摘要: 【目的】為了探索水平管中濕顆粒氣力輸送的內(nèi)在機(jī)制,開發(fā)液橋輪廓由凸到凹的液橋力模型,實(shí)現(xiàn)對(duì)顆粒含水率的精準(zhǔn)調(diào)控,分析不同含水率顆粒在輸送過程中的動(dòng)力學(xué)特性變化規(guī)律。【方法】采用計(jì)算流體力學(xué)(computational fluid dynamics, CFD)和離散元法(discrete element method,DEM)雙向耦合的數(shù)值模擬方法,通過對(duì)彎頭外側(cè)中心線的顆粒速度分析對(duì)比,驗(yàn)證數(shù)值模型的正確性以及網(wǎng)格的無關(guān)性?!窘Y(jié)果】干顆粒沉降在管道底部,表現(xiàn)為管底流的運(yùn)動(dòng)狀態(tài),濕顆粒因液橋力的作用而形成緊密的顆粒團(tuán)塊,以單粒子和顆粒團(tuán)2種形式進(jìn)行運(yùn)動(dòng),并且顆粒含水率越大,顆粒團(tuán)聚現(xiàn)象越嚴(yán)重;濕顆粒的輸送速度明顯比干顆粒低,且隨著顆粒含水率的增加,顆粒的平均輸送速度呈下降趨勢(shì)。【結(jié)論】相對(duì)于干顆粒輸送,濕顆粒輸送流動(dòng)性更弱、輸送效率更低以及能耗更高,在實(shí)際工業(yè)應(yīng)用中,應(yīng)當(dāng)對(duì)濕顆粒進(jìn)行前處理,以便于氣力輸送的無故障進(jìn)行。
關(guān)鍵詞: 計(jì)算流體力學(xué); 離散元法; 濕顆粒; 液橋力; 流態(tài)
中圖分類號(hào): TE832; TB4文獻(xiàn)標(biāo)志碼:A
引用格式:
徐止恒, 李政權(quán), 王貽得, 等. 基于CFD-DEM的濕顆粒氣力輸送數(shù)值模擬[J]. 中國(guó)粉體技術(shù), 2024, 30(2): 12-23.
XU Z H, LI Z Q, WANG Y D, et al. Numerical simulation of pneumatic conveying of wet particles based on CFD-DEM[J].China Powder Science and Technology, 2024, 30(2): 12-23.
氣力輸送根據(jù)工作原理可以分為正壓輸送與負(fù)壓輸送,正壓輸送是利用大于大氣壓力的空氣進(jìn)行輸送,負(fù)壓輸送是將空氣與物料一同吸入管道內(nèi)進(jìn)行輸送。由于具備較高的安全性、 低運(yùn)營(yíng)成本、 低維護(hù)要求以及布局靈活等優(yōu)點(diǎn),因此氣力輸送已經(jīng)廣泛應(yīng)用于各個(gè)行業(yè),涉及固體顆粒處理的大部分分支[1-5]。例如,在采礦和能源領(lǐng)域,煤粉、 礦石粉等物料的運(yùn)輸與氣力輸送息息相關(guān);在化學(xué)工業(yè)中,也會(huì)經(jīng)常使用氣力輸送裝置來運(yùn)輸純堿、 聚乙烯等工業(yè)原料,但是在大量的氣力輸送過程中,霧化后的液體會(huì)附著在顆粒表面,與顆粒混合形成濕顆粒,造成顆粒粘結(jié)、 團(tuán)聚等現(xiàn)象[6-7]。一般來說,增加顆粒的含水率會(huì)降低其流動(dòng)性,當(dāng)含水率大于限值時(shí),整個(gè)輸送系統(tǒng)無法正常運(yùn)行,從而造成重大的經(jīng)濟(jì)損失,因此,探索濕顆粒在管道中的流動(dòng)行為和水分對(duì)流動(dòng)特性的影響顯得尤為重要。
近年來,由于計(jì)算機(jī)的計(jì)算能力逐步提高,數(shù)值模擬已成為研究管道氣力輸送的有力工具,并且計(jì)算流體力學(xué)(computational fluid dynamics,CFD)與離散元方法(discrete element method,DEM)的基礎(chǔ)理論也逐步擴(kuò)展完善,因此越來越多的學(xué)者采用CFD-DEM方法對(duì)氣力輸送進(jìn)行研究[8-11]。在過去的幾年中,人們對(duì)濕顆粒和相應(yīng)的液橋進(jìn)行了各種研究。Rabinovich等[12]在球面與平面間毛細(xì)力計(jì)算公式的基礎(chǔ)上,推導(dǎo)出了2個(gè)球面間毛細(xì)力的計(jì)算公式,并使用原子力顯微鏡的實(shí)驗(yàn)測(cè)量驗(yàn)證了所開發(fā)的公式;Sun等[13]提出了適用于非對(duì)稱配置的球形粒子的液橋模型,適用于廣泛的液體體積、 接觸角和半徑比,模型的相對(duì)誤差在10%以下,具有較好的毛細(xì)力計(jì)算精度;Xiao等[14]通過實(shí)驗(yàn)研究了液橋輪廓由
凸到凹的轉(zhuǎn)變以及與之相關(guān)的毛細(xì)力,在相對(duì)較大的水體積和較小的分離距離下,毛細(xì)力保持近似恒定,表現(xiàn)為凸液橋;隨著分離距離增加,毛細(xì)力先增大后減小,液橋由凸向凹拉伸;Kantak等[15]使用2種實(shí)驗(yàn)方法對(duì)粒子與干壁或濕壁的低速碰撞進(jìn)行研究, 粒子與濕壁碰撞時(shí), 對(duì)于更黏的潤(rùn)濕層,在低于臨界沖擊速度時(shí),黏性耗散導(dǎo)致黏滯; Xiao等[16]使用其提出的液橋力模型對(duì)干濕顆粒輸送中彎頭的侵蝕進(jìn)行了研究,
在液橋力的作用下,濕顆粒傾向于黏附在彎頭內(nèi)壁,形成了覆蓋沖擊區(qū)域的顆粒層,降低了一定程度的彎頭侵蝕深度和侵蝕比例;Wang等[17]使用2D幾何模型比較了垂直管中干、 濕顆粒的流動(dòng)特性,定量分析了濕顆粒的團(tuán)聚特性;Olaleye等[18]使用JKR模型模擬濕顆粒以及相對(duì)應(yīng)的液橋力,對(duì)彎管中黏性乳粉的氣力輸送進(jìn)行了實(shí)驗(yàn)和模擬研究,結(jié)果表明,在低氣力流速下,濕顆粒容易在彎管出口處團(tuán)聚,然后沉積在管道底部。
綜上所述,在以往的研究中,對(duì)于氣力輸送濕顆粒間的毛細(xì)力多使用不完善的液橋力模型,或使用JKR模型進(jìn)行代替,而在實(shí)際的顆粒分離過程中,液橋存在由凸到凹的拉伸過程,所以模擬結(jié)果與實(shí)際結(jié)果會(huì)產(chǎn)生較大的誤差[19-20]。本文中以管道輸送基礎(chǔ)理論為中心,結(jié)合不同工況下的真實(shí)情況,采用液橋輪廓由凸到凹的毛細(xì)力模型,通過物理表征、 數(shù)學(xué)計(jì)算等方法,以改變水平管中物料輸送的流動(dòng)特性為研究目標(biāo),分析不同含水率顆粒在輸送過程中的動(dòng)力學(xué)特性變化規(guī)律,對(duì)濕顆粒氣力輸送的內(nèi)在機(jī)制進(jìn)行研究。
1 相關(guān)理論
基于CFD-DEM耦合方法,對(duì)于連續(xù)相,采用RNG k-ε模型;對(duì)于離散相,顆粒的運(yùn)動(dòng)通過牛頓動(dòng)力學(xué)方程求解[21-22]。
1.1連續(xù)相控制方程
氣相作為連續(xù)相滿足連續(xù)方程和動(dòng)量守恒方程。氣相連續(xù)性方程為
t
(αg ρg)+·(αgρgv→g)=0 ,(1)
動(dòng)量守恒方程為
t
(αg ρgv→g)+·(αg ρgv→gv→g)=-αgPg+(τ—g)+ερgg→+Kgs(v→s-v→g),(2)
式中: t為時(shí)間; ρg為氣體密度; αg為氣體體積分?jǐn)?shù); Pg為氣相壓力; g→為重力矢量; Kgs為氣固相之間動(dòng)量交換系數(shù); v→g和v→s分別為氣體和顆粒速度。式(2)中黏性應(yīng)力張量τ—g定義為
τ—g=αgμg[v→g+(v→g)T]-23αgμgv→gI= ,(3)
RNG k-ε模型中的湍動(dòng)能k和湍動(dòng)能耗散率ε,計(jì)算方程為
t(ρgk)+xi(ρgkui)=xjαk μekxj
+Gk+Gb-ρgε ,(4)
t(ρgε)+xi(ρgεui)=xjαε μeεxj
+εk(Cε1Gk-Cε2 ρgε) ,(5)
式中: Gk為平均速度梯度引起的湍動(dòng)能; Gb為由浮力產(chǎn)生的湍流動(dòng)能; Cε1和Cε2的默認(rèn)值為1.42和1.68; ui為速度矢量; μe為氣體有效黏度; xi、 xj為顆??臻g坐標(biāo); αk和αε分別為k和ε的有效普朗特?cái)?shù)的倒數(shù)。
1.2離散相控制方程
通過在拉格朗日坐標(biāo)系下對(duì)粒子的運(yùn)動(dòng)方程進(jìn)行積分,獲得粒子的運(yùn)動(dòng)軌跡?;谂nD第二定律建立的顆粒運(yùn)動(dòng)的控制方程為
mpdvpdt=Fw-p+Fp-p-Ff+mpg ,(6)
Ipdωpdt=Wp ,(7)
式中: mp為顆粒質(zhì)量; vp為平移速度; ωp為角速度; Ip為轉(zhuǎn)動(dòng)慣量; Fw-p為壁面與顆粒間作用力; Ff為流體與顆粒間作用力; Fp-p為顆粒間作用力; Wp為顆粒所受力矩。
1.3連續(xù)相與離散相相互作用
根據(jù)式(2)和式(6),連續(xù)相與離散相之間通過動(dòng)量交換實(shí)現(xiàn)耦合
F→f=Kgs(v→g-v→s) ,(8)
式中Kgs為動(dòng)量交換系數(shù),本文中采用Gidaspow[23]等給出的公式
Kgs=34
CDαsαg ρgv→g-v→sdsα-2.65g,""""" αs≤0.2,
Kgs=150αs(1-αg)μgαgd2s+1.75αs ρgv→g-v→s)ds,αsgt;0.2,(9)
式中: ds為顆粒當(dāng)量粒徑; CD為與顆粒雷諾數(shù)Res相關(guān)的阻力系數(shù)。其中
CD=
24Res,""""""""""" "Res≤1,
24αgRes[1+0.15(αgRes)0.687],1lt;Res≤1 000,
0.44,Resgt;1 000,(10)
顆粒雷諾數(shù)定義為
Res=dsv→g-v→sαgρgμg 。(11)
1.4液橋力模型
顆粒之間或顆粒與壁面之間的少量液體形成液橋,產(chǎn)生液橋力fl,ij 。本文中使用的液橋力模型為Xiao等[14]通過計(jì)算建立的由凸到凹的液橋力模型,在含水率(質(zhì)量分?jǐn)?shù),下同)、 粒徑和分離距離方面, fl,ij為
2fl,ijπdiγ=0.629(1+2sin θ+1.3cos θ)nij,""" D^≤D^c,p-p
4cos θnij,D^≤D^c,p-w
[exp(AD^+B)+C]nij,D^≤D^c(12)
式中: γ和θ 分別為水的表面張力和接觸角; nij為粒子i到粒子(或壁面)j的單位向量;D^為粒子i和粒子(或壁面)j之間的距離;D^c,p-p為顆粒間的距離; D^c,p-w為顆粒到壁面之間的距離; D^c為液橋從凸過渡到凹的臨界距離;A、 B、 C為模型參數(shù),與破壞距離D^r按照表1的相關(guān)系數(shù)計(jì)算。
2 數(shù)值模擬設(shè)置
2.1計(jì)算模型及網(wǎng)格劃分
選取長(zhǎng)度為0.5 m,管道直徑為20 mm的水平管道進(jìn)行計(jì)算。管道的幾何模型通過Soildworks軟件建模,網(wǎng)格劃分使用ICEM軟件,采用六面體結(jié)構(gòu)化網(wǎng)格,節(jié)省計(jì)算時(shí)間,使計(jì)算結(jié)果更加精確。管道幾何模型和網(wǎng)格劃分見圖1、 2。
2.2物性參數(shù)與邊界條件
表2、 3列出了模擬條件,其中顆粒與壁面所使用的材料分別是沙子與碳鋼。顆粒以恒定的固體流速和較小的初始速度注入到管道中。對(duì)于氣體流動(dòng)模型,在入口處采用固定的均勻速度剖面,在壁面處采用無滑移條件。在DEM模擬中,管壁被視為直徑無窮大的剛性球體,沒有粒子與管壁相互作用引起的位移或運(yùn)動(dòng)??紤]到計(jì)算資源以及計(jì)算速度,對(duì)流體和顆粒進(jìn)行周期性設(shè)置,使用周期性邊界條件來考慮一個(gè)短管道。
3 結(jié)果與討論
3.1模型驗(yàn)證與網(wǎng)格無關(guān)性驗(yàn)證
由于在現(xiàn)有的氣力輸送濕顆粒相關(guān)文獻(xiàn)中未找到合適的相關(guān)實(shí)驗(yàn)數(shù)據(jù),因此本文中采用Xiao等[16]的數(shù)值模擬數(shù)據(jù)來驗(yàn)證模型正確性。使用雙向耦合的方法進(jìn)行模型驗(yàn)證,模擬的參數(shù)條件與Xiao等[16]的參數(shù)條件完全相同,計(jì)算達(dá)到穩(wěn)態(tài)后提取彎頭外拱處中心線的顆粒速度數(shù)據(jù),結(jié)果對(duì)比如圖3、 4所示(圖中w代表顆粒含水率)。從圖中可以看出,干顆粒與濕顆粒在彎頭處存在明顯差異,在曲率角為40°~50°時(shí),干粒子速度減小至約2 m/s,而濕粒子速度變化較大,減小至約0.5 m/s。模擬結(jié)果對(duì)比最大誤差不超過10%,初步驗(yàn)證了本次研究所采用的計(jì)算模型的正確性。
網(wǎng)格分辨率是影響計(jì)算結(jié)果準(zhǔn)確性的重要因素。 為了確保數(shù)值模擬結(jié)果的可靠性和準(zhǔn)確性, 需要進(jìn)行網(wǎng)格無關(guān)性驗(yàn)證。 一般而言, 采用更小的網(wǎng)格可以得到更為準(zhǔn)確的結(jié)果, 但是, 隨著網(wǎng)格尺寸的減小, 所需的網(wǎng)格數(shù)量會(huì)增加, 導(dǎo)致計(jì)算時(shí)間的增加, 所以需要在精度和計(jì)算時(shí)間之間進(jìn)行權(quán)衡和選擇。 為了能夠得到準(zhǔn)確的模擬結(jié)果, 使用較為精細(xì)的網(wǎng)格至關(guān)重要, 本研究選取了3種尺寸的網(wǎng)格進(jìn)行比較, 最大邊長(zhǎng)分別為0.7、 1、 1.5 mm, 對(duì)應(yīng)的網(wǎng)格數(shù)量分別為1.3萬、 0.9萬、 0.6萬。 圖5所示為3種網(wǎng)格模擬結(jié)果對(duì)比。 由圖可知, 網(wǎng)格整體趨勢(shì)無明顯差異, 邊長(zhǎng)為0.7、 1 mm的網(wǎng)格可以更準(zhǔn)確模擬顆粒的速度大小, 而邊長(zhǎng)為1.5 mm的網(wǎng)格存在一定誤差。 綜合考慮計(jì)算資源與計(jì)算時(shí)間, 采用邊長(zhǎng)為1 mm的網(wǎng)格進(jìn)行計(jì)算。
3.2輸送流態(tài)對(duì)比
圖6所示為水平管中干顆粒與不同含水率的濕顆粒在穩(wěn)定狀態(tài)下的流動(dòng)行為。由圖可以看出,干濕顆粒在管道中的整體分布都具有顯著的非均質(zhì)性,但干顆粒與濕顆粒呈現(xiàn)出完全不同的流動(dòng)特性。由于顆粒與顆粒間(或顆粒與壁面間)的摩擦、 碰撞,顆粒自身重力,氣速的降低以及氣流分布不均勻等因素的影響,干顆粒沉降在管道底部,越接近管底處顆粒分布越密集,因此表現(xiàn)為管底流的運(yùn)動(dòng)狀態(tài)。濕顆粒以單粒子和顆粒團(tuán)2種形式運(yùn)動(dòng)。原因是粒子之間的脈動(dòng),使得部分粒子相互靠近,當(dāng)顆粒間的最小間距小于臨界破裂距離時(shí),顆粒在液橋力的作用下聚集在一起,逐漸形成較大的顆粒團(tuán)。當(dāng)顆粒含水率為1%時(shí),單顆粒和顆粒團(tuán)數(shù)量較多,隨著顆粒含水率的增加,單顆粒和顆粒團(tuán)的數(shù)量減少,當(dāng)顆粒含水率為5%時(shí),只有少數(shù)單粒子和顆粒團(tuán)存在。這是由于顆粒含水率越大,顆粒間的臨界破裂距離和液橋力越大,顆粒更容易黏結(jié)在一起,液橋力隨顆粒間分離距離的變化如圖7所示。
3.3顆粒濃度對(duì)比
干濕顆粒輸送在5 s時(shí)的固體體積分?jǐn)?shù)分布見圖8。相較于干顆粒,濕顆粒固體體積分?jǐn)?shù)分布不均勻,當(dāng)顆粒含水率為3%時(shí),管道高度為0.1~0.15 m處的固體體積分?jǐn)?shù)明顯比管道軸向中心處的大,表明顆粒聚集在一起,存在團(tuán)聚現(xiàn)象,且顆粒含水率越大,團(tuán)聚現(xiàn)象越嚴(yán)重。這是由于當(dāng)顆粒含水率增加時(shí),顆粒間的液橋力和臨界破裂距離增大。在氣流的作用下,顆粒不斷地碰撞黏附,從而形成越來越大的顆粒團(tuán),導(dǎo)致固體體積分?jǐn)?shù)分布不均勻。 此外, 當(dāng)顆粒團(tuán)在管道內(nèi)沉積時(shí), 受重力的影響, 管道壁面會(huì)成為顆粒沉積的主要區(qū)域, 也就是沉積帶, 在這個(gè)區(qū)域內(nèi), 固體體積分?jǐn)?shù)會(huì)更大。 圖9所示為不同含水率顆粒團(tuán)濃度的徑向分布。 由圖可知, 壁面的固體體積分?jǐn)?shù)大于中心的, 中心的變化大于壁面附近的, 且隨著顆粒含水率的增加,中心顆粒體積分?jǐn)?shù)增大, 說明顆粒團(tuán)變大, 管道內(nèi)非均質(zhì)性增強(qiáng)。
3.4顆粒速度分析
圖10、 11所示為在管道高度為0.3 m處干顆粒和含水率為5%濕顆粒的平均顆粒速度隨時(shí)間的變化情況。最初,顆粒的速度比較低,隨著時(shí)間的推移,粒子速度出現(xiàn)波動(dòng)變化,達(dá)到穩(wěn)態(tài)后,呈周期性波動(dòng)。其中干顆粒的速度平均值為3.41 m/s,而含水率5%的濕顆粒速度平均值為2.83 m/s,表明當(dāng)顆粒表面含有水分時(shí),管道內(nèi)物料的輸送效率會(huì)降低。濕顆粒在輸送過程中顆粒間(或顆粒與壁面間)產(chǎn)生的液橋力,導(dǎo)致物料在輸送過程中受到阻攔,從而降低了整體的輸送速度。圖12進(jìn)一步反映了該現(xiàn)象,從圖中可以看出,隨著顆粒含水率的增加,顆粒的平均速度呈下降趨勢(shì),即顆粒的整體輸送速度減小。
3.5壓縮力分析
圖13所示為不同含水率下顆粒與壁面間平均壓縮力隨軸向位置的變化,其中干顆粒的顆粒-壁面間作用力較小,并且波動(dòng)不大,濕顆粒的顆粒-壁面間作用力波動(dòng)較大,其最大峰值隨著顆粒含水率的增加而增大。這是由于干顆粒的運(yùn)動(dòng)狀態(tài)為管底流,而濕顆粒以單粒子與顆粒團(tuán)進(jìn)行輸送,導(dǎo)致顆粒與壁面間的作用力主要集中在顆粒團(tuán)處,并且顆粒含水率越大顆粒越容易聚集,即顆粒團(tuán)越大,使得顆粒-壁面間作用力增大。顆粒-壁面之間相互作用代表壁面磨損的宏觀現(xiàn)象,說明濕顆粒對(duì)于壁面的磨損較干顆粒更大,且隨著顆粒含水率的增加,壁面磨損更嚴(yán)重。
3.6濕顆粒的凝聚特性
粒子間的碰撞是顆粒團(tuán)形成的主要原因之一。 在濕顆粒的輸送過程中, 由于顆粒表面存在水分, 因此使顆粒間的吸附力增強(qiáng), 導(dǎo)致顆粒之間更容易發(fā)生碰撞, 加劇了顆粒團(tuán)的形成。 圖14所示為顆粒含水率為1%時(shí)的碰撞粒子分?jǐn)?shù)隨時(shí)間的變化, 開始時(shí), 由于初始狀態(tài)下顆粒之間的間距比較大, 碰撞粒子分?jǐn)?shù)為0, 隨著時(shí)間推進(jìn), 在流體的作用下, 碰撞粒子分?jǐn)?shù)迅速增加。 其中粒子-粒子碰撞分?jǐn)?shù)(粒子間碰撞占粒子總數(shù)的百分比)的平均值為46%, 粒子-壁面碰撞分?jǐn)?shù)(粒子與壁面碰撞占粒子總數(shù)的百分比)的平均值為9%。 圖15給出了不同顆粒含水率下粒子碰撞分?jǐn)?shù)平均值, 其中干顆粒的碰撞分?jǐn)?shù)最低, 且碰撞分?jǐn)?shù)隨著顆粒含水率的增加而增大, 表明顆粒凝聚成了顆粒團(tuán), 與圖6中的圖像一致。
4 結(jié)論
1)干顆粒和濕顆粒在管道中的整體分布都具有顯著的非均質(zhì)性,但干顆粒沉降在管道底部,表現(xiàn)為管底流的運(yùn)動(dòng)狀態(tài),而濕顆粒因液橋力的作用而形成緊密的顆粒團(tuán)塊,以單粒子和顆粒團(tuán)2種形式進(jìn)行運(yùn)動(dòng),并且顆粒含水率越大,顆粒團(tuán)聚現(xiàn)象越嚴(yán)重。
2)濕顆粒的輸送速度明顯比干顆粒低,且隨著顆粒含水率的增加,顆粒的平均輸送速度呈下降趨勢(shì),表明顆粒的輸送效率隨著含水率的增加而降低。
3)相較于干顆粒,濕顆粒的顆粒-壁面間作用力更大,且隨著顆粒含水率的增加而增大,表明顆粒對(duì)壁面的碰撞更劇烈,反映了濕顆粒對(duì)于壁面的磨損更加嚴(yán)重。
利益沖突聲明(Conflict of Interests)
所有作者聲明不存在利益沖突。
All authors disclose no relevant conflict of interests.
作者貢獻(xiàn)(Author’s Contributions)
李政權(quán)進(jìn)行了方案設(shè)計(jì),徐止恒進(jìn)行了模型開發(fā)和驗(yàn)證,數(shù)據(jù)分析以及論文的寫作和修改,王貽得和武煜坤進(jìn)行了文獻(xiàn)調(diào)研,參與了論文的寫作,李凱旋和石昊宇參與了模型開發(fā)和數(shù)據(jù)分析。所有作者均閱讀并同意了最終稿件的提交。
LI Zhengquan carried out the scheme design, XU Zhiheng carried out the model development and verification, data analysis and the writing and modification of the paper, WANG Yide and WU Yukun carried out the literature research and participated in the writing of the paper, LI Kaixuan and SHI Haoyu participated in the model development and data analysis. All authors have read the last version of paper and consented for submission.
參考文獻(xiàn)(References)
[1]KLINZING G E. A review of pneumatic conveying status, advances and projections[J]. Powder Technology, 2018, 333: 78-90.
[2]MIAO Z, KUANG S B, ZUGHBI H. CFD simulation of dilute-phase pneumatic conveying of powders[J]. Powder Technology, 2019, 349: 70-83.
[3]崔益華.水平管道負(fù)壓氣力輸送CFD-DEM數(shù)值模擬[J]. 港口裝卸, 2021(1): 63-67.
CUI Y H. CFD-DEM numerical simulation of negative pressure pneumatic conveying in horizontal pipeline[J]. Port Handling, 2021(1): 63-67.
[4]關(guān)佳斌, 裴旭明, 張琳荔, 等. 糧食顆粒群密相變徑氣力輸送的流動(dòng)特性[J]. 中國(guó)粉體技術(shù), 2018, 24(2): 38-43.
GUAN J B, PEI X M, ZHANG L L, et al. Flow characteristics of grain particle group in dense phase change diameter pneumatic transportation[J]. China Powder Science and Technology, 2018, 24(2): 38-43.
[5]蔡海峰, 熊海泉, 周海軍, 等. 考慮氣相壓縮性的高壓密相氣力輸送數(shù)值模擬[J]. 發(fā)電設(shè)備, 2019, 33(2): 80-85.
CAI H F, XIONG H Q, ZHOU H J, et al. Numerical simulation of high pressure dense phasepneumatic conveying considering compressibility of gas phase[J]. Power generation equipment, 2019, 33(2): 80-85.
[6]PAN X, CHEN X, LIANG C, et al. Effect of moisture content on dense-phase conveying of pulverized coal at high pressure[J]. Korean Journal of Chemical Engineering, 2011, 28(10): 2086-2093.
[7]ZHOU H, XIONG Y, PEI Y. Effect of moisture content on dense-phase pneumatic conveying of pulverized lignite under high pressure[J]. Powder Technology, 2016, 287: 355-363.
[8]陳偉, 張佩, 孫永昌, 等. 基于CFD-DEM的非球形顆粒水力輸送數(shù)值模擬[J]. 中國(guó)粉體技術(shù), 2022, 28(5): 82-91.
CHEN W, ZHANG P, SUN Y C, et al. Numerical simulation of hydraulic transport of non-spherical particles based on CFD-DEM[J]. China Powder Science and Technology, 2022, 28(5): 82-91.
[9]孫永昌, 張佩, 武煜坤, 等. 物料參數(shù)對(duì)立式攪拌釜混合性能影響的模擬[J]. 中國(guó)粉體技術(shù), 2022, 28(6): 99-106.
SUN Y C, ZHANG P, WU Y K, et al. Simulation of effect of material parameters on mixing performance of vertical stirred tank[J]. China Powder Science and Technology, 2022, 28(6): 99-106.
[10]KUANG S B, LI K, YU A B. CFD-DEM simulation of large-scale dilute-phase pneumatic conveying system[J]. Industrial amp; Engineering Chemistry Research, 2020, 59(9): 4150-4160.
[11]宋學(xué)鋒, 戴飛, 張鋒偉, 等. 90°彎管內(nèi)玉米顆粒氣固耦合運(yùn)動(dòng)特性分析[J]. 中國(guó)農(nóng)機(jī)化學(xué)報(bào), 2018, 39(11): 67-71.
SONG X F, DAI F, ZHANG F W, et al. Analysis of gas-solid coupling movement characteristics of corn particles in a 90° bend[J]. Chinese Journal of Agricultural Mechanization, 2018, 39(11): 67-71.
[12]RABINOVICH Y I, ESAYANUR M S, MOUDGIL B M. Capillary forces between two spheres with a fixed volume liquid bridge: theory and experiment[J]. Langmuir, 2005, 21(24): 10992-10997.
[13]SUN X, SA M. A liquid bridge model for spherical particles applicable to asymmetric configurations[J]. Chemical Engineering Science, 2018, 182: 28-43.
[14]XIAO F, JING J, KUANG S B, et al. Capillary forces on wet particles with a liquid bridge transition from convex to concave[J]. Powder Technology, 2020, 363: 59-73.
[15]KANTAK A, GALVIN J E, WILDEMUTH D J, et al. Low-velocity collisions of particles with a dry or wet wall[J]. Microgravity Science and Technology, 2005, 17(1): 18-25.
[16]XIAO F, LUO M, KUANG S B, et al. Numerical investigation of elbow erosion in the conveying of dry and wet particles[J]. Powder Technology, 2021, 393: 265-279.
[17]WANG M, ZHU W, SUN Q, et al. A DEM simulation of dry and wet particle flow behaviors in riser[J]. Powder Technology, 2014, 267: 221-233.
[18]OLALEYE A K, SHARD T O, WALKER G M, et al. Pneumatic conveying of cohesive dairy powder: experiments and CFD-DEM simulations[J]. Powder Technology, 2019, 357: 193-213.
[19]ZHANG M H, CHU K W, WEI F, et al. A CFD-DEM study of the cluster behavior in riser and downer reactors[J]. Powder Technology, 2008, 184(2): 151-165.
[20]KUANG S B, ZHOU M M, YU A B. CFD-DEM modelling and simulation of pneumatic conveying: a review[J]. Powder Technology, 2020, 365: 186-207.
[21]畢大鵬, 張晉玲, 謝文選, 等. 水平管稀相氣力輸送氣-固速度關(guān)系的實(shí)驗(yàn)研究[J]. 中國(guó)粉體技術(shù), 2020, 26(2): 1-6.
BI D P, ZHANG J L, XIE W X, et al. Experimental study of gas-solid velocity relationship in thin phase pneumatic conveying in horizontal pipe[J]. China Powder Science and Technology, 2020, 26(2): 1-6.
[22]LI Z Q, ZHANG P, SUN Y C, et al. Discrete particle simulation of gas-solid flow in air-blowing seed metering device[J]. Computer Modeling in Engineering amp; Sciences, 2021, 127(3): 1119-1132.
[23]GIDASPOW D, LI F, HUANG J. A CFD simulator for multiphase flow in reservoirs and pipes[J]. Powder Technology, 2013, 242: 2-12.
Numerical simulation of pneumatic conveying of
wet particles based on CFD-DEM
XU Zhiheng, LI Zhengquan, WANG Yide, WU Yukun, LI Kaixuan, SHI Haoyu
(Jiangxi Provincial Key Laboratory for Simulation and Modelling of Particulate Systems,
Jiangxi University of Science amp; Technology, Ganzhou 341000, China)
Abstract
Objective In order to explore the internal mechanism of the pneumatic conveying of wet particles, the flow state of the pneumatic conveying of wet particles in the horizontal pipe was studied by using periodic boundary conditions. The solid volume fraction, particle velocity and liquid bridge force of conveying particles with different moisture content were analyzed.
Methods The computational fluid dynamics (CFD) and discrete element method (DEM) were used for bi-directional numerical simulation, and the capillary force model of the liquid bridge contour from convex to concave was used. the particle moisture content wasprecisely controlledin the commercial software EDEM. The correctness of the numerical model and the independence of the mesh wereverified by comparing the particle velocity results of the center line outside the elbow.
Results and Discussion Through calculationin terms of conveying flow mode, dry particles settle at the bottom of the pipe, due to the friction and collision between particles (or between particles and the wall), the gravity of particles themselves, the decrease of gas velocity and the uneven distribution of airflow and other factors. The closer to the bottom of the pipe, the more dense the distribution of particles, which is manifested as the movement state of the bottom of the pipe. Wet particles move in two forms of single particles and clusters. The reason is that some particles are close to each other due to the pulsation between particles. When the minimum distance between particles is less than the critical rupture distance, the particles gather together under the action of liquid bridge force and gradually form larger particles. In terms of conveying efficiency, the average speed of dry particles is 3.41 m/s, while the average speed of wet particles with 5% moisture content is 2.83 m/s, which indicates that when the surface of the particles contains water, the conveying efficiency of materials in the pipeline will be reduced. In terms of pipe wear, the particle-wall interforce of dry particles fluctuates little, while the particle-wall interforce of wet particles fluctuates greatly, and its maximum peak value increases with the increase of particle moisture content, indicating that wet particles wear the wall surface more than dry particles, and the wall wear becomes more serious with the increase of particle moisture content. In addition, wet particle transport has condensation characteristics, due to the existence of water on the surface of the particles, the adsorption force between the particles is enhanced, resulting in more collisions between the particles, which intensifies the formation of particle clusters. Inthe beginning," the percentage of colliding particles is zerodue to the relatively large spacing between particles in the initial state, andthe percentage of colliding particles increases rapidly under the action of fluidas time progresses. The average particle-particle collision percentage (particle-particle collision as a percentage of the total number of particles) is 46%, and the average particle-wall collision percentage (particle-wall collision as a percentage of the total number of particles) is 9%, which is consistent with the image in Figure 6.
Conclusion 1)The overall distribution of dry particles and wet particles in the pipeline is significantly heterogeneous.The dry particles settle at the bottom of the pipeline, showing the movement state of the bottom flow.However, due to the action of liquid bridge force,the wet particles form tight particle clusters and move in the form of single particles and particles.This agglomeration phenomenon become more serious with increasing water content of the particles. 2)The transport speed of wet particles is lower than that of dry particles.With the increase of particle moisture content, the average transport speed of particles shows a downward trend, indicating that the transport efficiency of particles decreases with the increase of moisture content. 3)Compared with dry particles, the particle-wall interforce of wet particles is greater and increases with the increase of particle moisture content, indicating that the impact of particles on the wall is more severe and the more serious wear of wet particles on the wall.
Keywords: computational fluid dynamics;discrete element method;wet particle; liquid bridging force; flow state
(責(zé)任編輯:王雅靜)
收稿日期: 2023-10-17,修回日期:2023-11-20,上線日期:2023-12-28。
基金項(xiàng)目:國(guó)家自然科學(xué)基金項(xiàng)目,編號(hào):52130001;江西理工大學(xué)高層次人才科研啟動(dòng)項(xiàng)目,編號(hào):205200100606。
第一作者簡(jiǎn)介:徐止恒(1997—),男,碩士研究生,研究方向?yàn)闅饬斔湍M技術(shù)。E-mail: 17852032578@163.com。
通信作者簡(jiǎn)介:李政權(quán)(1982—),男,副教授,博士,江西省科技領(lǐng)軍人才,碩士生導(dǎo)師,研究方向?yàn)槎嘞嗔鞣抡婺M。
E-mail: qqzhengquan@163.com。