摘 要: Sn-Bi和Sn-Ag-Cu混裝焊點(diǎn)是利用低熔點(diǎn)的Sn-58Bi錫膏將高熔點(diǎn)的Sn-3.0Ag-0.5Cu(SAC305)的小球回流焊接在印制電路板(PCB)上,從而實(shí)現(xiàn)高溫芯片的低溫焊接工藝.文中研究了SnAgCu/SnBi混裝焊點(diǎn)在熱循環(huán)條件下的可靠性并通過有限元模擬揭示了混裝焊點(diǎn)熱循環(huán)可靠性的應(yīng)變演變行為.熱循環(huán)試驗(yàn)發(fā)現(xiàn)混裝焊點(diǎn)的壽命要優(yōu)于SAC305無鉛焊點(diǎn).有限元計算表明,結(jié)構(gòu)混裝焊點(diǎn)內(nèi)SnBi釬料層的添加能夠減小最大非彈性應(yīng)變范圍,從而提升混裝焊點(diǎn)的熱循環(huán)可靠性.
關(guān)鍵詞: 混裝焊點(diǎn);無鉛釬料;可靠性;熱循環(huán);有限元
中圖分類號:TG425"" 文獻(xiàn)標(biāo)志碼:A"""" 文章編號:1673-4807(2024)02-031-05
Study on thermal cycling reliability in SnAgCu/SnBi mixed solder joints
Abstract:Mixed solder joints are the Sn-Ag-Cu bump with high melting point which is reflowed on PCB by Sn-Bi low temperature paste. This paper mainly studies the thermal cycling reliability of Sn-Ag-Cu/Sn-Bi structural mixed solder joints. Finite element method is employed to investigate the strain distribution in mixed solder joints. The results show that the thermal cycling reliability of the structural composite solder joint is better than that of Sn-Ag-Cu. This is mainly affected by the Sn-Bi solder layer which could narrow the range of non-elastic strain. The non-elastic strain range of structure composite solder joint with 50% Sn-Bi is lower than that of Sn-Ag-Cu solder joint.
Key words:mixed solder joint, Pb-free solder, reliability, thermal cycling, finite element method
混裝焊點(diǎn)是指采用低熔點(diǎn)的錫膏來焊接高熔點(diǎn)的焊錫小球,它的出現(xiàn)依賴于封裝焊點(diǎn)結(jié)構(gòu)和封裝材料的共同發(fā)展.在焊點(diǎn)結(jié)構(gòu)方面,球柵陣列(BGA)結(jié)構(gòu)的出現(xiàn),使得器件需要先植球形成焊球后再進(jìn)行組裝;釬料合金的發(fā)展使得植球和組裝選用釬料的種類多樣化.例如,在2000年左右,出現(xiàn)了Sn-Ag-Cu釬料替代Sn-Pb釬料的局面,此時電子工業(yè)中仍然大量使用傳統(tǒng)的Sn-Pb釬料合金,在對BGA器件的植球而言,可選擇的焊球有Sn-Ag-Cu焊球和Sn-Pb焊球;在回流焊組裝時,可選擇的錫膏又有Sn-Ag-Cu和Sn-Pb兩種,如果選擇的BGA焊球和錫膏成分為同種合金,那么最終得到成分單一的Sn-Ag-Cu或Sn-Pb焊點(diǎn),如果錫膏的成分與BGA焊球的成分不相同,那么將會形成混裝焊點(diǎn).在2010年左右,Sn-Pb釬料逐漸退出歷史舞臺,此時,Sn-Bi低溫釬料被推向市場,又出現(xiàn)Sn-Bi和Sn-Ag-Cu之間的混裝.Sn-Bi和Sn-Ag-Cu無鉛混裝焊點(diǎn)是利用Sn-Bi焊膏將Sn-Ag-Cu的焊球回流焊接在PCB板上,或是利用Sn-Ag-Cu的焊膏將Sn-Bi的焊球回流焊接到PCB板上,這一封裝過程包含著組織、力學(xué)性能、可靠性的演變[1-5].
在混裝過程中,由于Sn-Ag-Cu焊料熔點(diǎn)要高于Sn-Pb或Sn-Bi焊料,依據(jù)焊接溫度混裝焊點(diǎn)可以分為兩類:結(jié)構(gòu)混裝焊點(diǎn)(焊接溫度低于Sn-Ag-Cu熔點(diǎn))和成分混裝焊點(diǎn)(焊接溫度高于Sn-Ag-Cu熔點(diǎn)).雖然混裝焊點(diǎn)很早就出現(xiàn)在電子工業(yè)中,但混裝焊點(diǎn)的可靠性近年來才得以關(guān)注.文獻(xiàn)[6]對比了BGA器件采用結(jié)構(gòu)混裝、成分混裝焊點(diǎn)與Sn-Pb焊點(diǎn)在0~100 ℃下的熱循環(huán)可靠性,發(fā)現(xiàn)結(jié)構(gòu)混裝焊點(diǎn)的熱循環(huán)可靠性要優(yōu)于成分混裝焊點(diǎn)的熱循環(huán)可靠性,但均高于Sn-Pb焊點(diǎn).文獻(xiàn)[7]給出了熱循環(huán)參數(shù)對混裝焊點(diǎn)可靠性的影響,通過研究結(jié)構(gòu)混裝與成分混裝BGA焊點(diǎn)分別在0~100 ℃和-40~125 ℃的熱循環(huán)壽命,發(fā)現(xiàn)焊點(diǎn)在0~100 ℃條件下的可靠性要優(yōu)于-40~125 ℃條件但與結(jié)構(gòu)混合還是成分混合影響不大.另外,混裝焊點(diǎn)的熱循環(huán)可靠性也受到無鉛焊球與有鉛錫膏混合百分比及器件尺寸的影響[8-11].文獻(xiàn)[12]對Sn-Pb、Sn-Ag-Cu及混裝焊點(diǎn)的隨機(jī)振動可靠性進(jìn)行了研究并考慮了不同焊盤鍍層的影響,結(jié)果表明了Sn-Pb焊點(diǎn)的振動可靠性要高于混裝焊點(diǎn),而Sn-Ag-Cu無鉛焊點(diǎn)與混裝焊點(diǎn)相比則取決于焊盤鍍層成分.文獻(xiàn)[13]研究了成分混合倒裝焊點(diǎn)在電流密度為1×104 A/cm2,溫度為120 ℃的電遷移行為,同樣觀察到了陽極處IMC的長大及Pb富集和陰極處Ni金屬層的溶解和空洞導(dǎo)致的焊點(diǎn)失效.
從以上混裝焊點(diǎn)研究現(xiàn)狀可以發(fā)現(xiàn),目前,混裝焊點(diǎn)的研究還處于起步階段,對于混裝焊點(diǎn)中的成分復(fù)合焊點(diǎn)的報道比較多,包括焊點(diǎn)的跌落可靠性、熱循環(huán)可靠性.但對于結(jié)構(gòu)復(fù)合焊點(diǎn),目前SnAgCu/SnPb結(jié)構(gòu)混合焊點(diǎn)跌落可靠性較差,熱循環(huán)可靠性遜于Sn-Ag-Cu單一焊點(diǎn).對于SnAgCu/SnBi混裝焊點(diǎn)可靠性的相關(guān)研究工作接近空白,因此文中主要研究了SnAgCu/SnBi混裝體系的熱循環(huán)可靠性.
1 實(shí)驗(yàn)材料與方法
本研究采用的釬料為Sn-3.0Ag-0.5Cu(SAC305)和Sn-58Bi(SB)薄片,釬料厚度分別為200和100 μm.由于SAC305和SB釬料的熔點(diǎn)分別為221和138 ℃,回流焊過程中峰值焊接溫度為150 ℃,從而保證SAC305釬料不熔化,而Sn-Bi釬料熔化并潤濕Cu基板.結(jié)構(gòu)混裝焊點(diǎn)的制備流程如圖1,在焊點(diǎn)制作過程中,為防止Sn-Bi熔化后引起未熔化的SAC305薄片偏移,用100 μm的鋼片固定在Cu片和SAC305薄片之間,整體固定后進(jìn)行回流焊接得到結(jié)構(gòu)混裝焊點(diǎn);最后通過線切割加工得到需要的獨(dú)立焊點(diǎn),獨(dú)立焊點(diǎn)的尺寸為1 mm×1 mm,長度為30 mm.另一方面,也選擇了焊接溫度為260 ℃,并對混裝焊點(diǎn)進(jìn)行焊接,由于SAC305與Sn-Bi釬料均發(fā)生熔化,從而產(chǎn)生了成分混裝焊點(diǎn),記作為SB-50SAC成分混裝焊點(diǎn),并用于可靠性對比.
熱循環(huán)可靠性測試時低溫為15 ℃,高溫為110 ℃,一個熱循環(huán)周期為200 s,高溫和低溫停留時間各為30 s,高低溫升降時間為70 s,熱循環(huán)曲線如圖2.熱循環(huán)次數(shù)分別為500、1 000和2 000次.
將焊點(diǎn)鑲嵌并利用砂紙對試樣進(jìn)行預(yù)磨,然后采用拋光液對試樣進(jìn)行拋光,利用光學(xué)顯微鏡和掃描電鏡觀察釬料合金的顯微組織及裂紋擴(kuò)展.
為了評估焊點(diǎn)經(jīng)過熱循環(huán)后的力學(xué)性能,采用三點(diǎn)彎曲方法對焊點(diǎn)的力學(xué)性能進(jìn)行測定,焊點(diǎn)彎曲示意見圖3(a),彎曲夾具如圖3(b),其中彎曲跨距為13 mm.
2 結(jié)果與分析
2.1 熱循環(huán)對混裝焊點(diǎn)性能的影響
SnAgCu/SnBi結(jié)構(gòu)混裝焊點(diǎn)組織如圖4,組織內(nèi)可以觀察到SnBi/SnAgCu/SnBi三層釬料,SAC305釬料保持未熔化狀態(tài),而Sn-Bi釬料則與Cu基板實(shí)現(xiàn)了焊接,從而構(gòu)成結(jié)構(gòu)混裝焊點(diǎn).
熱循環(huán)會降低焊點(diǎn)的壽命與力學(xué)性能,圖5為熱循環(huán)次數(shù)對SAC/SB結(jié)構(gòu)混裝焊點(diǎn)、Sn-Bi焊點(diǎn)、SAC305焊點(diǎn)和SB-50SAC成分混裝焊點(diǎn)極限彎曲載荷的影響.可以發(fā)現(xiàn),SB-50SAC成分混裝焊點(diǎn)、SAC305、Sn-58Bi和的極限彎曲載荷均隨著熱循環(huán)次數(shù)的增加而下降,其中下降速度最快的是SB-50SAC成分混裝焊點(diǎn),Sn-Bi焊點(diǎn)的下降速度較慢,但SAC/SB結(jié)構(gòu)混裝焊點(diǎn)的力學(xué)極限彎曲載荷基本不隨熱循環(huán)次數(shù)的增加而下降,均能維持在4.5 N左右.在熱循環(huán)過程中,結(jié)構(gòu)混裝焊點(diǎn)的力學(xué)性能退化較小.焊點(diǎn)的熱循環(huán)可靠性排序?yàn)椋篠B-50SAC成分混裝焊點(diǎn)gt; Sn-58Bi焊點(diǎn)gt;SAC/SB結(jié)構(gòu)混裝焊點(diǎn)gt; SAC305焊點(diǎn).
圖6為結(jié)構(gòu)混裝焊點(diǎn)在熱循環(huán)過程中由于材料熱膨脹系數(shù)差異引起的變形示意,其中圖6(a)為初始狀態(tài)下的結(jié)構(gòu)混裝焊點(diǎn),圖6(b)為熱循環(huán)后的結(jié)構(gòu)混裝焊點(diǎn).熱循環(huán)過程中,由于Sn-58Bi釬料與銅的熱膨脹系數(shù)差異,以及Sn-Bi釬料和SAC305釬料熱脹系數(shù)的差異,在界面1和界面2上產(chǎn)生應(yīng)力.對于界面1而言,由于Sn-Bi與銅之間的熱脹系數(shù)差異,容易產(chǎn)生應(yīng)力集中,對于Sn-Bi與SAC305界面而言,由于較小的熱膨脹系數(shù)差異,且Sn-Bi的彈性模量比銅小,因此Sn-Bi/Sn-Ag-Cu界面的應(yīng)力集中程度比Cu/Sn-Ag-Cu要小,這種熱膨脹系數(shù)的梯度分布和Sn-Bi釬料合金較小的彈性模量,將導(dǎo)致結(jié)構(gòu)混裝焊點(diǎn)熱循環(huán)可靠性比SAC305單一釬料焊點(diǎn)高.下文將通過有限元模擬來揭示結(jié)構(gòu)混裝焊點(diǎn)高熱循環(huán)可靠性的原因.
結(jié)構(gòu)混裝焊點(diǎn)彎曲過程中,由于Cu/Sn-Bi界面的應(yīng)力集中程度較大,裂紋容易在該界面上萌生和擴(kuò)展,圖7為熱循環(huán)2000次后的裂紋尖端形貌,裂紋在Cu/Sn-Bi界面上擴(kuò)展,從而驗(yàn)證了以上觀點(diǎn).
2.2 混裝焊點(diǎn)的熱循環(huán)模擬
為了研究熱循環(huán)對結(jié)構(gòu)混裝焊點(diǎn)的影響,文中采用了ANSYS軟件對熱循環(huán)過程中焊點(diǎn)內(nèi)應(yīng)變分布進(jìn)行了模擬,并與SAC305焊點(diǎn)進(jìn)行對比.結(jié)構(gòu)混裝焊點(diǎn)的模型和網(wǎng)格如圖8,采用四面體網(wǎng)格進(jìn)行劃分,其中A區(qū)域的材料為SAC305,B和C區(qū)域的材料為Sn-58Bi,D和E區(qū)域的材料為銅.
有限元模擬熱循環(huán)溫度在15~1 110 ℃之間變化,高、低溫保溫時間為30 s.Cu是純彈性材料,其材料的參數(shù)見表1.SAC305釬料的基本力學(xué)性能參數(shù)也如表1[14].此外,由于Sn-58Bi釬料的本構(gòu)模型參數(shù)較少,故采用彈塑性本構(gòu)模型對其力學(xué)性能進(jìn)行描述,其中屈服強(qiáng)度定義為30 MPa,見表2[14].
SAC305釬料的蠕變性能采用Anand本構(gòu)模型,Anand模型可以反映粘塑性材料與應(yīng)變速率、溫度相關(guān)的變形行為,以及應(yīng)變速率的歷史效應(yīng)、應(yīng)變硬化和動態(tài)回復(fù)等特征,方程結(jié)構(gòu)如下[14]:
圖9為有限元模擬得到的焊點(diǎn)內(nèi)塑性應(yīng)變分布圖.
左側(cè)為SAC305焊點(diǎn),右側(cè)為SAC/SB結(jié)構(gòu)混裝焊點(diǎn).x方向上,SAC305焊點(diǎn)的最大應(yīng)變出現(xiàn)在Cu/Sn-Ag-Cu界面的邊緣,而結(jié)構(gòu)混合焊點(diǎn)在x方向上的最大塑性應(yīng)變出現(xiàn)在Sn-Bi/Sn-Ag-Cu界面的邊緣.SAC305焊點(diǎn)y方向的最大塑性應(yīng)變出現(xiàn)在Cu/Sn-Ag-Cu界面的邊緣,結(jié)構(gòu)混合焊點(diǎn)y方向的最大塑性應(yīng)變出現(xiàn)在Sn-Ag-Cu釬料內(nèi)部.綜合這兩個方向的塑性應(yīng)變,得到焊點(diǎn)的Mises應(yīng)變分布圖,從圖中可以發(fā)現(xiàn),SAC305焊點(diǎn)的最大塑性應(yīng)變出現(xiàn)在Cu/Sn-Ag-Cu界面的邊緣,而結(jié)構(gòu)復(fù)合焊點(diǎn)的最大塑性應(yīng)變出現(xiàn)在Sn-Bi/Sn-Ag-Cu界面的邊緣.另一方面,在結(jié)構(gòu)混裝焊點(diǎn)內(nèi),其最大非彈性應(yīng)變范圍小于單一SAC305焊點(diǎn),從而提升了混裝焊點(diǎn)的熱循環(huán)可靠性.
3 結(jié)論
采用低熔點(diǎn)Sn-58Bi錫膏焊接高熔點(diǎn)Sn-3.0Ag-0.5Cu成分的BGA球時可以構(gòu)成SAC/SB混裝焊點(diǎn),并實(shí)現(xiàn)高溫芯片的低溫焊接工藝.按照焊接溫度來區(qū)分,當(dāng)焊接溫度高于SAC305熔點(diǎn)時得到成分混裝焊點(diǎn),當(dāng)焊接溫度低于SAC305熔點(diǎn)而高于Sn-Bi釬料熔點(diǎn)時得到結(jié)構(gòu)混裝焊點(diǎn).文中研究了SnAgCu/SnBi混裝焊點(diǎn)在熱循環(huán)條件下的可靠性并通過有限元模擬揭示了混裝焊點(diǎn)熱循環(huán)可靠性的應(yīng)變演變行為,得到如下結(jié)論:
(1) 無論是結(jié)構(gòu)混裝焊點(diǎn)還是成分混裝焊點(diǎn),SAC/SB混裝焊點(diǎn)的可靠性均優(yōu)于Sn-3.0Ag-0.5Cu或Sn-58Bi焊點(diǎn).
(2) 采用高溫焊接得到的成分混裝焊點(diǎn)熱循環(huán)可靠性要優(yōu)于低溫焊接的結(jié)構(gòu)混裝焊點(diǎn).
(3) 有限元研究結(jié)果表明, Sn-Bi層結(jié)構(gòu)混裝焊點(diǎn)的最大非彈性應(yīng)變范圍小于Sn-Ag-Cu焊點(diǎn),從而也提升了混裝焊點(diǎn)的熱循環(huán)可靠性.
參考文獻(xiàn)(References)
[1] BREWIN A, HUNT C, DUSEK M,et al. Reliability of joints formed with mixed alloy solders[R]. Teddington, UK: National Physical Laboratory, 2002.
[2] 張志杰, 宋彥霞, 耿遙祥,等. 原位觀察Cu/OSP/Sn3.0Ag0.5Cu/Ni倒裝焊點(diǎn)電遷移過程中的應(yīng)力松弛現(xiàn)象 [J]. 江蘇科技大學(xué)學(xué)報(自然科學(xué)版), 2020, 34(1): 13-17.
[3] SNUGOVSKY P, MCCORMICK H,BAGHERI S, et al. Microstructure, defects, and reliability of mixed Pb-free/Sn-Pb assemblies [J]. Journal of Electronic Materials,2009,38(2) :292-302.
[4] KANNABIRAN A, PANNERSELVAM E T, RAMKUMAR M . Forward and backward compatibility of solder alloys with component and board finishes [J].IEEE Transactions on Electronics Packaging Manufacturing, 2007,30(2):138-146.
[5] CHEN H T, WANG L, HAN J, et al. Microstructure, orientation and damage evolution in SnPb, SnAgCu, and mixed solder interconnects under thermomechanical stress [J].Microelectronic Engineering,2012, 96:82-91.
[6] SNUGOVSKY P, MCCORMICK H, BAGHERI S,et al. Microstructure, defects, and reliability of mixed Pb-free/Sn-Pb assemblies [J]. Journal of Electronic Materials, 2009,38(2) : 292-302.
[7] NANDAGOPAL B, ZEQUN M, SUE T. Microstructure and thermal fatigue life of BGAs with eutectic Sn-Ag-Cu balls assembled at 210℃ with eutectic Sn-Pb solder paste [C]∥IEEE 56th Electronic Components and Technology Conference, Institute of Electrical and Electronics Engineers Inc. San Diego, CA, United States:IEEE,2006:875-883.
[8] COYLE R, READ P, KUMMERL S D F. A comprehensive analysis of the thermal fatigue reliability of SnPb and Pb free plastic ball grid arrays (PBGA) using backward and forward compatible assembly processes [J]. Journal of Surface Mount Technology,2008, 21: 33-47.
[9] COYLE R, ASPANDIAR, VASUDEVAN S, et al. The effect of Pb mixing levels on solder joint reliability and failure mode of backward compatible, high density Ball Grid Array assemblies [C]∥ Proceedings of SMTA International. Fort Worth TX, USA:Surface Mount Technology Association, 2013: 403-414.
[10] VASUDEVAN V, COYLE R, ASPANDIAR R,et al. Thermal cycling reliability, microstructural characterization, and assembly challenges with backward compatible soldering of a large, high density ball grid array[C]∥2011 61st Electronic Components and Technology Conference. Lake Buena Vista, FL, United States: Institute of Electrical and Electronics Engineers Inc, 2011:954-964.
[11] 杭春進(jìn), 田艷紅, 趙鑫,等. 混裝BGA器件高溫老化實(shí)驗(yàn)焊點(diǎn)微觀組織研究 [J]. 金屬學(xué)報, 2013, 49: 831-837
[12] PLAZA G, OSTERMAN M, PECHT M. Vibration Durability of Mixed Solder Interconnects [C]∥41st International Symposium on Microelectronics. Providence RI, USA:IEEE, 2008: 123-136.
[13] LIU B,TIAN Y,QIN J,et al.Degradation behaviors of micro ball grid array (μBGA) solder joints under the coupled effects of electromigration and thermal stress[J]. Journal of Materials Science: Materials in Electronics,2016:1-10.
[14] 盛重. QFP焊點(diǎn)可靠性研究及其熱循環(huán)疲勞壽命預(yù)測[D]. 南京: 南京航空航天大學(xué), 2010: 55-60.