摘要:【目的】研究殺蟲劑減量施用及添加助劑對紅棗-小麥間作麥田蚜蟲防效的影響,為殺蟲劑減施提供科學依據(jù)。【方法】采用隨機區(qū)組設計,定點調(diào)查各處理施藥前后麥蚜的種群數(shù)量,評價5種常用殺蟲劑減施及添加增效劑‘激健’對紅棗-小麥間作麥田蚜蟲防效的影響?!窘Y(jié)果】藥后7 d,22%噻蟲·高氯氟SC減量20%~40%對麥蚜的防效為91.88%~94.22%,22%氟啶蟲胺腈SC減量20%~40%對麥蚜的防效為89.30%~94.11%,70%噻蟲嗪WG減量20%~40%對麥蚜的防效為80.08%~83.82%,與常規(guī)用量相比均無顯著差異。供試藥劑減量20%~40%時添加增效劑‘激健’對麥蚜的防效無顯著影響?!窘Y(jié)論】7 d內(nèi)對麥蚜的控制達到較高水平,選擇22%噻蟲·高氯氟SC、22%氟啶蟲胺腈SC或70%噻蟲嗪WG減施40%人工噴霧即可。14 d內(nèi)維持較好效果,5種殺蟲劑減量施用20%~40%均可。在新疆南疆紅棗-小麥間作田內(nèi)人工噴霧防治小麥蚜蟲時,可不添加。
關鍵詞:紅棗-小麥間作;殺蟲劑;增效劑;減量施用;防治效果
中圖分類號:S435.12文獻標志碼:A文章編號:1001-4330(2024)09-2257-11
0引 言
【研究意義】小麥是新疆南疆主要的糧食作物之一,目前播種面積超過50×104 hm2,播種面積和總產(chǎn)量均占新疆糧食作物的1/2[1]。以紅棗-小麥間作的農(nóng)林復合經(jīng)濟系統(tǒng)在新疆南疆應用可改善當?shù)剞r(nóng)業(yè)生態(tài)環(huán)境,提高農(nóng)業(yè)生產(chǎn)經(jīng)濟效益[2]。小麥蚜蟲在新疆南疆果樹-小麥間作區(qū)發(fā)生嚴重,百株蚜量最高可達2 864.6頭,因此,有效控制麥蚜種群數(shù)量和危害程度,是新疆南疆小麥植保的重點[3-4]?!厩叭搜芯窟M展】目前對于麥蚜類R-對策昆蟲的防治方法較為單一[5-8]。若施藥不及時、超劑量施用、安全間隔期不足、藥劑輪換薄弱等,害蟲抗藥性增強[9-10]?!颈狙芯壳腥朦c】農(nóng)藥添加增效劑可提高殺蟲劑的殺蟲活性[11-12],同時降低害蟲抗藥性發(fā)生風險[13]。因此,需研究探索農(nóng)藥減施+添加助劑對害蟲的控制效果[14]?!緮M解決的關鍵問題】研究以新疆南疆地區(qū)紅棗-小麥間作系統(tǒng)內(nèi)的麥蚜為試驗對象,評價減量施用殺蟲劑及添加增效劑對該系統(tǒng)內(nèi)麥蚜的防治效果,為殺蟲劑減施增效和紅棗-小麥麥間作系統(tǒng)內(nèi)科學防治蚜蟲提供依據(jù)。
1材料與方法
1.1材 料
1.1.1試驗地概況
試驗地位于新疆喀什地區(qū)澤普縣(37°57′ N~38°19′ N,76°52′ E~77°29′E),屬于溫帶大陸性干旱氣候,海拔1 215~1 490 m,年均氣溫11.40℃,年均降水量58.40 mm。模式為紅棗-小麥間作,棗樹行間距4 m、株距1.5 m。 于2019年10月3日播種小麥,殺蟲劑施藥時間是2020年5月19日,此時小麥處于灌漿期。試驗田內(nèi)麥蚜優(yōu)勢種為麥長管蚜(Sitobion avenae),并有少量麥無網(wǎng)長管蚜(Metopolophium dirhodum)和禾谷縊管蚜(Rhopalosiphum padi)發(fā)生。
1.1.2藥劑及器械
供試藥劑:P1為70%噻蟲嗪水分散粒劑(上海生農(nóng)生化制品股份有限公司);P2為70%吡蟲啉水分散粒劑(拜耳作物科學(中國)有限公司);P3為22%噻蟲·高氯氟懸浮劑(先正達南通作物保護有限公司);P4為50%吡蚜酮水分散粒劑(先正達南通作物保護有限公司);P5為22%氟啶蟲胺腈懸浮劑(美國陶氏益農(nóng)有限公司);助劑為‘激健’(四川蜀峰作物科學有限公司)。
施藥器械參數(shù):選用臺州市椒江博來塑料制品廠生產(chǎn)的3WBD-20型充電式噴霧器,產(chǎn)品規(guī)格8 A,壓力0~0.48 MPa,噴霧速度0~0.35 L/min,電壓DC I2 V,電流0~2 A,藥筒材質(zhì)為加厚PP材質(zhì)。
1.2方 法
1.2.1試驗設計
共設31個處理,3次重復,采用隨機區(qū)組設計,小區(qū)面積30 m2,小區(qū)間設保護行。配藥時采取二次稀釋法,藥液量為450 L/ hm2。表1
1.2.2測定指標
施藥前調(diào)查蚜蟲數(shù)量,每小區(qū)固定調(diào)查3點,每點用紅毛線固定調(diào)查10株,記錄蚜蟲數(shù)量。施藥后1、3、7和14 d分別調(diào)查并記錄蚜蟲數(shù)量,計算各處理蟲口減退率和防效。
蟲口減退率(%)=施藥前蟲數(shù)-施藥后蟲數(shù)施藥前蟲數(shù)×100;
防治效果(%)=處理區(qū)蟲口減退率-空白對照區(qū)蟲口減退率100-空白對照區(qū)蟲口減退率蟲口減退率×100。
1.3數(shù)據(jù)處理
用Shapiro檢驗驗證數(shù)據(jù)的正態(tài)性,Levene檢驗驗證方差齊次性。采用單因素方差分析驗證殺蟲劑處理、減量處理及增效劑對麥蚜防治效果的影響,F(xiàn)測驗比較各處理間的統(tǒng)計學差異(P lt; 0.05),差異顯著時,則用Duncan’s新復極差法進行多重比較。所有數(shù)據(jù)處理均使用R(Version 4.2.0)完成。
2結(jié)果與分析
2.1不同藥劑處理對小麥的安全性
研究表明,施藥后1、3、7和14 d,各藥劑處理與清水對照處理在葉片顏色、大小及株高等無差異,試驗藥劑對小麥安全,無藥害。
2.2不同種類殺蟲劑常規(guī)用量對麥蚜的防效
研究表明,藥后1 d,藥劑種類對麥蚜的防效有顯著影響(F4,10 = 33.85,P lt; 0.001)。50%吡蚜酮WG和22%噻蟲·高氯氟SC的常規(guī)用量對麥蚜的防效較好,防效分別為77.30%和72.61%,顯著高于70%噻蟲嗪WG、70%吡蟲啉WG和22%氟啶蟲胺腈SC常規(guī)用量的防效。70%噻蟲嗪WG和70%吡蟲啉WG的常規(guī)用量對麥蚜的防效較好,防效分別為55.15%和56.29%,顯著高于22%氟啶蟲胺腈SC常規(guī)用量的防效(圖1a)。
藥后3 d,藥劑種類對麥蚜的防效有顯著影響(F4,10 = 7.44,P = 0.005)。22%噻蟲·高氯氟SC的常規(guī)用量對麥蚜的防效為88.91%,顯著高于70%噻蟲嗪WG和70%吡蟲啉WG常規(guī)用量的防效,與50%吡蚜酮WG和22%氟啶蟲胺腈SC常規(guī)用量的防效之間無顯著性差異。50%吡蚜酮WG和22%氟啶蟲胺腈SC的常規(guī)用量對麥蚜的防效分別為86.74%和86.42%,顯著高于70%吡蟲啉WG常規(guī)用量的防效,與70%噻蟲嗪WG常規(guī)用量的防效之間無顯著差異(圖1b)。
藥后7 d,藥劑種類對麥蚜的防效有顯著影響。22%噻蟲·高氯氟SC、50%吡蚜酮WG和22%氟啶蟲胺腈SC的常規(guī)用量對麥蚜的防效分別為98.05%、94.55%和95.65%,顯著高于70%吡蟲啉WG和70%噻蟲嗪WG常規(guī)用量的防效(圖 1c)。
藥后14 d,70%噻蟲嗪WG、70%吡蟲啉WG、22%噻蟲·高氯氟SC、50%吡蚜酮WG和22%氟啶蟲胺腈SC的常規(guī)用量處理對麥蚜的防效較好,防效為84.58%~98.32%,各藥劑處理防效之間無顯著差異(F4,10 = 11.41,P lt; 0.001)(圖1d)。圖1
2.3減量施用殺蟲劑對麥蚜防效的影響
2.3.170%噻蟲嗪水分散粒劑減量施用對麥蚜的防效
研究表明,藥后1 d,70%噻蟲嗪WG減量20%~40%對麥蚜的防效為42.61%~54.36%,與70%噻蟲嗪WG常規(guī)用量的防效之間無顯著差異(F3,8 = 1.55,P = 0.28)(圖2a)。藥后3 d,70%噻蟲嗪WG減量20%~40%對麥蚜的防效為76.53%~78.29%,與70%噻蟲嗪WG常規(guī)用量的防效之間無顯著差異(F3,8 = 1.22,P = 0.36)(圖2b)。藥后7 d,70%噻蟲嗪WG減量20%~40%對麥蚜的防效為80.08%~83.82%,與70%噻蟲嗪WG常規(guī)用量的防效之間無顯著差異(F3,8 = 2.03,P = 0.19)(圖2c)。藥后14 d,70%噻蟲嗪WG減量20%~40%對麥蚜的防效為88.38%~93.26%,與70%噻蟲嗪WG常規(guī)用量的防效之間無顯著差異(F3,8 = 0.38,P = 0.77)(圖2d)。圖2
2.3.270%吡蟲啉水分散粒劑減量施用對麥蚜的防效
研究表明,藥后1 d,70%吡蟲啉WG減量20%~40%對麥蚜的防效為37.36%~46.91%,顯著低于70%吡蟲啉WG常規(guī)用量的防效(F3,8 = 29.31,P lt; 0.001)(圖3a)。藥后3 d,70%吡蟲啉WG減量20%~40%對麥蚜的防效為59.41%~70.76%,顯著低于70%吡蟲啉WG常規(guī)用量的防效(F3,8 = 43.45,P lt; 0.001)(圖3b)。藥后7 d,70%吡蟲啉WG減量20%~40%對麥蚜的防效為69.43%~82.92%,顯著低于70%吡蟲啉WG常規(guī)用量的防效(F3,8 = 63.65,P lt; 0.001)(圖3c)。藥后14 d,70%吡蟲啉WG減量20%~40%對麥蚜的防效為72.43%~84.80%,與70%吡蟲啉WG常規(guī)用量的防效之間無顯著差異(F3,8 = 0.81,P = 0.52)(圖3d)。圖3
2.3.322%噻蟲·高氯氟懸浮劑減量施用對麥蚜的防效
研究表明,藥后1 d,22%噻蟲·高氯氟SC減量20%對麥蚜的防效為66.71%,與22%噻蟲·高氯氟SC常規(guī)用量的防效之間無顯著差異(F3,8 = 24.12,P lt; 0.001)(圖4a)。22%噻蟲·高氯氟SC減量30%~40%對麥蚜的防效為54.40%~57.68%,顯著低于22%噻蟲·高氯氟SC常規(guī)用量的防效(F3,8 = 24.12,P lt; 0.001)。藥后3 d,22%噻蟲·高氯氟SC減量20%~40%對麥蚜的防效為79.29%~86.76%,與22%噻蟲·高氯氟SC常規(guī)用量的防效之間無顯著差異(F3,8 = 3.37,P = 0.08)(圖4b)。藥后7 d,22%噻蟲·高氯氟SC減量20%~40%對麥蚜的防效為91.88%~94.22%,與22%噻蟲·高氯氟SC常規(guī)用量的防效之間無顯著差異(F3,8 = 1.16,P = 0.38)(圖4c)。藥后14 d,22%噻蟲·高氯氟SC減量20%~40%對麥蚜的防效為92.94%~98.59%,與22%噻蟲·高氯氟SC常規(guī)用量的防效之間無顯著差異(F3,8 = 0.52,P = 0.68)(圖4d)。圖4
2.3.450%吡蚜酮水分散粒劑減量施用對麥蚜的防效
研究表明,藥后1 d,50%吡蚜酮WG減量20%~40%對麥蚜的防效為56.44%~65.70%,顯著低于50%吡蚜酮WG常規(guī)用量的防效(F3,8 = 29.31,P lt; 0.001)(圖5a)。藥后3 d,50%吡蚜酮WG減量20%~40%對麥蚜的防效為71.33%~80.65%,顯著低于50%吡蚜酮WG常規(guī)用量的防效(F3,8 = 12.95,P = 0.002)(圖5b)。藥后7 d,50%吡蚜酮WG減量20%~40%對麥蚜的防效為77.12%~89.62%,顯著低于50%吡蚜酮WG常規(guī)用量的防效(F3,8 = 53.76,P lt; 0.001)(圖5c)。藥后14 d,50%吡蚜酮WG減量20%~40%對麥蚜的防效為78.68%~94.48%,與50%吡蚜酮WG常規(guī)用量的防效之間無顯著差異(F3,8 = 1.02,P = 0.43)(圖5d)。圖5
2.3.522%氟啶蟲胺腈懸浮劑減量施用對麥蚜的防效
研究表明,藥后1 d,22%氟啶蟲胺腈SC減量20%~40%對麥蚜的防效為22.98%~25.03%,顯著低于22%氟啶蟲胺腈SC常規(guī)用量的防效(F3,8 = 12.59,P = 0.002)(圖6a)。藥后3 d,22%氟啶蟲胺腈SC減量20%~40%對麥蚜的防效為80.85%~85.26%,與22%氟啶蟲胺腈SC常規(guī)用量的防效之間無顯著差異(F3,8 = 1.44,P = 0.30)(圖6b)。藥后7 d,22%氟啶蟲胺腈SC減量20%~40%對麥蚜的防效為89.30%~94.11%,與22%氟啶蟲胺腈SC常規(guī)用量的防效之間無顯著差異(F3,8 = 2.94,P = 0.10)(圖6c)。藥后14 d,22%氟啶蟲胺腈SC減量20%~40%對麥蚜的防效為88.00%~96.80%,與22%氟啶蟲胺腈SC常規(guī)用量的防效之間無顯著差異(F3,8 = 0.42,P = 0.74)(圖6d)。圖6
2.4殺蟲劑減施添加助劑對麥蚜防效的影響
研究表明,藥后1 d(圖7a)(F1,10 = 0.36,P = 0.56)、3 d(圖7b)(F1,10 = 0.03,P = 0.87)和14 d(圖7d)(F1,10 = 4.61,P = 0.06),70%噻蟲嗪WG減量施用+添加助劑‘激健’處理對麥蚜的防效高于無添加助劑‘激健’處理的防效,但二者之間無顯著差異。藥后7 d(圖7c),70%噻蟲嗪WG減量施用+添加助劑‘激健’處理對麥蚜的防效顯著高于無添加助劑‘激健’處理的防效(F1,10 = 6.80,P = 0.03)。圖7
藥后1 d(圖8a)(F1,10 = 4.01,P = 0.07)、3 d(圖8b)(F1,10 = 2.13,P = 0.18)、7 d(圖8c)(F1,10 = 0.19,P = 0.67)70%吡蟲啉WG減量施用+添加助劑‘激健’處理對麥蚜的防效高于無添加助劑‘激健’處理的防效,但二者之間無顯著性差異。藥后14 d(F1,10 = 0.18,P = 0.68)70%吡蟲啉WG減量施用+添加助劑‘激健’處理對麥蚜的防效低于無添加助劑‘激健’處理的防效,但二者之間無顯著差異。圖8
藥后1 d(圖9a)(F1,10 = 1.56,P = 0.24)、3 d(圖9b)(F1,10 = 0.98,P = 0.35)、7 d(圖9c)(F1,10 = 0.19,P = 0.67)22%噻蟲·高氯氟SC減量施用+添加增效劑‘激健’處理對麥蚜的防效高于無添加增效劑‘激健’處理的防效,但二者之間無顯著差異。藥后14 d(圖9d)(F1,10 = 0.06,P = 0.81),22%噻蟲·高氯氟SC減量施用+添加增效劑‘激健’處理對麥蚜的防效低于無添加增效劑‘激健’處理的防效,但二者之間無顯著差異。圖9
藥后1 d(圖10a)(F1,10 = 0.06,P = 0.81)、3 d(圖10b)(F1,10 = 0.09,P = 0.77)、7 d(圖10c)(F1,10 = 0.10,P = 0.76)和14 d(圖10d)(F1,10 = 0.29,P = 0.60)50%吡蚜酮WG減量施用+添加增效劑‘激健’處理對麥蚜的防效高于無添加增效劑‘激健’處理的防效,但二者之間無顯著差異。圖10
藥后1 d(圖11a)(F1,10 = 0.004,P = 0.95)、3 d(圖11b)(F1,10 = 0.61,P = 0.45)、7 d(圖11c)(F1,10 = 0.63,P = 0.45)22%氟啶蟲胺腈SC減量施用+添加增效劑‘激健’處理對麥蚜的防效高于無添加增效劑‘激健’處理的防效,但二者之間無顯著差異。藥后14 d(圖11d)(F1,10 = 0.92,P = 0.36)22%氟啶蟲胺腈SC減量施用+添加增效劑‘激健’處理對麥蚜的防效低于無添加增效劑‘激健’處理的防效,但二者之間無顯著差異。圖11
3討 論
農(nóng)藥超劑量施用可造成農(nóng)藥殘留超標、害蟲抗藥性增強[15-16]。李聰聰?shù)龋?7]對防治玉米小斑病和彎孢葉斑病的殺菌劑進行室內(nèi)篩選,發(fā)現(xiàn)25%丙菌唑EC、25%戊唑醇EC、40%氟硅唑EC等藥劑減施50%時對上述病菌抑菌率均可達到100%;王宇等[18]發(fā)現(xiàn)高效氯氟氰菊酯減量30%并添加增效劑后,對亞洲玉米螟的防效比常規(guī)用量高;蔣欣東等[19]研究表明,在炔草酯、氯氟吡氧乙酸、氟吡·雙唑酮、環(huán)吡·異丙隆減量30%與‘激健’混施的情況下,對于麥田雜草具有較好的防除效果,產(chǎn)量及產(chǎn)量相關性狀與常規(guī)用量無差異;王志慧等[20]研究表明,20%氯蟲苯甲酰胺SC添加增效劑后對亞洲玉米螟的防效與常規(guī)用量相當;趙之德等[21]發(fā)現(xiàn)10%聯(lián)苯菊酯EC的常規(guī)用量與減施用量、24%蟲螨腈SC常規(guī)用量與減施用量對假眼小綠葉蟬的防效無顯著差異。
4結(jié) 論
4.1
藥后7 d,70%噻蟲嗪WG、22%噻蟲·高氯氟SC和22%氟啶蟲胺腈SC減量20%~40%噴霧對麥蚜的防效分別可達80.08%~83.82%、91.88%~94.22%和89.30%~94.11%,與各自藥劑的常規(guī)處理防效均無顯著差異,藥后14 d,各藥劑20%~40%減施處理防效與常規(guī)劑量相比均無顯著差異。
4.2
在新疆南疆紅棗-小麥間作系統(tǒng)內(nèi),22%噻蟲·高氯氟SC、22%氟啶蟲胺腈SC、70%噻蟲嗪WG、70%吡蟲啉WG和50%吡蚜酮WG減量20%~40%人工噴霧可有效控制紅棗-小麥間作麥田蚜蟲為害。具體應根據(jù)田間蚜蟲發(fā)生為害情況,合理減施及輪換使用殺蟲劑,7 d內(nèi)對麥蚜的控制達到較高水平,選擇22%噻蟲·高氯氟SC、22%氟啶蟲胺腈SC或70%噻蟲嗪WG減施40%人工噴霧即可。14 d內(nèi)維持較好效果,5種殺蟲劑殺蟲劑減量施用20%~40%均可。
4.3
各殺蟲劑減量施用+添加增效劑‘激健’處理對麥蚜的防效與不添加增效劑‘激健’處理的防效相比均無顯著差異。因此在南疆紅棗-小麥間作田內(nèi)人工噴霧防治小麥蚜蟲時,可不添加增效劑,在保證殺蟲劑最大限度的被作物和靶標害蟲吸收,提高對靶標害蟲的防效的同時節(jié)約生產(chǎn)成本。
參考文獻(References)
[1]郎新婷, 馬惠蘭. 新疆小麥生產(chǎn)效率及地區(qū)差異研究[J]. 中國農(nóng)業(yè)資源與區(qū)劃, 2016, 37(10): 127-133.
LANG Xinting, MA Huilan. Wheat production efficiency and region differences in Xinjiang[J]. Chinese Journal of Agricultural Resources and Regional Planning, 2016, 37(10): 127-133.
[2] 王寶駒, 李隆, 李魯華, 等. 南疆棗麥間作系統(tǒng)中根長密度、根表面積密度分布特征[J]. 西北農(nóng)業(yè)學報, 2014, 23(3):67-73.
WANG Baoju, LI Long, LI Luhua, et al. Characterization of root length density and root surface area density in jujube/wheat intercropping "in southern Xinjiang[J]. Acta Agriculturae Boreali-occidentalis Sinica, 2014, 23(3):67-73.
[3] 王鎖牢, 李廣闊, 高海峰, 等. 果麥間作模式下麥田麥長管蚜種群動態(tài)研究[J]. 新疆農(nóng)業(yè)科學, 2014, 51(8): 1463-1467.
WANG Suolao, LI Guangkuo, GAO Haifeng, et al. Effects of walnut-wheat or jujube-wheat intercropping on the population dynamics of Sitobion avenae[J]. Xinjiang Agricultural Sciences, 2014, 51(8): 1463-1467.
[4] 李廣闊. 核桃—小麥間作對小麥主要病蟲草害發(fā)生影響研究[D]. 北京: 中國農(nóng)業(yè)大學, 2018.
LI Guangkuo. Effect of Walnut-Wheat Intercropping on the Occurrence of Main Wheat Pests[D]. Beijing: China Agricultural University, 2018.
[5] 史雪巖, 李紅寶, 王海光, 等. 我國小麥病蟲草害防治農(nóng)藥減施增效技術研究進展[J]. 中國農(nóng)業(yè)大學學報, 2022, 27(3): 53-62.
SHI Xueyan, LI Hongbao, WANG Haiguang, et al. Progresses of pesticide reduction techniques in wheat production and the synergistic effects on the prevention and control of wheat pests[J]. Journal of China Agricultural University, 2022, 27(3): 53-62.
[6] 韋寧, 林璐璐, 何賢芳, 等. 8種藥劑對小麥蚜蟲的生物活性測定及田間藥效試驗[J]. 農(nóng)藥, 2020, 59(12): 918-920, 924.
WEI Ning, LIN Lulu, HE Xianfang, et al. Laboratory bioassay and field efficacy test of eight pesticides on wheat aphids[J]. Agrochemicals, 2020, 59(12): 918-920, 924.
[7] 陳博聰, 張燕寧, 劉同金, 等. 噻蟲嗪對田間麥蚜種群防控效果與殘留消減動態(tài)的關系[J]. 植物保護, 2019, 45(1): 98-103.
CHEN Bocong, ZHANG Yanning, LIU Tongjin, et al. Relationships between the control effect on aphid populations and the residue decline dynamics of thiamethoxam in wheat fields[J]. Plant Protection, 2019, 45(1): 98-103.
[8] 董文陽, 張慧慧, 陳安琪, 等. 我國甘肅和青海地區(qū)麥蚜田間種群對5種殺蟲劑的抗性監(jiān)測[J]. 農(nóng)藥, 2020, 59(7): 532-536.
DONG Wenyang, ZHANG Huihui, CHEN Anqi, et al. Resistance levels to five insecticides of wheat aphid field populations from some regions of Gansu and Qinghai Province of China[J]. Agrochemicals, 2020, 59(7): 532-536.
[9] 聶曉, 劉偉, 范潔茹, 等. 小麥化肥農(nóng)藥減施集成技術綜合效益評價[J]. 植物保護, 2021, 47(2): 95-102, 108.
NIE Xiao, LIU Wei, FAN Jieru, et al. Comprehensive evaluation of the benefits of integrated technologies for reducing fertilizers and pesticides in wheat production[J]. Plant Protection, 2021, 47(2): 95-102, 108.
[10] 張凱, 馮推紫, 熊超, 等. 我國化學肥料和農(nóng)藥減施增效綜合技術研發(fā)頂層布局與實施進展[J]. 植物保護學報, 2019, 46(5): 943-953.
ZHANG Kai, FENG Tuizi, XIONG Chao, et al. Top design and progress in research and development of synthesis technique for reduction and synergy of chemical fertilizers and pesticides in China[J]. Journal of Plant Protection, 2019, 46(5): 943-953.
[11] 王瀟楠, 王思威, 常虹,等. 兩種噴霧增效劑對噻蟲嗪防治豇豆上薊馬的減施增效作用[J]. 農(nóng)藥學學報, 2022, 24(2):368-375.
WANG Xiaonan, WANG Siwei, CHANG Hong, et al. Synergistic effect of two spray adjuvants on thiamethoxam in the control of Megalurothrips usitatus in cowpea[J]. Chinese Journal of Pesticide Science, 2022, 24(2):368-375.
[12] 沈燕, 朱宏, 余向陽, 等. 油助劑和淀粉源助劑對噻嗪酮和烯啶蟲胺在水稻上殘留的影響[J]. 農(nóng)藥學學報, 2020, 22(2): 370-377.
SHEN Yan, ZHU Hong, YU Xiangyang, et al. Effect of oil adjuvant and starch adjuvant on residues of buprofezin and nitenpyram in rice[J]. Chinese Journal of Pesticide Science, 2020, 22(2): 370-377.
[13] 岳德成, 胡冠芳, 李青梅, 等. 背負式靜電噴霧器靜電噴施對2種玉米田除草劑的減量效應[J]. 植物保護, 2019, 45(4): 243-249.
YUE Decheng, HU Guanfang, LI Qingmei, et al. The decrement effect of two maize herbicides under the condition of electrostatic spray by knapsack electrostatic sprayer[J]. Plant Protection, 2019, 45(4): 243-249.
[14] 丁新華, 王小武, 蔣旭東, 等. 2種增效劑對春玉米田除草劑的減量增效作用[J]. 植物保護, 2022, 48(1): 297-304.
Ding Xinhua, Wang Xiaowu, Jiang Xudong, et al. Decrement and synergistic effect of two synergist on herbicides in spring corn field[J]. Plant Protection, 2022, 48(1): 297-304.
[15] 張婉玉, 魏君英. 我國農(nóng)藥化肥減量效應與推進對策[J]. 北方園藝, 2021(18): 167-172.
ZHANG Wanyu, WEI Junying. Research on the reducing effect of pesticides and fertilizers in my country and the promoting countermeasures[J]. Northern Horticulture, 2021(18): 167-172.
[16] 胡貴磊, 蘇栩, 汪耿, 等. 除蟲菊素和苦參堿復配對麥二叉蚜的聯(lián)合生物活性及田間藥效[J]. 農(nóng)藥, 2021, 60(11): 836-839.
HU Guilei, SU Xu, WANG Geng, et al. Co-bioactivity of pyrethrins with matrine insecticides against Schizaphis graminum on wheat and field efficacy[J]. Agrochemicals, 2021, 60(11): 836-839.
[17] 李聰聰, 王亞嬌, 栗秋生, 等. 防治玉米葉斑病高效藥劑篩選及藥劑減施增效技術[J]. 植物保護, 2022, 48(3): 342-348.
LI Congcong, WANG Yajiao, LI Qiusheng, et al. Screening of high effective fungicides for controlling maize leaf spot and the techonology for fungicide reduction and synergism[J]. Plant Protection, 2022, 48(3): 342-348.
[18] 王宇, 王克勤, 劉興龍. 減施化學殺蟲劑對亞洲玉米螟的防控效果[J]. 黑龍江農(nóng)業(yè)科學, 2022, (1): 34-39.
WANG Yu, WANG Keqin, LIU Xinglong. Control effects of reduced application of chemical insecticides on Asiatic corn borer[J]. Heilongjiang Agricultural Sciences, 2022, (1): 34-39.
[19] 蔣欣東, 康曉慧, 陳萬權, 等. 除草劑減量與激健混施對麥田雜草防效及產(chǎn)量特征影響[J]. 江西農(nóng)業(yè)大學學報, 2021, 43(1): 33-41.
JIANG Xindong, KANG Xiaohui, CHEN Wanquan, et al. Effect of herbicide reduction and vigorous stimulant application on weed control and wheat yield characteristics in wheat field[J]. Acta Agriculturae Universitatis Jiangxiensis, 2021, 43(1): 33-41.
[20] 王志慧, 丁新華, 賈尊尊, 等. 基于增效劑與殺蟲劑協(xié)同作用的玉米螟超低量噴霧防治技術[J]. 新疆農(nóng)業(yè)科學, 2020, 57(2): 311-318.
WANG Zhihui, DING Xinhua, JIA Zunzun, et al. An ultra low spray control technique for corn borer based on synergist and insecticide[J]. Xinjiang Agricultural Sciences, 2020, 57(2): 311-318.
[21] 趙之德, 李嘉慧, 梁濤, 等. 聯(lián)苯菊酯、溴氰菊酯、蟲螨腈對茶園害蟲的田間防效[J]. 農(nóng)藥, 2019, 58(2):130-135.
ZHAO Zhide, LI Jiahui, LIANG Tao, et al. Differences in field control efficacy treated with two concentrations of bifenthrin, deltamethrin, chlorfenapyr in tea plantations[J]. Agrochemicals, 2019, 58(2):130-135.
The control effect of reduced pesticides application and adjuvant addition on wheat aphids in jujube-wheat intercropping pattern
SHEN Yuyang, HONG Gaojie2, FAN Guiqiang3, CHEN Li1, LEI Junjie3, LI Guangkuo1, GAO Haifeng1
(1.Key Laboratory of Integrated Pest Management on Crops in Northwestern Oasis / Institute of Plant Protection,Xinjiang Academy of Agricultural Sciences,Urumqi 830091,China;2. Institute of Virology and Biotechnology, Zhejiang Academy of Agricultural Sciences, Hangzhou 310022, China; 3. Institute of Food Crops, Xinjiang Academy of Agricultural Sciences, Urumqi 830091, China)
Abstract:【Objective】 This research aims to evaluate the effectiveness of reduced pesticides application and adjuvant addition in the control of wheat aphids in jujube-wheat intercropping, and to provide a theoretical basis for the scientific use and dosage reduction of pesticides to control the desease.
【Methods】 A randomized block design was used to conduct a fixed plant survey‘Jijian’ to verify the effects of different reduction proportions of five commonly used pesticides and adjuvant addition on the control effect of wheat aphids in jujube-wheat intercropping system.
【Results】 7 d after pesticides application, the control effects against wheat aphids of 20%-40% reduction dosage treatments of 22% thiamethoxam-lambda-cyhalothrin SC, 22% sulfoxaflor SC and 70% thiamethoxam WG were 91.88%-94.22%, 89.30%-94.11% and 80.08%-83.82%, respectively, which had no significant difference compared to the corresponding regular dosage treatment. The control effect of 20%-40% reduction dosage treatments within adjuvant ‘Jijian’ against wheat aphids were not significantly improved compared with the treatments without any adjuvants.
【Conclusion】 If pursuing a relative higher control effects within 7 d, 40% reduction dosages of 22% thiamethoxam-lambda-cyhalothrin SC, 22% sulfoxaflor SC and 70% thiamethoxam WG can be chosen to spray manually. To maintain a better control effect within 14 d, 20%-40% reduction dosages of tested five pesticides can achieve the purpose. When manually spraying pesticides to control wheat aphids in jujube-wheat intercropping fields in South Xinjiang, adjuvant ‘Jijian’ adding is not necessary.
Key words:jujube-wheat intercropping; pesticides; adjuvant; reduced application; control effect
Fund projects:Ministry of Agriculture and Rural Affairs / Zhejiang Provincial Key Laboratory of Plant Protection Biotechnology Open Fund; Open Fund for Key Laboratory of Integrated Pest Management on Crop in Northwestern Oasis,Ministry of Agriculture and Rural Affairs, China (KFJJ202002); Key Research and development projects of Xinjiang Uygur Autonomaus Region (2021B02002-1);Earmarked Fund for CARS (CARS-03-88); Science and Technology Commissioner Project “Integration and Demonstration of Key Prevention and Control Technologies for Green and High Yield Wheat and Pesticide Reduction and Efficiency Increase”; Stable Support Projects for Agricultural Science and Technology Innovation(xjnkywdzc-2022004)
Correspondence author:LI Guangkuo (1973-), male, from Henan,researcher, disease, research direction: pest and weed control of crops,(E-mail)1448832764@qq.com
GAO Haifeng(1983-), male,from Henan, researcher, Ph.D., research direction: integrated control of diseases, pests and weeds for grain crops, (E-mail)ghf20044666@163.com
收稿日期(Received):2014-02-19
基金項目:農(nóng)業(yè)部/浙江省植保生物技術重點實驗室開放基金;農(nóng)業(yè)部西北荒漠綠洲作物有害生物綜合治理重點實驗室項目(KFJJ202002);新疆維吾爾自治區(qū)重點研發(fā)計劃項目(2021B02002-1);現(xiàn)代農(nóng)業(yè)產(chǎn)業(yè)技術體系(CARS-03-88);新疆維吾爾自治區(qū)科技特派員項目“小麥綠色豐產(chǎn)及農(nóng)藥減施增效關鍵防控技術集成與示范”;農(nóng)業(yè)科技創(chuàng)新穩(wěn)定支持項目(xjnkywdzc-2022004)
作者簡介:沈煜洋(1993-),男,甘肅人,碩士研究生,研究方向為糧食作物病蟲草害防治,(E-mail)sansirosoul@163.com
通訊作者:李廣闊(1973-),男,河南人,研究員,碩士生導師,研究方向為農(nóng)作物病蟲草害防治,(E-mail)1448832764@qq.com高海峰(1983-),男,河南人,研究員,博士,研究方向為糧食作物病蟲草害防治,(E-mail)ghf20044666@163.com