【摘要】生物信息學(xué)作為生命科學(xué)與生物技術(shù)/信息技術(shù)研究領(lǐng)域的關(guān)鍵交叉學(xué)科,對(duì)生物經(jīng)濟(jì)和數(shù)字經(jīng)濟(jì)的貢獻(xiàn)日益顯著。當(dāng)前,生物信息學(xué)仍面臨學(xué)科體系不健全、定位模糊以及交叉合作不充分等挑戰(zhàn),多模態(tài)高維度生物大數(shù)據(jù)的準(zhǔn)確性、分析處理和共享整合問題也考驗(yàn)著生物信息學(xué)的發(fā)展。在建設(shè)科技強(qiáng)國(guó)的過程中,生物信息學(xué)是生物經(jīng)濟(jì)產(chǎn)業(yè)布局的關(guān)鍵環(huán)節(jié)。與此同時(shí),人工智能技術(shù)的融入正引發(fā)生命科學(xué)研究范式的轉(zhuǎn)變,促使生物信息學(xué)從認(rèn)知科學(xué)向工程創(chuàng)造的STEM并存模式方向發(fā)展。此外,生物信息學(xué)面臨人才培養(yǎng)同質(zhì)化和優(yōu)秀青年人才“內(nèi)卷”的困境,需要構(gòu)建多層次培養(yǎng)體系和優(yōu)化科研環(huán)境,培養(yǎng)具有戰(zhàn)略眼光的科學(xué)家。由此,應(yīng)加強(qiáng)頂層設(shè)計(jì),完善學(xué)科體系與教學(xué)體系;建立多元化人才培養(yǎng)體系;全面推進(jìn)“101計(jì)劃”;優(yōu)化教育資源分配和教學(xué)模式創(chuàng)新。
【關(guān)鍵詞】生物信息學(xué) 人工智能 人才培養(yǎng) STEM 優(yōu)化教育資源分配
【中圖分類號(hào)】Q811.4/C961 【文獻(xiàn)標(biāo)識(shí)碼】A
【DOI】10.16619/j.cnki.rmltxsqy.2024.16.002
生物信息學(xué)興起的背景與意義
20世紀(jì)以來,生物學(xué)取得了巨大的發(fā)展,在許多生物領(lǐng)域的發(fā)現(xiàn)和研究方面作出了重大貢獻(xiàn)。同時(shí),計(jì)算機(jī)科學(xué)和信息技術(shù)也有了顯著進(jìn)展,信息處理能力日益增強(qiáng)。生物學(xué)和信息技術(shù)的快速發(fā)展促使人們利用信息技術(shù)的優(yōu)勢(shì)來解決生物學(xué)領(lǐng)域的問題,這便催生了生物信息學(xué)。此外,大規(guī)模生物數(shù)據(jù)的可用性也推動(dòng)了生物信息學(xué)發(fā)展。生物學(xué)家能夠獲取大量生物數(shù)據(jù),如基因序列、基因表達(dá)譜、蛋白質(zhì)結(jié)構(gòu)和代謝物組成等。隨著高通量測(cè)序和其他生物學(xué)技術(shù)的不斷進(jìn)步,生物數(shù)據(jù)的數(shù)量和復(fù)雜性持續(xù)增加。這些大數(shù)據(jù)難以通過傳統(tǒng)手動(dòng)方法處理和分析,迫切需要生物信息學(xué)引入新的方法。
簡(jiǎn)而言之,生物信息學(xué)是整合計(jì)算機(jī)科學(xué)、統(tǒng)計(jì)學(xué)和生物學(xué)的學(xué)科,旨在使用計(jì)算方法分析和解釋各種生物數(shù)據(jù)并提供預(yù)測(cè)。隨著相關(guān)技術(shù)的不斷發(fā)展和突破,生物信息學(xué)也在不斷演進(jìn),其歷程可以劃分為如下四個(gè)階段。
基因組階段。基因組階段生物信息學(xué)發(fā)展的標(biāo)志性事件是人類基因組計(jì)劃的啟動(dòng)。該計(jì)劃于1990年啟動(dòng),歷時(shí)13年,旨在確定人類基因組的化學(xué)結(jié)構(gòu)、功能和組織。在這一階段,生物信息學(xué)主要關(guān)注基因組序列的生成、注釋和分析,為人們提供了大量精確的生物信息,從而推動(dòng)了分子生物學(xué)、基因組學(xué)、遺傳學(xué)等多個(gè)領(lǐng)域的發(fā)展。
高通量階段。高通量階段生物信息學(xué)發(fā)展的主要特征是利用高通量技術(shù)大規(guī)模獲取各種生物數(shù)據(jù),如芯片技術(shù)(microarrays)和高通量測(cè)序(high-throughput sequencing)。在這一階段,數(shù)據(jù)的大規(guī)模獲取和分析變得更加容易,使我們能夠深入了解生物系統(tǒng)的復(fù)雜性。高通量技術(shù)的發(fā)展提高了生物信息學(xué)的效率和準(zhǔn)確性,使研究人員可以快速獲得生物數(shù)據(jù),并利用生物信息學(xué)工具進(jìn)行分析。高通量技術(shù)在生命科學(xué)和醫(yī)學(xué)研究中的應(yīng)用日益廣泛,如基因組學(xué)、轉(zhuǎn)錄組學(xué)、蛋白質(zhì)與代謝組學(xué)。
大數(shù)據(jù)階段。大數(shù)據(jù)階段生物信息學(xué)發(fā)展的主要特征是大數(shù)據(jù)的生成和處理。生物數(shù)據(jù)以指數(shù)級(jí)增長(zhǎng),如基因組、轉(zhuǎn)錄組、蛋白質(zhì)組、代謝組等大數(shù)據(jù)集的不斷積累,給數(shù)據(jù)的存儲(chǔ)和處理帶來了極大挑戰(zhàn)。因此,生物信息學(xué)的發(fā)展重點(diǎn)關(guān)注開發(fā)新的技術(shù),如云計(jì)算、分布式計(jì)算和并行計(jì)算,以滿足更高效的數(shù)據(jù)處理需求。此外,大數(shù)據(jù)使得開發(fā)更準(zhǔn)確的模型、算法和工具來預(yù)測(cè)生物事件及其參數(shù)成為可能。
人工智能階段。人工智能階段生物信息學(xué)發(fā)展的主要特征是人工智能技術(shù)大規(guī)模應(yīng)用于生物數(shù)據(jù)的處理和分析。隨著深度學(xué)習(xí)、自然語言處理和圖像處理等領(lǐng)域的迅速發(fā)展,人工智能技術(shù)已廣泛應(yīng)用于生物數(shù)據(jù)的解讀和分析。例如,深度學(xué)習(xí)算法可以在海量生物數(shù)據(jù)中識(shí)別模式和趨勢(shì),并預(yù)測(cè)生物事件及其參數(shù)。人工智能技術(shù)可以用于研究原位基因表達(dá)、細(xì)胞圖像和蛋白質(zhì)結(jié)構(gòu)等生物系統(tǒng)。類腦神經(jīng)元模型構(gòu)建方法為人工智能的性能提升提供理論支持。
在大約半個(gè)世紀(jì)的時(shí)間里,生物信息學(xué)歷經(jīng)上述四個(gè)階段不斷發(fā)展和壯大,為生物學(xué)研究提供了新的工具和方法,不斷推動(dòng)著生命科學(xué)的進(jìn)步,也為生物學(xué)、醫(yī)學(xué)、農(nóng)業(yè)等領(lǐng)域持續(xù)帶來重大改變和提升。通過生物信息學(xué)分析從基因組序列到其他類型的生物數(shù)據(jù),科學(xué)家能夠更好地理解遺傳學(xué)、基因組學(xué)和其他生物學(xué)領(lǐng)域的問題。具體來說,生物信息學(xué)提供的分析工具使科學(xué)家能夠更快地識(shí)別和比較基因序列、注釋基因功能、了解分子調(diào)控過程及其他生物信息,更好地探究基因型和表型間的可能機(jī)制。生物信息學(xué)通過比較基因組、蛋白質(zhì)組和其他生物數(shù)據(jù),實(shí)現(xiàn)精準(zhǔn)醫(yī)學(xué)研究,使科學(xué)家能夠更快地識(shí)別新的藥物、診斷以及發(fā)現(xiàn)新的治療方法。生物信息學(xué)還可以輔助分子育種,改進(jìn)作物品種,提高作物產(chǎn)量,改善食品質(zhì)量并發(fā)現(xiàn)新的農(nóng)業(yè)處理方法。
生物信息學(xué)發(fā)展的困境及挑戰(zhàn)
生物信息學(xué)的學(xué)科定位未獲共識(shí)。生物信息學(xué)作為一門交叉學(xué)科,盡管在許多領(lǐng)域發(fā)揮著重要作用,但其學(xué)科體系尚不健全,存在學(xué)科認(rèn)可、專業(yè)定位問題。生物信息學(xué)涵蓋理論算法研究、技術(shù)開發(fā)、組學(xué)分析、應(yīng)用研究以及工程化創(chuàng)新研究,涉及從生物學(xué)問題和數(shù)學(xué)信息問題,到應(yīng)用分析、數(shù)據(jù)挖掘、人工智能和主動(dòng)發(fā)現(xiàn)等多個(gè)方面。廣泛的研究?jī)?nèi)涵使其在不同學(xué)術(shù)領(lǐng)域形成了相對(duì)獨(dú)立的研究方向和影響力,如偏算法的理論研究和偏實(shí)驗(yàn)科學(xué)的生物學(xué)應(yīng)用研究,不同領(lǐng)域的研究所面臨的發(fā)展挑戰(zhàn)也各不相同,這導(dǎo)致生物信息學(xué)的學(xué)科內(nèi)部合作不充分、不主動(dòng)。此外,生物信息學(xué)作為整體交叉學(xué)科,缺乏成熟的理論體系和鮮明的領(lǐng)域方向,產(chǎn)業(yè)應(yīng)用集群效應(yīng)也未得到足夠積累。
生物數(shù)據(jù)對(duì)生物信息學(xué)的發(fā)展至關(guān)重要。生物信息學(xué)依賴于生物數(shù)據(jù),生物數(shù)據(jù)的質(zhì)量、特性、處理方法、共享和整合使用情況等因素影響著生物信息學(xué)的發(fā)展。一是生物數(shù)據(jù)可能存在錯(cuò)誤或不完整。如何確保數(shù)據(jù)的準(zhǔn)確性、識(shí)別和糾正錯(cuò)誤或缺失的數(shù)據(jù),成為生物信息學(xué)發(fā)展的關(guān)鍵挑戰(zhàn)。二是生物數(shù)據(jù)具有其特定屬性。如何正確區(qū)分其全局性和局部性、常態(tài)和特殊條件、靜態(tài)和動(dòng)態(tài)等,也是科學(xué)處理數(shù)據(jù)的難點(diǎn)所在。三是有效地分析大量數(shù)據(jù)的方法選擇。生成大量數(shù)據(jù)后,不同類型數(shù)據(jù)的分析、不同分析方法的評(píng)估和使用、基于已有知識(shí)的有監(jiān)督數(shù)據(jù)分析和基于數(shù)據(jù)的無監(jiān)督數(shù)據(jù)分析都有其不同的應(yīng)用范圍。四是生物數(shù)據(jù)的共享和整合使用面臨的挑戰(zhàn)。生物數(shù)據(jù)通常由不同的研究人員和機(jī)構(gòu)創(chuàng)建和管理,因此在數(shù)據(jù)的共享和整合使用方面可能存在壁壘。充分利用多模態(tài)生物數(shù)據(jù),需要識(shí)別和克服上述問題。
生物數(shù)據(jù)已成為國(guó)家重要資源,其產(chǎn)生、分析、管理與利用是保障生物科技安全的重要環(huán)節(jié)。針對(duì)部分敏感生物數(shù)據(jù)的分析處理還需要建立可持續(xù)發(fā)展的安全保護(hù)、隱私保護(hù)和共享服務(wù)的機(jī)制和技術(shù)。2019年,主要依托中國(guó)科學(xué)院北京基因組研究所的中國(guó)生物信息學(xué)中心正式成立,打破了歐美日壟斷全球生物數(shù)據(jù)的格局,實(shí)現(xiàn)了生物信息學(xué)數(shù)據(jù)庫(kù)的自主開發(fā)、自主管理,為我國(guó)高質(zhì)量生物數(shù)據(jù)資源的基礎(chǔ)設(shè)施建設(shè)提供了重要支撐。未來應(yīng)進(jìn)一步加大投入,將其建設(shè)成引領(lǐng)全球生物信息學(xué)生物數(shù)據(jù)資源發(fā)展的大國(guó)工程。
生命科學(xué)研究范式發(fā)生轉(zhuǎn)變。生命科學(xué)研究范式正在發(fā)生深刻變革,尤其是人工智能技術(shù)對(duì)生命科學(xué)研究范式產(chǎn)生了深遠(yuǎn)的影響??傮w來說,從單純的問題驅(qū)動(dòng)研究,轉(zhuǎn)變?yōu)閱栴}驅(qū)動(dòng)與數(shù)據(jù)驅(qū)動(dòng)并行的研究?;蚪M學(xué)、轉(zhuǎn)錄組學(xué)、蛋白質(zhì)組學(xué)、代謝組學(xué)、表型組學(xué)等領(lǐng)域的數(shù)據(jù)量巨大,傳統(tǒng)方法難以應(yīng)對(duì),而人工智能算法技術(shù)可以高效地從中提取有價(jià)值的信息,使得研究更加高效、精準(zhǔn)和個(gè)性化。例如,人工智能技術(shù)可以將不同來源的數(shù)據(jù)(如臨床數(shù)據(jù)、實(shí)驗(yàn)數(shù)據(jù)、文獻(xiàn)數(shù)據(jù))進(jìn)行整合,提供更全面的視角。在人工智能時(shí)代,對(duì)生物大分子和基因的研究進(jìn)入精準(zhǔn)調(diào)控階段,通過機(jī)器學(xué)習(xí)模型,可以預(yù)測(cè)疾病的發(fā)生和發(fā)展,使個(gè)性化醫(yī)療成為可能。在病理學(xué)、細(xì)胞生物學(xué)等領(lǐng)域,人工智能的圖像分析技術(shù)可以自動(dòng)識(shí)別和分類細(xì)胞、組織等,提高診斷的準(zhǔn)確性和效率。采用人工智能技術(shù)分析患者的基因組數(shù)據(jù)、病史和生活方式,可以提供個(gè)性化的治療方案。利用可穿戴設(shè)備和人工智能技術(shù)進(jìn)行實(shí)時(shí)健康監(jiān)測(cè)和管理,能夠有效提高疾病預(yù)防和管理水平。人工智能還可以模擬和預(yù)測(cè)藥物與靶點(diǎn)的相互作用,加快新藥研發(fā)速度。人工智能技術(shù)(如AlphaFold)在蛋白質(zhì)結(jié)構(gòu)預(yù)測(cè)方面取得的重大突破推動(dòng)了結(jié)構(gòu)生物學(xué)的發(fā)展。人工智能技術(shù)幫助設(shè)計(jì)更高效的CRISPR編輯工具,能夠提高基因編輯的準(zhǔn)確性。人工智能驅(qū)動(dòng)的自動(dòng)化實(shí)驗(yàn)室可以進(jìn)行高通量篩選和分析,進(jìn)而大幅提高實(shí)驗(yàn)效率。生物信息學(xué)應(yīng)秉持“從生物中來到生物中去”的理念,探索從“認(rèn)知科學(xué)”到“工程創(chuàng)造”的有效發(fā)展路徑,實(shí)現(xiàn)從單一理科到理工并存發(fā)展的新的轉(zhuǎn)變。
加快建設(shè)科技強(qiáng)國(guó)與大國(guó)競(jìng)爭(zhēng)形勢(shì)緊迫。世界百年未有之大變局加速演進(jìn),科技革命與大國(guó)博弈相互交織,高技術(shù)領(lǐng)域成為國(guó)際競(jìng)爭(zhēng)最前沿和主戰(zhàn)場(chǎng),深刻重塑全球秩序和發(fā)展格局。當(dāng)前,我國(guó)亟需通過科技創(chuàng)新驅(qū)動(dòng),發(fā)展新質(zhì)生產(chǎn)力,推動(dòng)數(shù)字經(jīng)濟(jì)和生物經(jīng)濟(jì)的發(fā)展。具體來說,要堅(jiān)持目標(biāo)導(dǎo)向和問題導(dǎo)向,依靠跨學(xué)科、大協(xié)作和高強(qiáng)度支持,發(fā)揮協(xié)同創(chuàng)新的新型舉國(guó)體制優(yōu)勢(shì),充分體現(xiàn)戰(zhàn)略科技力量在集聚整合相關(guān)科研力量、開展核心技術(shù)攻關(guān)中的引領(lǐng)作用。2022年5月,國(guó)家發(fā)展和改革委員會(huì)發(fā)布的《“十四五”生物經(jīng)濟(jì)發(fā)展規(guī)劃》強(qiáng)調(diào),培育壯大生物經(jīng)濟(jì)支柱產(chǎn)業(yè),加快生物技術(shù)廣泛賦能健康、農(nóng)業(yè)、能源、環(huán)保等產(chǎn)業(yè),促進(jìn)生物技術(shù)與信息技術(shù)深度融合,全面提升生物產(chǎn)業(yè)多樣化水平,推動(dòng)生物經(jīng)濟(jì)高質(zhì)量發(fā)展。具體規(guī)劃包括:依托人工智能技術(shù)、生物醫(yī)學(xué)和健康大數(shù)據(jù)資源,發(fā)展智能輔助決策知識(shí)模型和算法,輔助個(gè)性化新藥研發(fā),為疾病診斷治療提供決策支持;利用第五代移動(dòng)通信、區(qū)塊鏈、物聯(lián)網(wǎng)等前沿技術(shù),實(shí)現(xiàn)藥品、疫苗從生產(chǎn)到使用全生命周期管理;深化衛(wèi)生健康大數(shù)據(jù)在醫(yī)學(xué)科研、教育培訓(xùn)、臨床診療、產(chǎn)品研發(fā)、行業(yè)治理、醫(yī)保支付等方面的應(yīng)用,等等。《中國(guó)生物產(chǎn)業(yè)發(fā)展報(bào)告2022》提出,2025年我國(guó)生物經(jīng)濟(jì)總量有望達(dá)到22萬億元。
科技工作要面向世界科技前沿、面向經(jīng)濟(jì)主戰(zhàn)場(chǎng)、面向國(guó)家重大需求、面向人民生命健康。在自然指數(shù)追蹤的學(xué)科排行榜上,我國(guó)越來越多的科研機(jī)構(gòu)進(jìn)入科研領(lǐng)導(dǎo)者榜單,科研機(jī)構(gòu)的高質(zhì)量科研能力有強(qiáng)者愈強(qiáng)之勢(shì)。然而,在大國(guó)競(jìng)爭(zhēng)中,我國(guó)生物經(jīng)濟(jì)領(lǐng)域仍缺少具備市值規(guī)模、市場(chǎng)份額、專利技術(shù)、品牌影響力和產(chǎn)品競(jìng)爭(zhēng)力的“世界級(jí)領(lǐng)軍企業(yè)”。未來,我國(guó)需要在基因組學(xué)、腦與認(rèn)知科學(xué)、精準(zhǔn)醫(yī)療、生物醫(yī)藥、高端醫(yī)療器械、生物育種、同一健康、合成生物學(xué)、生物質(zhì)能源和生物安全等產(chǎn)業(yè)布局方面實(shí)現(xiàn)全面突破和引領(lǐng)。
生命科學(xué)相關(guān)的未來產(chǎn)業(yè)人才培養(yǎng)有待進(jìn)一步加強(qiáng)。當(dāng)今世界的競(jìng)爭(zhēng)說到底是人才競(jìng)爭(zhēng)、教育競(jìng)爭(zhēng)。我國(guó)要實(shí)現(xiàn)高水平科技自立自強(qiáng),歸根結(jié)底要靠高水平創(chuàng)新人才。當(dāng)前,我國(guó)部分領(lǐng)域的人才培養(yǎng)仍存在原創(chuàng)性和突破性不足、科研資源出現(xiàn)分散重復(fù)與“圈子”壟斷、研究深度不足等問題。圍繞生命科學(xué)相關(guān)的未來產(chǎn)業(yè)布局,開展相應(yīng)的人才培養(yǎng)需要進(jìn)行詳細(xì)的規(guī)劃和實(shí)施。一方面,建立多層次的人才培養(yǎng)體系。加強(qiáng)本科教育,注重學(xué)生基礎(chǔ)知識(shí)的學(xué)習(xí)和科研素養(yǎng)的培育,增加實(shí)驗(yàn)課程和實(shí)踐環(huán)節(jié),鼓勵(lì)學(xué)生參與科研項(xiàng)目;在研究生教育階段設(shè)置跨學(xué)科課程,提供更多的科研機(jī)會(huì)和國(guó)際交流項(xiàng)目,培養(yǎng)學(xué)生的創(chuàng)新能力和跨學(xué)科思維;通過博士后流動(dòng)站和青年科學(xué)家計(jì)劃支持青年科研人員獨(dú)立開展研究,提供相應(yīng)科研經(jīng)費(fèi)和科研資源,鼓勵(lì)原創(chuàng)性研究。另一方面,優(yōu)化科研環(huán)境。增加對(duì)基礎(chǔ)研究和前沿技術(shù)研究的經(jīng)費(fèi)投入,設(shè)立專項(xiàng)基金支持原創(chuàng)性和突破性研究;建設(shè)和完善高水平的科研實(shí)驗(yàn)室和平臺(tái),提供先進(jìn)的科研設(shè)備和技術(shù)支持;鼓勵(lì)和支持科研人員參加國(guó)際學(xué)術(shù)會(huì)議,不斷增加國(guó)際合作研究項(xiàng)目,促進(jìn)學(xué)術(shù)交流和合作;建立靈活的聘用和評(píng)價(jià)機(jī)制,減少對(duì)論文數(shù)量和影響因子的過度依賴,更注重科研成果的實(shí)際貢獻(xiàn);加強(qiáng)公共服務(wù)資源統(tǒng)籌,為科技人才提供住房、子女入學(xué)、醫(yī)療健康、后勤服務(wù)等有效保障,切實(shí)幫助人才解決后顧之憂。
生物信息學(xué)教育資源發(fā)展不均衡。當(dāng)前,我國(guó)生物信息學(xué)教育資源的發(fā)展仍存在不均衡現(xiàn)象,主要表現(xiàn)在一流師資力量不足、頂尖專家參與教學(xué)積極性較低、教材質(zhì)量仍有提升空間以及教育資源分配不均等方面。生物信息學(xué)要求教師具備生物學(xué)、計(jì)算機(jī)科學(xué)和統(tǒng)計(jì)學(xué)等多學(xué)科背景,而具備這種多學(xué)科背景的教師數(shù)量相對(duì)較少。同時(shí),許多在生物信息學(xué)領(lǐng)域具有豐富經(jīng)驗(yàn)的專家更傾向于從事科研工作,而非參與一線教學(xué),導(dǎo)致學(xué)生難以直接獲得頂尖專家的指導(dǎo)和啟發(fā)。生物信息學(xué)教材的編寫需要綜合多個(gè)學(xué)科的知識(shí),而現(xiàn)有的教材質(zhì)量參差不齊,優(yōu)秀的生物信息學(xué)教材數(shù)量有限,難以滿足日益增長(zhǎng)的教學(xué)需求。教育資源分配不均的現(xiàn)象依舊存在,未來應(yīng)重點(diǎn)施策逐步縮小區(qū)域、城際、校際教育質(zhì)量差距。
生物信息學(xué)人才培養(yǎng)的模式與建議
加強(qiáng)頂層設(shè)計(jì),完善學(xué)科體系與教學(xué)體系。一方面,要健全和完善生物信息學(xué)的學(xué)科體系?,F(xiàn)有的學(xué)科分類、產(chǎn)業(yè)分類和經(jīng)濟(jì)活動(dòng)目錄中,存在生物信息學(xué)缺失或定位不準(zhǔn)確的問題,建立完善的理論體系、充分體現(xiàn)學(xué)科價(jià)值、進(jìn)行有效的學(xué)科分類和產(chǎn)業(yè)分類等工作至關(guān)重要。要加強(qiáng)頂層設(shè)計(jì),充分發(fā)揮新型舉國(guó)體制的優(yōu)勢(shì),推動(dòng)學(xué)科發(fā)展和產(chǎn)業(yè)創(chuàng)新深度融合。
另一方面,要完善教育部制定的生物信息學(xué)專業(yè)國(guó)家標(biāo)準(zhǔn),并成立教學(xué)指導(dǎo)委員會(huì)。在科學(xué)(Science)、技術(shù)(Technology)、工程(Engineering)和管理(Management)等方面,明確生物信息學(xué)的人才培養(yǎng)定位,構(gòu)建STEM培養(yǎng)體系。這將有助于規(guī)范和提升生物信息學(xué)教育的質(zhì)量,引導(dǎo)高校培養(yǎng)出符合社會(huì)和產(chǎn)業(yè)發(fā)展需求的高素質(zhì)人才。
建立多元化人才培養(yǎng)體系。一是避免同質(zhì)化,加強(qiáng)工程化培養(yǎng)。為避免同質(zhì)化培養(yǎng)、同質(zhì)化科研、同質(zhì)化成果對(duì)自由探索原創(chuàng)性科研成果的制約,應(yīng)將生物信息學(xué)與STEM教育相結(jié)合,針對(duì)不同領(lǐng)域和崗位需求,制定差異化的人才培養(yǎng)方案,在科學(xué)研究、技術(shù)應(yīng)用和工程開發(fā)等方向上有區(qū)分地培養(yǎng)生物信息學(xué)科學(xué)家和工程技術(shù)人員。注重系統(tǒng)的工程化培養(yǎng),提升學(xué)生的綜合素質(zhì)和跨學(xué)科能力。豐富實(shí)踐項(xiàng)目和跨學(xué)科課程,增強(qiáng)學(xué)生的創(chuàng)新能力和實(shí)際操作能力。在培養(yǎng)過程中,要堅(jiān)持全科與??葡嘟Y(jié)合。
二是緩解青年人才“內(nèi)卷”焦慮。在當(dāng)前競(jìng)爭(zhēng)激烈的社會(huì)環(huán)境中,注重青年學(xué)生的理論學(xué)習(xí)和科研訓(xùn)練的同時(shí),還要注重培養(yǎng)其科學(xué)情操、抗壓能力和良好的心理素質(zhì)。為此,應(yīng)為青年科研人員提供必要的心理輔導(dǎo)、團(tuán)隊(duì)建設(shè)等活動(dòng)機(jī)會(huì),提升其綜合素質(zhì)和團(tuán)隊(duì)合作能力。同時(shí),應(yīng)建立和完善公平公正的激勵(lì)、評(píng)價(jià)和保障體系,引導(dǎo)青年教師專注科研和教學(xué)工作。此外,要引導(dǎo)青年人才理性看待和追逐科研熱點(diǎn)的現(xiàn)象,避免盲目跟風(fēng)和短期行為。
三是注重培養(yǎng)戰(zhàn)略科學(xué)家。戰(zhàn)略科學(xué)家的培養(yǎng)是我國(guó)科技發(fā)展的重要一環(huán),其作用不僅在于推動(dòng)前沿科技的突破,更在于為國(guó)家的長(zhǎng)遠(yuǎn)發(fā)展提供戰(zhàn)略性指導(dǎo)和創(chuàng)新驅(qū)動(dòng)。教育部圍繞這一目標(biāo),鼓勵(lì)各高校開展卓越班的培養(yǎng)模式,并實(shí)施了基礎(chǔ)學(xué)科招生改革試點(diǎn)(即“強(qiáng)基計(jì)劃”),旨在通過該計(jì)劃開展知識(shí)、能力、素質(zhì)、人格四位一體的人才培養(yǎng)模式,實(shí)現(xiàn)“好苗子”一貫式培養(yǎng)。培養(yǎng)具有戰(zhàn)略眼光與創(chuàng)新能力的科學(xué)家和技術(shù)人才,需要特別注意以下幾點(diǎn):首先,戰(zhàn)略科學(xué)家需要具備敏銳的戰(zhàn)略眼光和前瞻性思維,因此課程設(shè)置應(yīng)面向國(guó)家重大需求和前沿科技領(lǐng)域,采用啟發(fā)式教學(xué)方法,激發(fā)學(xué)生的戰(zhàn)略思維和創(chuàng)新能力;其次,戰(zhàn)略科學(xué)家必須具備全球視野和跨領(lǐng)域整合能力,因此應(yīng)加強(qiáng)高校之間的合作與交流,鼓勵(lì)學(xué)生參與國(guó)際學(xué)術(shù)交流和合作研究項(xiàng)目;再次,戰(zhàn)略科學(xué)家的培養(yǎng)還需要豐富的科研資源和實(shí)踐機(jī)會(huì),應(yīng)進(jìn)一步打通高校“圍墻”,鼓勵(lì)學(xué)生選擇不同高校、科研院所進(jìn)行交流學(xué)習(xí),拓寬視野;最后,要注重人才科研素養(yǎng)的培養(yǎng)和家國(guó)情懷的教育,使其能夠在國(guó)家重大科技需求和前沿領(lǐng)域中發(fā)揮關(guān)鍵作用,助力科技強(qiáng)國(guó)建設(shè)。
全面推進(jìn)“101計(jì)劃”?;A(chǔ)學(xué)科教育教學(xué)改革試點(diǎn)工作計(jì)劃(即“101計(jì)劃”)旨在建設(shè)核心課程、核心教材、核心師資和核心實(shí)踐項(xiàng)目,著力培養(yǎng)一批未來在全球具有重要影響力的杰出自然科學(xué)家、醫(yī)學(xué)科學(xué)家和社會(huì)科學(xué)家。教育部“101計(jì)劃”生物信息學(xué)核心課程牽頭專家的任務(wù)是聯(lián)合全國(guó)33所生物科學(xué)類“拔尖2.0”相關(guān)高校,開展“核心課程、核心教材、核心師資團(tuán)隊(duì)”的建設(shè)。未來將從“教學(xué)理念、團(tuán)隊(duì)建設(shè)、教材建設(shè)、質(zhì)量標(biāo)準(zhǔn)、課程模式、教學(xué)方式、課程資源、質(zhì)量管理”等方面全方位打造具有“思想性、科學(xué)性和時(shí)代性”的生物信息學(xué)一流課程體系,以滿足我國(guó)對(duì)生物信息學(xué)領(lǐng)域拔尖創(chuàng)新人才的需求。
具體來說,在專業(yè)、課程大綱及課程組設(shè)置方面,應(yīng)全面規(guī)劃課程內(nèi)容,加強(qiáng)知識(shí)圖譜和能力圖譜建設(shè)。課程設(shè)計(jì)可分為理論課和實(shí)驗(yàn)課兩部分,前者包括“基本原理與算法”和“組學(xué)數(shù)據(jù)分析與應(yīng)用”兩大模塊,后者設(shè)計(jì)科研案例模塊,邀請(qǐng)國(guó)內(nèi)外優(yōu)秀專家學(xué)者向?qū)W生講授生物信息學(xué)的研究案例和學(xué)術(shù)報(bào)告,充分展示生物信息學(xué)的交叉性和前沿性。理論與實(shí)踐相結(jié)合的課程設(shè)計(jì)能夠確保學(xué)生在掌握理論的基礎(chǔ)上提升解決實(shí)際問題的能力。
優(yōu)化教育資源分配和教學(xué)模式創(chuàng)新。一是推動(dòng)教育資源優(yōu)化與共享。為了改善生物信息學(xué)教育資源分配不均衡的現(xiàn)狀,需通過政策引導(dǎo)和資金支持優(yōu)化資源分配,縮小不同地區(qū)、不同高校及高校內(nèi)不同院系之間的教育資源差距。要加大生物信息學(xué)科研后備人才的培養(yǎng),擴(kuò)大人才規(guī)模,提高人才質(zhì)量。同時(shí),進(jìn)一步推進(jìn)高校管理改革,解決結(jié)構(gòu)性問題,促進(jìn)公平競(jìng)爭(zhēng)和資源共享。
二是加強(qiáng)教育部生物信息學(xué)虛擬教研室的建設(shè)。虛擬教研室是一種依托現(xiàn)代信息技術(shù),突破時(shí)空限制,靈活開展線上線下結(jié)合的教學(xué)研究和實(shí)踐活動(dòng)的新型教學(xué)組織。它匯集優(yōu)質(zhì)資源,跨時(shí)空和跨領(lǐng)域進(jìn)行精細(xì)化、專業(yè)化的教研合作,具有開放性、靈活性和變革性等特征,能夠彌補(bǔ)實(shí)體教研室的不足,構(gòu)建多學(xué)科、多層級(jí)、多類型的立體化教研模式。生物信息虛擬教研室的創(chuàng)立將進(jìn)一步推動(dòng)生物信息學(xué)人才的培養(yǎng),利用其信息技術(shù)優(yōu)勢(shì),實(shí)現(xiàn)跨時(shí)空的教學(xué)研究合作,促進(jìn)優(yōu)質(zhì)資源共享,提升學(xué)術(shù)交流的效率和深度,推動(dòng)生物信息學(xué)領(lǐng)域的教學(xué)與研究創(chuàng)新。
三是推動(dòng)科教融合。通過政策引導(dǎo)更多具有多學(xué)科背景的人才加入教育領(lǐng)域,制定激勵(lì)政策提高專家參與教學(xué)的積極性,設(shè)計(jì)涵蓋生命科學(xué)、計(jì)算機(jī)科學(xué)、數(shù)據(jù)科學(xué)等學(xué)科交叉內(nèi)容的綜合課程并確保教學(xué)內(nèi)容的前沿性和實(shí)用性。注重人工智能與數(shù)據(jù)分析的教學(xué),內(nèi)容涵蓋機(jī)器學(xué)習(xí)、深度學(xué)習(xí)和數(shù)據(jù)挖掘等技術(shù),并在教學(xué)中引導(dǎo)學(xué)生將這些技術(shù)應(yīng)用于生物數(shù)據(jù)分析。此外,還應(yīng)讓學(xué)生了解人工智能技術(shù)應(yīng)用于生命科學(xué)中的倫理問題,如隱私保護(hù)、數(shù)據(jù)安全和倫理決策,確保其在技術(shù)應(yīng)用中能夠遵循道德規(guī)范。為進(jìn)一步提升學(xué)生的科研能力,可鼓勵(lì)學(xué)生參與團(tuán)隊(duì)課題組的科研項(xiàng)目,通過實(shí)際科研工作積累經(jīng)驗(yàn)。在“101計(jì)劃”的框架下,推動(dòng)各高校學(xué)生參與到其他高校的科研活動(dòng)中,促進(jìn)跨校合作和資源共享。
四是推動(dòng)產(chǎn)教融合。生物信息學(xué)與產(chǎn)業(yè)深度融合,通過合理的產(chǎn)業(yè)布局和全面的人才培養(yǎng),構(gòu)建產(chǎn)業(yè)集群,能夠有效推動(dòng)醫(yī)療健康和生物技術(shù)的進(jìn)步。為此,要加大對(duì)生物信息學(xué)技術(shù)研發(fā)的投入,支持企業(yè)和科研機(jī)構(gòu)開展自主創(chuàng)新,推動(dòng)技術(shù)的不斷進(jìn)步和應(yīng)用。推動(dòng)產(chǎn)業(yè)園區(qū)規(guī)劃和基礎(chǔ)設(shè)施建設(shè),在重點(diǎn)區(qū)域建立生物信息學(xué)產(chǎn)業(yè)園區(qū),吸引相關(guān)企業(yè)、研究機(jī)構(gòu)和高校入駐,形成集聚效應(yīng),帶動(dòng)技術(shù)創(chuàng)新和產(chǎn)業(yè)發(fā)展。建立產(chǎn)學(xué)研合作平臺(tái),鼓勵(lì)企業(yè)、研究機(jī)構(gòu)和高校合作,設(shè)立聯(lián)合研究項(xiàng)目和實(shí)驗(yàn)室,推動(dòng)應(yīng)用研究和技術(shù)開發(fā),培養(yǎng)學(xué)生的實(shí)踐和創(chuàng)新能力。推動(dòng)企業(yè)、研究機(jī)構(gòu)與高校共同制定人才培養(yǎng)計(jì)劃,設(shè)立聯(lián)合培養(yǎng)基地,通過實(shí)習(xí)和合作研究等形式,讓學(xué)生在實(shí)際工作中得到鍛煉并提高綜合素質(zhì)。引導(dǎo)企業(yè)和社會(huì)組織資助生物信息學(xué)相關(guān)的科研項(xiàng)目,通過設(shè)立科研基金和獎(jiǎng)學(xué)金等方式,支持優(yōu)秀學(xué)生和教師開展科研工作,推動(dòng)學(xué)科發(fā)展。
五是引導(dǎo)社會(huì)資源參與。要通過制定相關(guān)政策,提供稅收優(yōu)惠和資金支持等激勵(lì)措施,鼓勵(lì)企業(yè)和社會(huì)組織參與生物信息學(xué)人才培養(yǎng)和學(xué)科發(fā)展,吸引更多社會(huì)資源投入,形成多方協(xié)同、共同推進(jìn)的良好發(fā)展局面。利用報(bào)紙、電視、廣播、網(wǎng)絡(luò)等媒體平臺(tái),采用制作專題節(jié)目、科普專欄等多樣化的傳播形式,向公眾科普生物信息學(xué)的基礎(chǔ)知識(shí)和最新進(jìn)展,豐富公眾對(duì)生物信息學(xué)的認(rèn)識(shí)和理解。對(duì)中小學(xué)等教育機(jī)構(gòu),可以以合作方式將生物信息學(xué)科普內(nèi)容納入課程體系,開展校內(nèi)外的科普活動(dòng),培養(yǎng)學(xué)生的科學(xué)興趣;對(duì)大學(xué)生和科研人員等具備一定知識(shí)基礎(chǔ)的受眾,可以提供前沿研究報(bào)告、技術(shù)培訓(xùn)課程等更深入的科普內(nèi)容。同時(shí),需要規(guī)避包括利益驅(qū)動(dòng)的不良社會(huì)教育培訓(xùn)機(jī)構(gòu)的影響。加強(qiáng)科普宣傳,提升公眾的科學(xué)素養(yǎng),使其能夠辨別優(yōu)質(zhì)教育資源和不良培訓(xùn)機(jī)構(gòu),避免被利益驅(qū)動(dòng)的機(jī)構(gòu)所誤導(dǎo)。
結(jié)語
生物信息學(xué)的特色和優(yōu)勢(shì)主要體現(xiàn)為強(qiáng)大的數(shù)據(jù)處理能力、跨學(xué)科融合的創(chuàng)新方法、精準(zhǔn)高效的生物學(xué)研究、創(chuàng)新的生物技術(shù)、廣泛的應(yīng)用領(lǐng)域以及智能化和自動(dòng)化的技術(shù)應(yīng)用。生物信息學(xué)的發(fā)展得益于新算法、新理論、新技術(shù)和新工具的不斷涌現(xiàn)。同時(shí),政策的支持與引導(dǎo)也為生物信息學(xué)帶來了創(chuàng)新突破和長(zhǎng)效機(jī)制,進(jìn)一步引領(lǐng)了學(xué)科的發(fā)展。
利用生物信息學(xué)技術(shù)進(jìn)行大數(shù)據(jù)分析,可以挖掘數(shù)據(jù)價(jià)值,提供精準(zhǔn)的市場(chǎng)預(yù)測(cè)和決策支持。將人工智能技術(shù)與生物信息學(xué)結(jié)合,開發(fā)智能化的生物信息學(xué)應(yīng)用系統(tǒng),能夠提高數(shù)據(jù)處理和分析的效率,進(jìn)一步推動(dòng)數(shù)字經(jīng)濟(jì)的發(fā)展。在精準(zhǔn)醫(yī)療領(lǐng)域,生物信息學(xué)技術(shù)被廣泛應(yīng)用于基因檢測(cè)和個(gè)性化治療等服務(wù),這提高了醫(yī)療水平和效率。生物信息學(xué)在農(nóng)業(yè)科技中的應(yīng)用,如作物基因改良和畜禽育種,提升了農(nóng)業(yè)生產(chǎn)效率和質(zhì)量,推動(dòng)了生物經(jīng)濟(jì)的發(fā)展。將生物信息學(xué)技術(shù)用于環(huán)境監(jiān)測(cè)和治理,可以進(jìn)一步提升生態(tài)環(huán)境精細(xì)化管理水平。然而,人工智能在生命科學(xué)中的應(yīng)用也帶來了隱私、安全和倫理等方面的挑戰(zhàn),需要制定相應(yīng)的法規(guī)和倫理指南。
生物信息學(xué)與產(chǎn)業(yè)的有效結(jié)合可以構(gòu)建產(chǎn)業(yè)集群,助力數(shù)字經(jīng)濟(jì)和生物經(jīng)濟(jì)的建設(shè),推動(dòng)經(jīng)濟(jì)高質(zhì)量發(fā)展。未來,還需進(jìn)一步規(guī)范引導(dǎo)數(shù)據(jù)資源共享,建立生物信息學(xué)數(shù)據(jù)共享平臺(tái),提高數(shù)據(jù)利用效率,進(jìn)而推動(dòng)技術(shù)創(chuàng)新和產(chǎn)業(yè)發(fā)展。同時(shí),要加強(qiáng)數(shù)據(jù)安全保障,制定數(shù)據(jù)安全管理制度,保護(hù)數(shù)據(jù)隱私和安全,從而提升數(shù)據(jù)共享平臺(tái)的可信度和安全性。綜上,才能更好發(fā)揮生物信息學(xué)在推動(dòng)科學(xué)研究、促進(jìn)產(chǎn)業(yè)發(fā)展和提升社會(huì)福祉方面的重要作用。
參考文獻(xiàn)
陳銘,2004,《后基因組時(shí)代的生物信息學(xué)》,《生物信息學(xué)》,第2期。
陳銘,2022,《大數(shù)據(jù)時(shí)代的整合生物信息學(xué)》,《生物信息學(xué)》,第2期。
國(guó)家發(fā)展和改革委員會(huì),2022,《“十四五”生物經(jīng)濟(jì)發(fā)展規(guī)劃》,https://www.ndrc.gov.cn/xxgk/zcfb/ghwb/202205/P020220920618304472104.pdf。
國(guó)家發(fā)展和改革委員會(huì)創(chuàng)新和高技術(shù)發(fā)展司、中國(guó)生物工程學(xué)會(huì)編,2022,《中國(guó)生物產(chǎn)業(yè)發(fā)展報(bào)告2022》,北京:化學(xué)工業(yè)出版社。
施一公、趙進(jìn)東、陳曄光、金力主編,2024(待出版),《高等學(xué)校生物科學(xué)類專業(yè)人才培養(yǎng):戰(zhàn)略研究報(bào)告暨核心課程體系》,北京:高等教育出版社。
責(zé) 編∕李思琪 美 編∕梁麗琛