摘 要: 基于嘌呤-色酮的席夫堿,設計、合成并論述了一種新型的檢測Zn2+的開啟式熒光探針(E)-3-((2-(8,9-二(萘-1-基)-9H-嘌呤-6-基)腙)甲基)-4H-鉻-4-酮(DPHC).DPHC在DMSO/HEPES (v/v = 9:1, pH = 7.4)溶液中對Zn2+表現(xiàn)出顯著的選擇性和快速響應,并且伴隨著從無色到淡綠色的顏色變化.DPHC的發(fā)射強度與Zn2+的濃度(1-5 μmol/L)之間存在良好的線性關(guān)系(R2=0.979 92),其檢出限為150.0 nmol/L.Job′s plot和1H-NMR進一步證明了DPHC對Zn2+的傳感機理.
關(guān)鍵詞: 嘌呤-色酮;鋅(II); 顯著選擇性;快速響應;檢出限
中圖分類號:O657.3"" 文獻標志碼:A"""" 文章編號:1673-4807(2024)02-087-06
Fluorescent probe based on purine for detecting Zn2+ and its application
Abstract:A new “turn-on” fluorescent probe derived from purine-chromone Schiff base (E)-3-((2-(8,9-di(naphthalen-1-yl)-9H-purin-6-yl) hydrazono) methyl)-4H-chromen-4-one (DPHC) for detecting Zn2+ was designed, synthesized and evaluated. The DPHC exhibited remarkable selectivity and rapid response towards Zn2+ in DMSO/HEPES (v/v=9∶1, pH=7.4), accompanying with a significant color change from colorless to pale green. A good linear relationship (R2=0.979 92) was obtained between the emission intensity of DPHC and the concentration of Zn2+ (1-5 μmol/L) with low detection limit of 150.0 nmol/L. The sensing mechanism of DPHC to Zn2+ was supported by the Job′s plot and 1H-NMR.
Key words:purine-chromone, Zn (II), remarkable selectivity, rapid response, low detection
離子在自然界中起著重要的作用,并且是大多數(shù)生命體生長過程中必要的需求.其中,鋅離子(Zn2+)廣泛存在于人體和其他生命體中[1-2].因此,鋅離子是生物體生理功能的重要的微量元素之一[3].然而,過量攝入鋅離子會引起神經(jīng)系統(tǒng)紊亂以及阿爾茨海默癥、免疫缺陷和癲癇等許多其他疾病[4-6].所以,鋅離子的選擇性識別和有效檢測對化學、生物學、臨床醫(yī)學和農(nóng)學等領(lǐng)域的相關(guān)研究具有重要意義[7-8].
有機小分子熒光探針以其靈敏度高、選擇性強、響應時間短、效率高等優(yōu)點引起眾多研究組的關(guān)注[9-13].許多關(guān)于檢測Zn2+的研究被報道[14-21],但很少有基于嘌呤為母體的例子.嘌呤衍生物在自然界分布廣泛,具藥理活性,是一類重要的抗病毒藥物[22-24].嘌呤衍生物是雜環(huán)化合物,它們是由嘧啶環(huán)和咪唑環(huán)稠合形成的化合物[25-26].它們具有平面剛性結(jié)構(gòu),含有豐富的氮原子和п-п共軛體系[27-28].因此,嘌呤衍生物可以有效地與金屬離子配位,可以作為熒光探針的重要中間體[29-30].
在此,一種新型的熒光探針被設計、合成,且命名為(E)-3-((2-(8,9-二(萘-1-基)-9H-嘌呤-6-基)腙)甲基)-4H-鉻-4-酮(DPHC).DPHC在DMSO/HEPES溶液(9/1, v/v, pH 7.4, HEPES緩沖液,0.2 mmol/L)中對Zn2+具有顯著的選擇性和快速響應,并且顏色可以從無色變?yōu)闇\綠色.通過Job′s plot實驗確定了Zn2+與DPHC的結(jié)合方式為1∶1,并通過密度泛函數(shù)(DFT)和1H NMR進一步認證了絡合機制.
1 實驗
1.1 試劑與儀器
所有試劑:色酮-3-甲醛、二甲基亞砜(安耐吉化學,化學純);乙醇(上海沃化,工業(yè)級);4-羥乙基哌嗪乙磺酸(Jamp;K, 化學純).
所有儀器:BSA124S電子天平、DF-101S集熱式恒溫加熱磁力攪拌器、RE 100-pro旋轉(zhuǎn)蒸發(fā)儀、79-1磁力攪拌器、UV-3010紫外分光光度計、Bruker-Advance DPX 400核磁光譜儀、Agilent-6110質(zhì)譜儀、Spectrofluorometer FS5熒光光譜儀、PHS-25C pH計.
1.2 合成方法
圖1為將嘌呤衍生物1a(100 mg, 0.25 mmol)與色酮-3-甲醛(65 mg, 0.37 mmol)溶解在乙醇(2 mL)中,然后將混合物回流反應2 h,待反應完全.冷卻至室溫,抽濾,用乙醇洗滌固體,得到淡黃色固體(72 mg, 52 %).
DPHC的表征:1H NMR (400 MHz, DMSO-d6) δ12.19 (s, 1H), 8.84 (s, 1H), 8.59 (s, 1H), 8.35 (s, 2H), 8.15 (dd, J=7.9, 1.7 Hz, 1H), 7.98 (t, J=7.4 Hz, 2H), 7.93-7.82 (m, 3H), 7.74-7.65 (m, 2H), 7.58-7.47 (m, 6H), 7.41 (dd, J=4.7, 1.7 Hz, 2H), 7.32 (dd, J=8.3, 7.2 Hz, 1H). 13C NMR (101 MHz, DMSO-d6) δ175.44, 156.23, 154.15, 153.32, 150.88, 134.98, 134.00, 133.39, 131.84,131.50,130.61,130.26,130.10,129.34,128.67 (d,J=6.6 Hz),127.87 (d,J=12.1 Hz),127.43,127.22 (d,J=12.6 Hz),126.86,126.36 (d,J=14.7 Hz),125.74 (d,J=12.2 Hz),125.01,123.85,122.91,119.54,119.16,118.79. ESI-MS: calcd. for" + 559.2,found 559.2.
2 結(jié)果與討論
2.1 DPHC對金屬離子的光學作用
為了研究探針DPHC的金屬離子響應,首先,在DMSO/HEPES的緩沖溶液中,將探針與不同金屬陽離子(Zn2+, Co2+, Ni2+, Al3+, Cr3+, Mn2+, Mg2+, Ba2+, Pb2+, K+, Ca2+, Cs2+, Na+, Ag+, Cd2+, Pd2+, Fe3+ 和 Cu2+)絡合并進行熒光測試.如圖2,在添加Zn2+后,探針會在509 nm處有強發(fā)射,而其他離子并沒有引起發(fā)射增強.另外,通過熒光燈照射可以發(fā)現(xiàn),探針標樣本身無色,但加入鋅離子后,溶液從無色變?yōu)闇\綠色.
接著,為了進一步探索DPHC對Zn2+的選擇性,在相同體系中進行了競爭實驗.DPHC首先與Zn2+(5 eq)進行絡合,然后分別添加相同當量的其他離子(Co2+, Ni2+, Al3+, Cr3+, Mn2+, Mg2+, Ba2+, Pb2+, K+, Ca2+, Cs2+, Na+, Ag+, Cd2+, Pd2+, Fe3+ 和 Cu2+)(5 eq).如圖3,在多離子存在情況下,Cu2+具有一定的淬滅作用,而DPHC-Zn2+的熒光強度受其他離子干擾較少.
2.2 DPHC的絡合機制
為了探究DPHC與Zn2+的靈敏度,進行了滴定實驗(圖4).通過實驗結(jié)果可以發(fā)現(xiàn),在509 nm處DPHC的熒光強度隨著Zn2+的濃度增加而增加,并且在離子達到5個當量時候飽和.如圖5,探針DPHC在509 nm處的熒光強度與Zn2+之間表現(xiàn)出良好的線性關(guān)系(R2=0.979 92).通過3Sb1/S公式計算,可以得出DPHC-Zn2+的檢出限為150 nmol/L,這遠遠低于WHO規(guī)定的允許值(76.0 μmol/L).另外,通過Benesi-Hildebrand(圖6)方程確定了DPHC與Zn2+的絡合常數(shù)K為7.616×10-5.
接著,為了研究探針DPHC與Zn2+的絡合機制,繪制了Job′s plot圖,從圖7中可以發(fā)現(xiàn),在Zn2+的摩爾分數(shù)達到0.5時,觀察到最大發(fā)射波長,這表明DPHC與Zn2+之間的絡合比為1∶1.因此,可以得出結(jié)論:DPHC通過4個位點與Zn2+絡合,其可能的結(jié)合模式如圖8.
為了進一步驗證DPHC的絡合方式,使用Gaussian 09 W進行密度泛函理論計算(DFT).如圖9,Zn2+與探針DPHC的亞胺氮原子和羰基配位,形成類四面體的結(jié)構(gòu).在DPHC-Zn2+的絡合物中,Zn-O鍵長為2.064 93 ,Zn-N鍵長為2.053 52(Zn - N嘌呤-氮).
結(jié)果表明,DPHC可以提供足夠的空間來容納Zn2+.此外,DPHC和DPHC-Zn2+的HOMO-LUMO的差值為0.140 47 a.u.和0.132 59 a.u..因此,DPHC-Zn2+的差值低于DPHC的差值,這可以通過DPHC-Zn2+絡合物在探針DPHC吸收光譜紅移來解釋.此外,圖10介紹了DPHC-Zn2+絡合物的核磁譜圖,在加入Zn2+(1 eq)到DPHC后,亞胺環(huán)的質(zhì)子從7.47×10-6到8.35×10-6,這也支持了以下觀點:亞胺參與了與Zn2+的絡合.
2.3 探針的實際應用
對于探針的實際應用,絡合時間長短與穩(wěn)定性至關(guān)重要.如圖11,DPHC和Zn2+絡合后的熒光強度,在短短10 s內(nèi)就能達到最高值.此外,在60 s的持續(xù)時間內(nèi),探針DPHC與Zn2+絡合后的產(chǎn)物的熒光強度保持不變,這表明DPHC對Zn2+的檢測足夠穩(wěn)定.
此外,為了探究探針DPHC在不同pH下對Zn2+的檢測效果.首先,使用1 mol/L的HCl或NaOH將儲備液的pH值制備成2.0~13.0.如圖12,探針DPHC的熒光強度在6~9的pH范圍內(nèi)沒有明顯變化.當添加Zn2+后,在509 nm處,探針DPHC在2.0~13.0的pH范圍內(nèi)顯著增強,并且在pH=7時候熒光強度最高.然而,在強酸條件下(pHlt;6),未觀察到明顯的熒光信號,這有可能是探針結(jié)構(gòu)中多個氮原子發(fā)生了質(zhì)子化,不利于探針與Zn2+的配位.此外,在堿性條件下(pHgt;9)的發(fā)射強度逐漸降低,這有可能是因為Zn2+與OH-結(jié)合形成Zn(OH)2,從而降低了Zn2+的濃度.綜上可以得出結(jié)論,DPHC檢測Zn2+的最佳pH值為6.0~9.0.
通過試紙實驗來進一步證明DPHC的實用性(圖13).首先,制備濾紙條并用DPHC溶液(1 mmol/L)浸泡,然后再空氣中干燥.將制備好的試紙浸泡到不同濃度的Zn2+溶液中(0、0.3、1.0 mmol/L),通過熒光等觀察到試紙由深色變?yōu)闇\色.因此,探針DPHC可以以固體形式測試Zn2+.
3 結(jié)論
(1) 一種新型的基于嘌呤衍生物與色酮-3-甲醛的席夫堿結(jié)構(gòu)的熒光傳感器DPHC被設計合成,該探針是基于PET機制設計的,分子內(nèi)誘導轉(zhuǎn)移限制了探針本身的熒光強度,當加入Zn2+后,PET過程受到抑制,熒光強度增強并伴隨著顯著的顏色變化.
(2) 探針在DMSO/HEPES溶液體系中對Zn2+具有高選擇性和高靈敏度:探針DPHC可以在10 min內(nèi)對Zn2+進行“開啟”式熒光效應;該探針的pH適用范圍是6.0~9.0.
(3) DPHC對Zn2+的檢出限低至150.0 nmol/L,這遠遠低于WHO規(guī)范的標準.此外,Job′s plot確定了Zn2+與DPHC結(jié)合的化學計量為1∶1,并且密度反函數(shù)(DFT)和1H NMR進一步證明了其結(jié)合機制.探針的試紙實驗證明了該探針的實用性.
參考文獻(References)
[1] DU C C, FU S B, WANG X H, et al. Diketopyrrolopyrrole-based fluorescence probes for the imaging of lysosomal Zn2+ and identification of prostate cancer in human tissue[J]. Chemical Science, 2019, 10:5699-5704.
[2] FAN L, QIN J C, LI C R, et al. Two similar Schiff-base receptor based quinoline derivate: Highly selective fluorescent probe for Zn(II)[J]. Spectrochimica Acta Part A-Molecular and Biomolecular Spectroscopy, 2020,236:118347.
[3] NOAM L, MICHAL H. How cellular Zn2+ signaling drives physiological functions[J]. Cell Calcium, 2018, 75:53-63.
[4] LIU H Y, LIU T Q, ZHANG Y M,et al. A simple schiff base as dual-responsive fluorescent sensor for bioimaging recognition of Zn2+ and Al3+ in living cells[J]. Journal of Materials Chemistry B, 2018, 6: 5435-5442.
[5] LI C R, WANG G Q, FAN L, et al. Development of a sensitive and selective fluorescent probe for Zn2+ based on naphthyridine Schiff base[J]. Journal of Photochemistry and Photobiology A-Chemistry, 2019, 375: 231-236.
[6] KHAN M Z. A possible significant role of zinc and GPR39 zinc sensing receptor in Alzheimer disease and epilepsy[J]. Biomedicine amp; Pharmacotherapy, 2016, 79:263-272.
[7] ZHAO G, GUO B Y, WEI G, et al. A novel dual-channel Schiff base fluorescent chemo-sensor for Zn2+ and Ca2+ recognition:Synthesis, mechanism and application[J]. Dyes and Pigments, 2019, 170: 107614.
[8] XU H Y, CHEN W, ZHANG W X,et al. A selective Purine-based fluorescent chemosensor for the “naked-eye” detection of Zinc ion (Zn2+): Applications in live cell imaging and test strips[J]. New Journal of Chemistry, 2020,44:15195-15201.
[9] HUANG Y F, ZHANG Y B, HUO F J, et al. Design strategy and bioimaging of small organic molecule multicolor fluorescent probes[J]. Science China-Chemistry, 2020, 63:1742-1755.
[10] WU Q, JING Y Y, ZHAO T, et al. Development of small molecule inhibitor-based fluorescent probes for highly specific super-resolution imaging[J]. Nanoscale, 2020,12:21591-21598.
[11] JUN J V, CHENOWETH D M, PETERSSON E J. Rational design of small molecule fluorescent probes for biological applications[J]. Organic amp; Biomolecular Chemistry, 2020, 18:5747-5763.
[12] YANG Q Q, LAN T, HE W. Recent progress in reaction-based fluorescent probes for active sulfur small molecules[J]. Dyes and Pigments, 2021,186:108997.
[13] XIA H C, XU X H, SONG Q H. A fluorescent chemosensor for selective detection of phosgene in solutions and in gas phase[J]. Acs Sensors, 2017, 2:178-182.
[14] XU Y K, WANG H Y, ZHAO J Y, et al. A simple fluorescent schiff base for sequential detection of Zn2+ and PPi based on imidazo [2,1-b] thiazole[J]. Journal of Photochemistry and Photobiology A-Chemistry, 2019, 383: 112026.
[15] HAO H, ZHAO C, LEI Z. Aqueous Zn2+ analysis: specific recognition and instant imaging by Schiff base fluorescent probes[J]. Journal of Molecular Structure, 2021, 1227:129522.
[16] SUN H, JIANG Y, NIE J,et al. Multifunctional AIE-ESIPT dual mechanism tetraphenylethene-based Schiff base for inkless rewritable paper and colorimetric/fluorescent dual-channel Zn2+ sensor[J]. Materials Chemistry Frontiers, 2021, 5:347-354.
[17] INAL E K. A fluorescent chemosensor based on schiff base for the determination of Zn2+, Cd2+ and Hg2+[J]. Journal of Fluorescence, 2020, 30:891-900.
[18] WANG D, LI S M, ZHENG J Q,et al. Coordination-directed stacking and aggregation-induced emission enhancement of the Zn(II) schiff base complex[J]. Inorganic Chemistry, 2017, 56:984-990.
[19] PAN S N, TANG H Y, SONG Z K, et al. A novel dual channel fluorescent probe for Ca2+ and Zn2+ based on a coumarin schiff base[J]. Chinese Journal of Chemistry, 2017,35:1263-1269.
[20] TANG L J, WU D, HUANG Z L, et al. A fluorescent sensor based on binaphthol-quinoline Schiff base for relay recognition of Zn2+ and oxalate in aqueous media[J]. Journal of Chemical Sciences, 2016, 128:1337-1343.
[21] FINDIK M, UCAR A, BINGOL H, et al. Fluorogenic ferrocenyl Schiff base for Zn2+ and Cd2+ detection[J]. Research on Chemical Intermediates, 2017, 43:401-412.
[22] ASHIHARA H, STASOLLA C, FUJIMURA T,et al. Purine salvage in plants [J]. Phytochemistry, 2018, 147:89-124.
[23] LESKOVSKI K, ZAKIS J M, NOVOSJOLOVA I, et al. Applications of purine ring opening in the synthesis of imidazole, pyrimidine, and new purine derivatives[J]. European Journal of Organic Chemistry, 2021, 36:5027-5052.
[24] GRUZDEV D A, MUSIYAK V V, LEVIT G L, et al. Purine derivatives with antituberculosis activity[J]. Russian Chemical Reviews, 2018, 87:604.
[25] GOGINENI V, SCHINAZI R F, HAMANN M T. Role of marine natural products in the genesis of antiviral agents[J]. Chemical Reviews, 2015, 115:9655-9706.
[26] 陸鴻飛, 唐叢煥, 張雷, 等. 2-氯-6-N-芳基取代嘌呤衍生物的合成[J]. 江蘇科技大學學報(自然科學版), 2009, 23(4): 76-78.
[27] CLARK J D, FLANAGAN M E, TELLIEZ J B. Discovery and development of janus kinase (JAK) inhibitors for inflammatory diseases[J]. Journal of Medicinal Chemistry, 2014, 57:5023-5038.
[28] PARKER W B. Enzymology of purine and pyrimidine antimetabolites used in the treatment of cancer[J]. Chemical Reviews, 2009, 109: 2880-2893.
[29] XU H Y, CHEN W, JU L X, et al. A purine based fluorescent chemosensor for the selective and sole detection of Al3+ and its practical applications in test strips and bio-imaging[J]. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 2021, 247: 119074.
[30] JIN X X, CHEN H L, ZHANG W X,et al. A novel purine derivative-based colorimetric chemosensor for sequential detection of copper ion and sulfide anion[J]. Applied Organometallic Chemistry, 2018, 32: 4577.