[摘要]""" 本文利用中國地震臺網(wǎng)記錄的寬頻帶波形資料,采用近震全波形反演方法得到2024年3月1日—6月30日發(fā)生在中國大陸地區(qū)的M≥4.0共59次地震震源機(jī)制解。結(jié)果顯示逆斷型18次,走滑型33次,正斷型7次,未知型1次。
[關(guān)鍵詞] 震源機(jī)制; 震源參數(shù)
[DOI] 10.19987/j.dzkxjz.2024-105
0" 引言
據(jù)中國地震臺網(wǎng)測定,北京時間2024年3月1日0時—6月30日24時,中國大陸地區(qū)共發(fā)生M≥4.0地震61次(表1和圖1)。本文對這些地震進(jìn)行震源機(jī)制反演,進(jìn)一步豐富中國測震臺網(wǎng)地震編目產(chǎn)出內(nèi)容,以期為地球科學(xué)研究人員提供更為詳實的基礎(chǔ)成果資料[1-9]。
1" 資料與方法
本文使用中國地震臺網(wǎng)固定臺站記錄的寬頻地震波形資料,選取臺站方位角覆蓋好、波形質(zhì)量高、距震中500 km以內(nèi)的臺站參與震源機(jī)制反演計算。
本文采用ISOLA近震全波形方法[10-11],對中國大陸地區(qū)M≥4.0地震進(jìn)行震源機(jī)制反演,并確定其最佳震源機(jī)制解和矩心深度。反演時,采用中國地震臺網(wǎng)中心速報正式結(jié)果作為參考參數(shù),以震中為起始點,地震矩心深度的搜索步長為1 km,搜索范圍為1~30 km,地震矩心時間偏移的搜索范圍為發(fā)震時刻前后2.25 s,時間步長為0.1 s。文中采用偏矩張量反演模式,基于單點源模型在時間和空間范圍內(nèi)搜索震源機(jī)制最優(yōu)解,并將震源機(jī)制反演得到的波形互相關(guān)系數(shù)作為震源深度的函數(shù),反演不同深度的震源機(jī)制解,以最大波形擬合系數(shù)對應(yīng)的矩心深度和震源機(jī)制解為最佳結(jié)果。
本文震源機(jī)制反演使用的一維速度模型參考了Crust2.0全球速度模型[12],應(yīng)用離散波數(shù)法[13-14]計算得到格林函數(shù),采樣頻率為1.0 Hz。
2" 結(jié)果測定
經(jīng)過對這些地震事件波形的預(yù)處理和震源機(jī)制反演,本文得到了59次M≥4.0地震事件的震源機(jī)制解,具體震源參數(shù)如表2所示。隨后,我們利用震源機(jī)制三角形分類方法將本文所得到的震源機(jī)制解進(jìn)行分類,其中,逆斷型18次,走滑型33次,正斷型7次,未知型1次(圖2)。
由圖3可以看出,2024年3—6月發(fā)生在我國大陸地區(qū)的地震,大部分位于西南地區(qū),包括天山、青藏高原和川滇塊體等地震頻發(fā)區(qū),震源機(jī)制類型以走滑型機(jī)制居多,反映了震源區(qū)的應(yīng)力構(gòu)造環(huán)境。僅有1次地震發(fā)生在東北地區(qū),震中位于大興安嶺隆起和松遼盆地交匯處,顯示為走滑型機(jī)制地震。產(chǎn)生這種特征的原因是由于印度板塊持續(xù)向北俯沖,與歐亞板塊發(fā)生強(qiáng)烈碰撞,從而造成4級以上地震多分布在青藏高原和天山造山帶區(qū)域。
參考文獻(xiàn)
[59]梁姍姍,鄒立曄,劉艷瓊,等. 2021年12月中國大陸地區(qū)M≥4.0地震震源機(jī)制解測定[J]. 地震科學(xué)進(jìn)展,2022,52(1):40-44""" Liang S S,Zou L Y,Liu Y Q,et al. Determination the focal mechanism solutions of earthquakes with M≥4.0 occurred in the mainland of China in December 2021[J]. Progress in Earthquake Sciences,2022,52(1):40-44
[60]梁姍姍,鄒立曄,劉艷瓊,等. 2022年1月中國大陸地區(qū)MS≥4.0地震震源機(jī)制解測定[J]. 地震科學(xué)進(jìn)展,2022,52(2):89-94""" Liang S S,Zou L Y,Liu Y Q,et al. Determination of the focal mechanism solutions of the earthquakes with MS≥4.0 occurred in the mainland of China in January 2022[J]. Progress in Earthquake Sciences,2022,52(2):89-94
[61]梁姍姍,鄒立曄,劉艷瓊,等. 2022年2—3月中國大陸地區(qū)MS≥4.0地震震源機(jī)制解測定[J]. 地震科學(xué)進(jìn)展,2022,52(4):183-189""" Liang S S,Zou L Y,Liu Y Q,et al. Determination of the focal mechanism solutions of the earthquakes with MS≥4.0 occurred in the mainland of China during February to March 2022[J]. Progress in Earthquake Sciences,2022,52(4):183-189
[62]梁姍姍,鄒立曄,劉艷瓊,等. 2022年4—6月中國大陸地區(qū)MS≥4.0地震震源機(jī)制解測定[J]. 地震科學(xué)進(jìn)展,2022,52(7):338-343""" Liang S S,Zou L Y,Liu Y Q,et al. Determination of the focal mechanism solutions of the earthquakes with MS≥4.0 occurred in the mainland of China during April to June 2022[J]. Progress in Earthquake Sciences,2022,52(7):338-343
[63]梁姍姍,鄒立曄,劉艷瓊,等. 2022年7—9月中國大陸地區(qū)M≥4.0地震震源機(jī)制解測定[J]. 地震科學(xué)進(jìn)展,2022,52(11):547-552""" Liang S S,Zou L Y,Liu Y Q,et al. Determination of focal mechanism solutions of the earthquakes with M≥4.0 occurred in the mainland of China during July to September 2022[J]. Progress in Earthquake Sciences,2022,52(11):547-552
[64]梁姍姍,鄒立曄,劉艷瓊. 2022年10月—2023年2月中國大陸地區(qū)M≥4.0地震震源機(jī)制解測定[J]. 地震科學(xué)進(jìn)展,2023,53(4):185-191""" Liang S S,Zou L Y,Liu Y Q. Determination of focal mechanism solutions of the earthquakes with M≥4.0 occurred in the mainland of China during October 2022 to February 2023[J]. Progress in Earthquake Sciences,2023,53(4):185-191
[65]梁姍姍,鄒立曄,劉艷瓊,等. 2023年3—7月中國大陸地區(qū)M≥4.0地震震源機(jī)制解測定[J]. 地震科學(xué)進(jìn)展,2023,53(8):387-392""" Liang S S,Zou L Y,Liu Y Q,et al. Determination of focal mechanism solutions of the earthquakes with M≥4.0 occurred in the mainland of China during March to July 2023[J]. Progress in Earthquake Sciences,2023,53(8):387-392
[66]梁姍姍,鄒立曄,劉艷瓊,等. 2023年8—10月中國大陸地區(qū)M≥4.0地震震源機(jī)制解測定[J]. 地震科學(xué)進(jìn)展,2023,53(12):589-593""" Liang S S,Zou L Y,Liu Y Q,et al. Determination of focal mechanism solutions of the earthquakes with M≥4.0 occurred in the mainland of China during August to October 2023[J]. Progress in Earthquake Sciences,2023,53(12):589-593
[67]梁姍姍,鄒立曄,劉艷瓊,等. 2023年11月—2024年2月中國大陸地區(qū)M≥4.0地震震源機(jī)制解測定[J]. 地震科學(xué)進(jìn)展,2024,54(3):229-236""" Liang S S,Zou L Y,Liu Y Q,et al. Determination of focal mechanism solutions of the earthquakes with M≥4.0 occurred in the mainland of China during November 2023 to February 2024[J]. Progress in Earthquake Sciences,2024,54(3):229-236
[68]Sokos E N,Zahradnik J. ISOLA a Fortran code and a Matlab GUI to perform multiple-point source inversion of seismic data[J]. Computers amp; Geosciences,2008,34(8):967-977
[69]Sokos E,Zahradnik J. Evaluating centroid-moment-tensor uncertainty in the new version of ISOLA software[J]. Seismological Research Letters,2013,84(4):656-665
[70]Bassin C G L,Laske G,Masters G. The current limits of resolution for surface wave tomography in north America[J]. Eos Transactions American Geophysical Union,2000,81(48):F897
[71]Kennett B L N,Kerry N J. Seismic waves in a stratified half space[J]. Geophysical Journal International,1979,57(3):557-583
[72]Bouchon M. A simple method to calculate Green’s functions for elastic layered media[J]. Bulletin of the Seismological Society of America,1981,71(4):959-971
Determination of focal mechanism solutions of the earthquakes with M≥4.0 occurred in the mainland of China during March to June 2024
Liang Shanshan*, Zou Liye, Liu Yanqiong, Li Xumao, Ren Xiao
China Earthquake Networks Center,Beijing 100045,China
[Abstract]"""" In this paper, the regional full waveform inversion using the broadband waveforms recorded by China Seismic Network were conducted, and the focal mechanism solutions of the 59 earthquakes with M≥4.0 occurred in the mainland of China during March to June 2024 were obtained. The types of these focal mechanism solutions show 18 reverse faulting, 33 strike-slip faulting, 7 normal faulting and 1 odd earthquakes.
[Keywords] focal mechanism; source parameters