang T Q, Tan C S, Qi Z M. Modeling of phosphorusloss from field to watershed: A review[J]. Journal of EnvironmentalQuality, 2020, 49(5): 1203?1224.
[ 7 ]Sharpley A N, Bergstrom L, Aronsson H, et al. Future agriculturewith minimized phosphorus losses to waters: Research needs anddirection[J]. Ambio, 2015, 44: 163?179.
[ 8 ]Knisel W G, Douglas-Mankin K R. CREAMS/GLEAMS: Model use,calibration, and validation[J]. American Society of Agricultural andBiological Engineers, 2012, 55(4): 1291?1302.
[ 9 ]Saravanan S, Singh L, Sathiyamurthi S, et al. Predicting phosphorusand nitrate loads by using SWAT model in Vamanapuram RiverBasin, Kerala, India[J]. Environmental Monitoring and Assessment,2023, 195(1): 186.
[10]Luo M, Liu X X, Legesse N, et al. Evaluation of agricultural nonpointsource pollution: A review[J]. Water, Air, amp; Soil Pollution,2023, 234(10): 657.
[11]李家科, 彭凱, 郝改瑞, 等. 黃河流域非點(diǎn)源污染負(fù)荷定量化與控制研究進(jìn)展[J]. 水資源保護(hù), 2021, 37(1): 90?102.
Li J K, Peng K, Hao G R, et al. Research progress on quantificationand control of non-point source pollution load in the Yellow RiverBasin[J]. Water Resources Protection, 2021, 37(1): 90?102.
[12]Huff D D, Kruger P. The chemical and physical parameters in ahydrological transport model for radioactive aerosols[J]. Processes ofInternational Hydrology Symposia, 1967, 1: 128?135.
[13]Bailey G W, Swank R R, Nicholson H P. Predicting pesticide runoff fromagricultural lands: A Conceptual model[J]. Journal of EnvironmentalQuality, 1974, 3(2): 95?102.
[14]Frere M H. The nutrient sub model. CREAMS: A field scale modelfor chemical, runoff, and erosion from agricultural managementsystem[R]. Washington, D. C: USDA Conservation Report No. 26.US Government Print Office, 1980.
[15]Donigian A S, Beyerlein D C. Agricultural runoff management(ARM) model. Version II: Refinement and testing[M]. Athens, GA:US Environment Protection Agency, 1977.
[16]Knisel W G. CREAMS: A field scale model for chemicals, runoff,and erosion from agricultural management system[M]. Washington,D. C : Department of Agriculture, Science and Education Administration,1980.
[17]Vadas P A, Kleinman P J A, Sharpley A N, Turner B L. Relating soilphosphorus to dissolved phosphorus in runoff: A single extractioncoefficient for water quality modeling[J]. Journal of EnvironmentalQuality, 2005, 34(2): 572?580.
[18]Pote D H, Daniel T C, Nichols D J, et al. Relationship betweenphosphorus levels in three Ultisols and phosphorus concentrations inrunoff[J]. Journal of Environmental Quality, 1999, 28: 170?175.
[19]Islam M, Siddique K H, Padhye L P, et al. A critical review of soilphosphorus dynamics and biogeochemical processes for unlockingsoil phosphorus reserves[J]. Advances in Agronomy, 2024, 185:153?249.
[20]方晰, 陳金磊, 王留芳, 等. 亞熱帶森林土壤磷有效性及其影響因素的研究進(jìn)展[J]. 中南林業(yè)科技大學(xué)學(xué)報(bào), 2018, 38(12): 1?12.
Fang X, Chen J L, Wang L F, et al. Research progress on soilphosphorus availability and its influential factors in subtropicalforests[J]. Journal of Central South University of Forestry amp;Technology, 2018, 38(12): 1?12.
[21]Ramíre-Závila J J, Sotomayor-Ramírez D, Martínez-Rodríguez G A.Phosphorus in runoff from two highly weathered soils of thetropics[J]. Canadian Journal of Soil Science, 2011, 91(2): 267?277.
[22]Pote D H, Daniel T C, Nichols D J, et al. Seasonal and soil-dryingeffects on runoff phosphorus relationships to soil phosphorus[J]. SoilScience Society of America Journal, 1999, 63(4): 1006?1012.
[23]Fang F, Brezonik P L, Mulla D J, Hatch L K. Estimating runoffphosphorus losses from calcareous soils in the Minnesota Riverbasin[J]. Journal of Environmental Quality, 2002, 31(6): 1918?1929.
[24]Sharpley A N, Daniel T C, Sims J T. Determining environmentallysound soil phosphorus levels[J]. Journal of Soil and WaterConservation, 1996, 51(2): 160?166.
[25]Reis J V D, Alvarez V H V, Durigan R D, et al. Interpretation of soilphosphorus availability by Mehlich-3 in soils with contrastingphosphorus buffering capacity[J]. Revista Brasileira de Ciência doSolo, 2020, 44: e0190113.
[26]Shahriaripour R, Tajabadipour A, Esfandiarpoor I, Mozafary V. Acomparison of 5 soil phosphorus extraction methods applied todifferent soils of South of Iran[J]. Communications in Soil Scienceand Plant Analysis, 2018, 49(18): 2284?2290.
[27]Bray R H, Kurtz L T. Determination of total, organic, and availableforms of phosphorus in soils[J]. Soil Science, 1945, 59(1): 39?45.
[28]Mehlich A. Mehlich 3 soil test extractant: A modification of Mehlich2 extractant[J]. Communications in Soil Science amp; Plant Analysis.,1984, 15(12): 1409?1416.
[29]Morgan M F. Chemical soil diagnosis by the universal soil testingsystem[R]. New Haven, Connecticut : Connecticut ExperimentStation Bulletin, 1941.
[30]Olsen S R, Cole C V, Watanabe F S, et al. Estimation of availablephosphorus in soils by extraction with sodium bicarbonate[M].Washington, DC: US Department of Agriculture, 1954.
[31]楊育紅, 閻百興. 土壤磷向地表徑流遷移的提取系數(shù)研究[J]. 水土保持學(xué)報(bào), 2010, 24(1): 61?64.
Yang Y H, Yan B X. A single extraction coefficient for phosphorusfrom soil to runoff[J]. Journal of Soil and Water Conservation, 2010,24(1): 61?64.
[32]Weld J L, Sharpley A N, Beegle D B, Gburek W J. Identifyingcritical sources of phosphorus export from agricultural watersheds[J].Nutrient Cycling in Agroecosystems, 2001, 59: 29?38.
[33]Penn C J, Mullins G L, Zelazny L W, et al. Estimating dissolvedphosphorus concentrations in runoff from three physiographic regionsof Virginia[J]. Soil Science Society of America Journal, 2006, 70(6):1967?1974.
[34]Allen B L, Mallarino A P, Klatt J G, et al. Soil and surface runoffphosphorus relationships for five typical USA Midwest soils[J].Journal of Environmental Quality, 2006, 35(2): 599?610.
[35]Cox F R, Hendricks S E. Soil test phosphorusand clay content effectson runoff water quality[J]. Journal of Environmental Quality, 2000,29: 1582?1586.
[36] Sharpley A N. Effect of soil properties on the kinetics of phosphorus desorption[J]. Soil Science Society of America Journal, 1983, 47(3):462?467.
[37]Torbert H A, Daniel T C, Lemunyon J L, Jones R M. Relationship ofsoil test phosphorus and sampling depth to runoff phosphorus incalcareous and noncalcareous soils[J]. Journal of EnvironmentalQuality, 2002, 31(4): 1380?1387.
[38]Vadas P A, Harmel R D, Kleinman P J A. Transformations of soiland manure phosphorus after surface application of manure to fieldplots[J]. Nutrient Cycling in Agroecosystems, 2007, 77: 83?99.
[39]Pote D H, Daniel T C, Sharpley A N, et al. Relating extractable soilphosphorus to phosphorus losses in runoff[J]. Soil Science Society ofAmerica Journal, 1996, 60(3): 855?859.
[40]Aase J K, Bjorneborg D L, Westermann D T. Phosphorus runoff fromtwo water sources on a calcareous soil[J]. Journal of EnvironmentalQuality, 2001, 30(4): 1315?1323.
[41]Sharpley A N, Kleinman P J A, McDowell R W. Modelingphosphorus transport in agricultural watersheds: Processes andpossibilities[J]. Journal of Soil and Water Conservation, 2002, 57(6):425?439.
[42]Daverede I C, Kravchenko A N, Hoeft R G, et al. Phosphorus runoff:effect of tillage and soil phosphorus levels[J]. Journal ofEnvironmental Quality, 2003, 32(4): 1436?1444.
[43]Andraski T W, Bundy L G, Kilian K C. Manure history and longtermtillage effects on soil properties and phosphorus losses inrunoff[J]. Journal of Environmental Quality, 2003, 32(5): 1782?1789.
[44]Andraski T W, Bundy L G. Relationships between phosphorus levelsin soil and in runoff from corn production systems[J]. Journal ofEnvironmental Quality, 2003, 32(1): 310?316.
[45]Schroeder P D, Radcliffe D E, Cabrera M L, Belew C D. Relationshipbetween soil test phosphorus and phosphorus in runoff: Effects of soilseries variability[J]. Journal of Environmental Quality, 2004, 33(4):1452?1463.
[46]Turner B L, Kay M A, Westermann D T. Phosphorus in surfacerunoff from calcareous arable soils of the semiarid western UnitedStates[J]. Journal of Environmental Quality, 2004, 33(5): 1814?1821.
[47]Soldat D J, Petrovic A M, Ketterings Q M. Effect of soil phosphoruslevels on phosphorus runoff concentrations from turf grass[J]. Water,Air, and Soil Pollution, 2009, 199: 33?44.
[48]Rheault D G. Relationship between soil phosphorus and runoffphosphorus losses from plot scale rainfall simulations on Manitobasoils[D]. Winnipeg, Manitoba : MS Thesis of University of Manitoba,2012.
[49]Duncan E W, King K W, Williams M R, et al. Linking soilphosphorus to dissolved phosphorus losses in the Midwest[J].Agricultural amp; Environmental Letters, 2017, 2(1): 170004.
[50]Ramos M C, Lizaga I, Gaspar L, et al. Effects of rainfall intensity andslope on sediment, nitrogen and phosphorous losses in soils withdifferent use and soil hydrological properties[J]. Agricultural WaterManagement, 2019, 226: 105789.
[51]Williams M R, Penn C J, King K W, McAfee S J. Surface‐to‐tiledrain connectivity and phosphorus transport: Effect of antecedent soilmoisture[J]. Hydrological Processes, 2023, 37(3): e14831.
[52]Subedi A, Franklin D, Cabrera M, et al. Grazing systems to retain andredistribute soil phosphorus and to reduce phosphorus losses in runoff[J]. Soil Systems, 2020, 4(4): 66.
[53]馬麗娜, 蔣勇軍, 張彩云, 汪啟容. 巖溶槽谷區(qū)坡面土壤磷素流失過(guò)程與影響因素: 以中梁山龍鳳槽谷試驗(yàn)場(chǎng)為例[J]. 水土保持學(xué)報(bào),2020, 34(6): 265?274.
Ma L N, Jiang Y J, Zhang C Y, Wang Q R. Process of soil phosphorusloss on a slope of karst trough valley and influencing factors: A casestudy of Longfeng trough valley test site in Zhongliang Mountain,Chongqing, China[J]. Journal of Soil and Water Conservation, 2020,34(6): 265?274.
[54]仲金平, 鄭子成, 李廷軒, 何曉玲. 磷肥不同施用量對(duì)紫色土坡面膠體態(tài)磷流失的影響[J]. 中國(guó)農(nóng)業(yè)科學(xué), 2024, 57(8): 1547?1559.
Zhong J P, Zheng Z C, Li T X, He X L. Effect of phosphorusfertilizer application rates on the loss of colloidal phosphorus onpurple soil slopes[J]. Scientia Agricultura Sinica, 2024, 57(8):1547?1559.
[55]Dougherty W J, Nash D M, Cox J W, et al. Small-scale, highintensityrainfall simulation under-estimates natural runoff Pconcentrations from pastures on hill-slopes[J]. Australian Journal ofSoil Research, 2008, 46(8): 694?702.
[56]Sharpley A N. Dependence of runoff phosphorus on extractable soilphosphorus[J]. Journal of Environmental Quality, 1995, 24: 920?926.
[57]Leonard R A, Knisel W G, Still D A. GLEAMS: Groundwaterloading effects of agricultural management systems[J]. Transactionsof the ASAE, 1987, 30(5): 1403?1418.
[58]Faycal B, Dillaha A T. ANSWERS-2000: Non-point-source nutrientplanning model[J]. Journal of Environmental Engineering, 2000,126(11): 1045?1055.
[59]Martínez-Mena M, Carrillo-López E, Boix-Fayos C, et al. Long-termeffectiveness of sustainable land management practices to controlrunoff, soil erosion, and nutrient loss and the role of rainfall intensityin Mediterranean rainfed agroecosystems[J]. Catena, 2020, 187:104352.
[60]Han X X, Xiao J, Wang L Q, et al. Identification of areas vulnerableto soil erosion and risk assessment of phosphorus transport ina typical watershed in the Loess Plateau[J]. Science of the TotalEnvironment, 2021, 758: 143661.
[61]Zhou Y, Li S Y, Huang Y R, et al. Modeling of rainfall inducedphosphorus transport from soil to runoff with consideration ofphosphorus-sediment interactions[J]. Journal of Hydrology, 2022,609: 127732.
[62]Chen M H, Li Y, Wang C Z, et al. Modelling rainfall-inducedphosphorus loss with eroded clay and surface runoff[J]. HydrologicalProcesses, 2023, 37(2): e14817.
[63]Williams M R, King K W. Changing rainfall patterns over theWestern Lake Erie Basin (1975?2017): Effects on tributary dischargeand phosphorus load[J]. Water Resources Research, 2020, 56(3):e2019WR025985.
[64]Nash D M, Weatherley A J, Kleinman P J, Sharpley A N. Estimatingdissolved phosphorus losses from legacy sources in pastures: Thelimits of soil tests and small-scale rainfall simulators[J]. Journal ofEnvironmental Quality, 2021, 50(5): 1042?1062.
[65]Wolka K, Biazin B, Martinsen V, Mulder J. Soil and waterconservation management on hill slopes in Southwest Ethiopia.I. Effects of soil bunds on surface runoff, erosion and loss of nutrients[J]. Science of the Total Environment, 2021, 757: 142877.
[66]范曉娟, 張麗萍, 鄧龍洲, 等. 侵蝕程度差異誘發(fā)的坡面產(chǎn)流—產(chǎn)沙—總磷流失特征[J]. 環(huán)境科學(xué)學(xué)報(bào), 2019, 39(2): 459?468.
Fan X J, Zhang L P, Deng L Z, et al. The characteristics of runoffsedimentyield and total phosphorus loss induced by the soils ofdifferent erosion degree[J]. Acta Scientiae Circumstantiae, 2019,39(2): 459?468.
[67]Zhang Y L, Li X Y, Zhang X C, Li H E. Investigating rainfallduration effects on chemicals transport from soil to surface runoffon loess slope under artificial rainfall condition[J]. Soil and WaterResearch, 2019, 14(4): 183?194.
[68]Sharpley A N, Smith S J. Wheat tillage and water quality in theSouthern Plains[J]. Soil Tillage Research, 1994, 30(1): 33?38.
[69]Little J L, Nolan S C, Casson J P, Olson B M. Relationships betweensoil and runoff phosphorus in small Alberta watersheds[J]. Journal ofEnvironmental Quality, 2007, 36(5): 1289?1300.
[70]Wright C R, Amrani M, Akbar M A, et al. Determining phosphorusrelease rates to runoff from selected Alberta soils using laboratoryrainfall simulation[J]. Journal of Environmental Quality, 2006, 35(3):806?814.
[71]Tong J X, Ye M. A new soil mixing layer model for simulatingconservative solute loss from initially saturated soil to surfacerunoff[J]. Journal of Hydrology, 2020, 590: 125514.
[72]Huang C, Tong J X, Ye M. Global sensitivity analysis for a predictionmodel of soil solute transfer into surface runoff[J]. Journal ofHydrology, 2021, 599: 126342.
[73]Shao F F, Tao W H, Wang Q J, et al. A modified model forpredicting nutrient loss in runoff using a time-varying mixinglayer[J]. Journal of Hydrology, 2021, 603: 127091.
[74]Twombly C R, Faulkner J W, Collick A S, Easton Z M. Identificationof phosphorus index improvements through model comparisonsacross topographic regions in a small agricultural watershed inVermont (USA)[J]. Soil Science Society of America Journal, 2021,85(4): 1226?1241.
[75]Andini A P, Purwanto P, Sudarno S. Assessing water quality ofCiujung River in Lebak Regency by using pollution index[J].Advanced Science Letters, 2017, 23(3): 2462?2464.
[76]Mao Y P, Zhang H, Cheng Y H, et al. The characteristics of nitrogenand phosphorus output in China's highly urbanized Pearl River Deltaregion[J]. Journal of Environmental Management, 2023, 325:116543.
[77]Cheng X, Chen L D, Sun R H, Jing Y C. An improved exportcoefficient model to estimate non-point source phosphorus pollutionrisks under complex precipitation and terrain conditions[J].Environmental Science amp; Pollution Research, 2018, 25(21): 20946?20955.
[78]Williams J R, Sharpley A N, Taylor D. The erosion-productivityimpact calculator[M]. Boardman J, Foster I D L, Dearing J A. Soilerosion on agricultural land. New York: John Wiley and Sons, 1990.
[79]Young R A, Onstad C A, Bosch D D, Anderson W P. AGNPS: Anonpoint-source pollution model for evaluating agricultural watersheds[J]. Journal of Soil and Water Conservation, 1989, 44(2):168?173.
[80]Arnold J, Srinivasan R, Neitsch S, et al. Soil and water assessmenttool (SWAT): Global applications[M]. Bangkok, Thailand: WorldAssociation of Soil and Water Conservation, Bangkok. 2009.
[81]Arnold J G, Kiniry J R, Srinivasan R, et al. Soil and water assessmenttools input/output documentation (Version 2012). 2011. https://swat.tamu.edu/docs/.
[82]Sharpley A N, Jones C A, Gray C, Cole C V. A simplified soil andplant phosphorus model: II. Prediction of labile, organic, and sorbedphosphorus[J]. Soil Science Society of America Journal, 1984, 48(4):805?809.
[83]Radcliffe D E, Lin Z, Risse L M, et al. Modeling phosphorus in theLake Allatoona watershed using SWAT: I. Developing phosphorusparameter values[J]. Journal of Environmental Quality, 2009, 38(1):111?120.
[84]張煥朝, 張紅愛(ài), 曹志洪. 太湖地區(qū)水稻土磷素徑流流失及其Olsen磷的“突變點(diǎn)”[J]. 南京林業(yè)大學(xué)學(xué)報(bào)(自然科學(xué)版), 2004,28(5): 6?10.
Zhang H C, Zhang H A, Cao Z H. Research on phosphorus runofflosses from paddy soils in the Taihu Lake region and its Olsen-P“change-point”[J]. Journal of Nanjing Forestry University (NaturalSciences Edition), 2004, 28(5): 6?10.
[85]Remund D, Liebisch F, Liniger H P, et al. The origin of sedimentand particulate phosphorus inputs into water bodies in the SwissMidlands: A twenty-year field study of soil erosion[J]. Catena, 2021,203: 105290.
[86]Alewell C, Ringeval B, Ballabio C, et al. Global phosphorus shortagewill be aggravated by soil erosion[J]. Nature Communications, 2020,11(1): 4546.
[87]Wang K, Onodera S I, Saito M, et al. Estimation of phosphorustransport influenced by climate change in a rice paddy catchmentusing SWAT[J]. International Journal of Environmental Research,2021, 15(4): 759?772.
[88]Shrestha N K, Rudra R P, Daggupati P, et al. A comparativeevaluation of the continuous and event-based modelling approachesfor identifying critical source areas for sediment and phosphoruslosses[J]. Journal of Environmental Management, 2021, 277: 111427.
[89]胡良, 杜偉, 常博焜, 等. 不同磷水平塿土的表面性質(zhì)及其對(duì)磷素流失特征的影響[J]. 土壤學(xué)報(bào), 2023, 60(2): 424?434.
Hu L, Du W, Chang B K, et al. The surface properties of Lou soilwith different phosphorus levels and their effects on the loss ofphosphorus[J]. Acta Pedologica Sinica, 2023, 60(2): 424?434.
[90]譚德水, 江麗華, 張騫, 等. 南四湖過(guò)水區(qū)不同施肥模式下農(nóng)田養(yǎng)分徑流特征初步研究[ J ] . 植物營(yíng)養(yǎng)與肥料學(xué)報(bào), 2 0 1 1 , 1 7 ( 2 ) :464?471.
Tan D S, Jiang L H, Zhang Q, et al. Characteristics of nutrient runofflosses in farmland of Nansi Lake basin under different fertilizationpatterns[J]. Journal of Plant Nutrition and Fertilizers, 2011, 17(2):464?471.
基金項(xiàng)目:河南省科技攻關(guān)項(xiàng)目(222102320041);國(guó)家自然科學(xué)基金項(xiàng)目(32302684,41907079)。