• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    非線性多智能體系統(tǒng)的固定時(shí)間分布式優(yōu)化算法研究

    2024-09-14 00:00:00孫慶楊慧么嬈
    現(xiàn)代電子技術(shù) 2024年11期

    摘" 要: 針對(duì)非線性多智能體系統(tǒng)(MASs)的分布式優(yōu)化問(wèn)題,提出一種固定時(shí)間自適應(yīng)神經(jīng)網(wǎng)絡(luò)輸出反饋控制策略。在懲罰函數(shù)的基礎(chǔ)上,解除一致性約束條件來(lái)重構(gòu)全局目標(biāo)函數(shù)。為了避免反演過(guò)程中偏導(dǎo)數(shù)的計(jì)算和“復(fù)雜性爆炸”的問(wèn)題,設(shè)計(jì)了一種基于命令濾波的固定時(shí)間控制器,并引入補(bǔ)償信號(hào)對(duì)濾波誤差進(jìn)行補(bǔ)償?;贚yapunov穩(wěn)定性理論,證明系統(tǒng)中所有輸出信號(hào)在固定時(shí)間內(nèi)均能達(dá)到最優(yōu)解。最后,通過(guò)仿真實(shí)驗(yàn)驗(yàn)證了所提控制方案的有效性。

    關(guān)鍵詞: 多智能體系統(tǒng); 分布式優(yōu)化; 固定時(shí)間; 命令濾波; 自適應(yīng)反演; 自適應(yīng)神經(jīng)網(wǎng)絡(luò)

    中圖分類號(hào): TN609?34; TP273" " " " " " " " " " "文獻(xiàn)標(biāo)識(shí)碼: A" " " " " " " " " " 文章編號(hào): 1004?373X(2024)11?0105?08

    Fixed?time distributed optimization algorithm for nonlinear multi?agent systems

    SUN Qing, YANG Hui, YAO Rao

    (School of Air Transportation, Shanghai University of Engineering Science, Shanghai 201620, China)

    Abstract: A fixed?time adaptive neural network output?feedback control strategy is proposed for the distributed optimization of nonlinear multi?agent systems (MASs). On the basis of the penalty function method, the consensus constraint is removed and the global objective function is reconstructed. To avoid the calculation of partial derivatives and the ″complexity explosion″ in the backstepping process, a fixed?time controller based on command filtering is designed and the filter errors are compensated by introducing compensating signals. It is proved on the basis of Lyapunov stability theory that all output signals in the system can reach the optimal solution in a fixed time. The simulation results prove the effectiveness of the proposed approach.

    Keywords: MASs; distributed optimization; fixed time; command filtering; adaptive backstepping; adaptive neural network

    0" 引" 言

    作為MASs的一個(gè)核心問(wèn)題,MASs的協(xié)同控制一直備受關(guān)注。其中,多智能體一致性問(wèn)題是協(xié)同控制中最重要的方面[1],在無(wú)人機(jī)[2]、航天器協(xié)調(diào)[3]和飛行器編隊(duì)[4]等領(lǐng)域得到廣泛應(yīng)用。分布式優(yōu)化問(wèn)題是MASs共識(shí)問(wèn)題的延伸,是指在共識(shí)的基礎(chǔ)上解決分布式優(yōu)化問(wèn)題。分布式優(yōu)化的主要目標(biāo)是通過(guò)最小化全局目標(biāo)函數(shù)使得局部目標(biāo)函數(shù)之和最小[5]。對(duì)于MASs而言,分布式優(yōu)化的一個(gè)關(guān)鍵目標(biāo)是設(shè)計(jì)合適的分布式控制器[6],使得所有的智能體能夠在特定的通信拓?fù)浣Y(jié)構(gòu)下達(dá)到一致性,并在收斂后達(dá)到分布式優(yōu)化的最優(yōu)解。

    目前已經(jīng)有一些文獻(xiàn)對(duì)低階MASs的分布式優(yōu)化問(wèn)題進(jìn)行求解[7?11]。其中文獻(xiàn)[8]基于事件觸發(fā)策略設(shè)計(jì)了一種分布式優(yōu)化算法來(lái)求解具有外部干擾和離散通信的一階MASs的分布式優(yōu)化問(wèn)題。文獻(xiàn)[10]提出了一種改進(jìn)的分布式連續(xù)時(shí)間算法,用來(lái)求解二階MASs的廣義分布式優(yōu)化問(wèn)題。然而,許多實(shí)際系統(tǒng)如機(jī)械臂和直升機(jī)等,并不能用低階動(dòng)力學(xué)來(lái)描述。因此,具有未建模動(dòng)態(tài)的高階MASs的分布式優(yōu)化問(wèn)題引起了一些學(xué)者的關(guān)注。例如,文獻(xiàn)[12]在假設(shè)所有智能體目標(biāo)函數(shù)之和最小的條件下,構(gòu)建了在MASs中實(shí)現(xiàn)全局最優(yōu)共識(shí)的有界控制律。文獻(xiàn)[13]提出了一種基于Lyapunov的自適應(yīng)反演方法,將高階MASs的分布式優(yōu)化問(wèn)題分解為求解多個(gè)子系統(tǒng)的優(yōu)化問(wèn)題。文獻(xiàn)[14]研究了一種具有狀態(tài)約束的MASs分布式優(yōu)化算法。本文在懲罰函數(shù)的基礎(chǔ)上,解除一致性約束條件來(lái)重構(gòu)全局目標(biāo)函數(shù),從而解決分布式優(yōu)化問(wèn)題。

    對(duì)于MASs來(lái)說(shuō),收斂速度是評(píng)價(jià)算法有效性的重要性能指標(biāo),而上述文獻(xiàn)都是以漸近的方式達(dá)到最優(yōu)解,即在無(wú)限時(shí)間范圍內(nèi)獲得最優(yōu)解。因此,有些學(xué)者運(yùn)用有限時(shí)間控制方法來(lái)解決分布式優(yōu)化問(wèn)題。例如,文獻(xiàn)[15?16]提出了不連續(xù)算法來(lái)解決有限時(shí)間內(nèi)的分布式優(yōu)化問(wèn)題。但同時(shí)這些文獻(xiàn)中的收斂時(shí)間都與多智能體的初始條件有關(guān),而在一般情況下初始條件可能是事先未知的,因此很難估計(jì)收斂時(shí)間的上界。文獻(xiàn)[17]提出了固定時(shí)間穩(wěn)定性理論來(lái)克服這一缺點(diǎn)。文獻(xiàn)[18?19]研究了低階多智能體的固定時(shí)間分布式優(yōu)化問(wèn)題,但目前有關(guān)高階多智能體的分布式優(yōu)化問(wèn)題的研究很少。

    本文研究了具有未建模動(dòng)態(tài)的高階MASs分布式優(yōu)化問(wèn)題,提出了一種基于命令濾波的固定時(shí)間自適應(yīng)反演控制策略。并根據(jù)Lyapunov漸近穩(wěn)定性理論和線性不等式理論,證明了所提出的控制策略能夠有效地使得多智能體系統(tǒng)的輸出在固定時(shí)間內(nèi)達(dá)到分布式優(yōu)化問(wèn)題的最優(yōu)解。最后,通過(guò)仿真實(shí)例驗(yàn)證了該方法的有效性及可行性。

    1" 問(wèn)題描述和預(yù)備知識(shí)

    1.1" 圖" 論

    假設(shè)系統(tǒng)中存在[NNgt;0]個(gè)智能體,定義無(wú)向圖:[Q=?,Z,A],其中,[?=m1,m2,…,mN]表示圖中節(jié)點(diǎn)集。定義[Z=mi,mj∈?×?]為圖中不存在自環(huán)的邊集,[A=aij∈RN×N]表示鄰接矩陣。[mi,mj?Z],當(dāng)且僅當(dāng)[aij=0],定義[Ni=jmi,mj∈Z]為節(jié)點(diǎn)[i]的鄰居智能體的集合,矩陣[D=diagd1,d2,…,dN],[di=j∈n=Niaij]為度矩陣,則拉普拉斯矩陣[L=D-A]。

    引理1[20]:對(duì)稱矩陣[L∈RN×N]是無(wú)向圖[Q]的拉普拉斯矩陣。定義一個(gè)列向量[1N],[N]個(gè)元素均為1。[1N]是拉普拉斯矩陣特征值為0的特征向量。

    1.2" 多智能體系統(tǒng)

    具有未建模動(dòng)態(tài)的高階非線性MASs如下:

    [xi,m(t)=xi,m+1+hi,m(Xi,m)xi,n(t)=ui(t)+hi,n(Xi,n)yi(t)=xi,1(t)] (1)

    式中:[m=1,2,…,n-1];[hi,m]是未知非線性函數(shù);[Xi,m=(xi,1,xi,2,…,xi,m)T∈Rm]。

    1.3" 分布式優(yōu)化問(wèn)題

    本文研究了具有未建模動(dòng)態(tài)的高階MASs的分布式優(yōu)化問(wèn)題,其中每個(gè)智能體都有一個(gè)局部目標(biāo)函數(shù)[f:R→R],且都是強(qiáng)凸的。對(duì)于智能體[i]的局部目標(biāo)函數(shù)可以定義為:

    [fi(xi,1)=mix2i,1+τixi,1+ci] (2)

    式中:[migt;0];[cigt;0];[τi]為常數(shù),[1≤i≤N]。

    定義全局目標(biāo)函數(shù)為:

    [fx1=i=1Nfi(xi,1)] (3)

    式中[x1=x1,1,x2,1,…,xN,1T],根據(jù)引理1,對(duì)于某個(gè)[α∈R],如果[x1=α?1N],可以得到:

    [Lx1=0] (4)

    根據(jù)文獻(xiàn)[21]設(shè)計(jì)懲罰項(xiàng)和懲罰函數(shù)為:

    [xT1Lx1=0] (5)

    [Px1=i=1Nfi(xi,1)+xT1Lx1] (6)

    本文的目標(biāo)是設(shè)計(jì)[ui]使得每一個(gè)智能體[limt→∞xi,1t→x*i,1],定義[x*1=x*1,1,x*2,1,…,x*N,1]。 智能體的最優(yōu)解[x*i,1]定義為:

    [x*1,1,x*2,1,…,x*N,1=argminx1,1,x2,1,…,xN,1P(x1)] (7)

    根據(jù)式(6)和式(7)推出,當(dāng)MASs達(dá)到最優(yōu)解[x*1]時(shí),智能體在達(dá)到一致性的同時(shí)收斂到最優(yōu)軌跡。

    注1:由式(6)可知,懲罰函數(shù)由兩部分組成。[i=1Nfi(xi,1)]是全局目標(biāo)函數(shù),[xT1Lx1]是懲罰項(xiàng),使所有智能體達(dá)到共識(shí)。本文的重點(diǎn)是設(shè)計(jì)一個(gè)控制器使懲罰函數(shù)最小化,保證在最小化全局目標(biāo)函數(shù)的同時(shí)MASs的一致性跟蹤誤差收斂到零。

    假設(shè)1[17]:如果系統(tǒng)(1)是有限時(shí)間穩(wěn)定的,且收斂時(shí)間有上界,則稱其為固定時(shí)間穩(wěn)定的。

    引用下面的引理用來(lái)方便計(jì)算。

    引理2[17]:定義光滑函數(shù)[Vχ≥0]。如果滿足以下不等式,則系統(tǒng)(1)是固定時(shí)間穩(wěn)定的。

    [Vχ≤-cVχσ-γVχλ+ρ] (8)

    式中:[σgt;1];[0lt;λlt;1];[γgt;0];[cgt;0];[ρgt;0]。收斂時(shí)間可以表示為:

    [Ts≤Tmax=1cσ-1+1γ1-λ] (9)

    引理3[22]:定義命令濾波器為:

    [ai,1=ηnai,2ai,2=-2υηnai,2-ηnai,1-αi] (10)

    式中:[υ∈0,1];[ηngt;0]是設(shè)計(jì)參數(shù);[ai,1]和[αi]表示命令濾波器的輸出信號(hào)和輸入信號(hào),[ai,10=αi0],[ai,20=0]。

    引理4[23]:任意[H1]、[H2∈Rn],滿足以下不等式:

    [HT1H2≤λ??H1?+1ψλψH2ψ] (11)

    式中:[?gt;1],[λgt;0],[ψgt;1],[?-1ψ-1=1]。

    引理5[24]:任意[Θj∈R],[0lt;plt;1],[qgt;1],滿足以下不等式:

    [j=1nΘjp≤j=1nΘjpj=1nΘjq≤nq-1j=1nΘjq] (12)

    2" 控制器設(shè)計(jì)及穩(wěn)定性分析

    2.1" 神經(jīng)網(wǎng)絡(luò)

    神經(jīng)網(wǎng)絡(luò)是一種逼近連續(xù)函數(shù)的有效工具,本文利用神經(jīng)網(wǎng)絡(luò)對(duì)非線性函數(shù)[hi,l,i=1,2,…,n]進(jìn)行補(bǔ)償,[hi,lXi,n:Rn→R]。

    [hi,lXi,n=θTi,lφi,lXi,n] (13)

    式中:[Xi,n]是輸入向量,[1≤i≤n];[θi,l∈Rp]是權(quán)重向量,[p]表示神經(jīng)網(wǎng)絡(luò)隱含層的節(jié)點(diǎn)個(gè)數(shù);[φi,lXi,n=φ1i,lXi,n,…,φpi,lXi,nT]是徑向基函數(shù)向量。

    [φpi,lXi,n]是一個(gè)典型的高斯基函數(shù),表達(dá)式如下:

    [φpi,lXi,n=exp-Xi,n-cqTXi,n-cqb2q] (14)

    式中:[cq∈Rn]為高斯基函數(shù)中心點(diǎn)的坐標(biāo)向量;[bq∈R]為高斯基函數(shù)的寬度。

    引理6[25]:一個(gè)連續(xù)未知函數(shù)[hx]定義在緊集[Ωx],存在神經(jīng)網(wǎng)絡(luò)[θ*Tφx]和任意精度[?x],滿足:

    [hx=θ*Tφx+?x] (15)

    式中:[?x]為神經(jīng)網(wǎng)絡(luò)的逼近誤差;[θ*]是理想權(quán)值,其中[θ*=argminθ∈Ωθsupx∈Ωxhx-θTφx]。

    定義參數(shù)逼近誤差[θi,l ]和最優(yōu)逼近誤差[?i,lx]為:

    [θi,l =θ*i,l-θi,l," " l=1,2,…,n?i,lx=hi,lXi,n-hi,lXi,nθ*i,l] (16)

    假設(shè)2:最優(yōu)逼近誤差保持有界,對(duì)于任意[?x]有[?x≤?0,?0gt;0]。

    2.2" 控制器設(shè)計(jì)

    在進(jìn)行控制器設(shè)計(jì)之前,定義如下變量:

    [si,1=2mi(xi,1-bi)+j∈Niaij(xi,1-xj,1)si,l=xi,l-ai,lzi,l=si,l-ξi,l] (17)

    式中:[si,l]表示跟蹤誤差;[ai,l]是命令濾波器相對(duì)于虛擬控制器[ai,l]產(chǎn)生的輸出信號(hào);[ξi,l]是誤差補(bǔ)償信號(hào),在本文中被設(shè)計(jì)為:

    [ξi,1=di(ξi,2+ai,2-ai,1)-32ξi,1-li,1sgnξi,1] (18)

    [ξi,2=ai,3-ai,2-diξi,1-ξi,2+ξi,3-li,2sgnξi,2] (19)

    [ξi,m=ai,m+1-ai,m-ξi,m-1-ξi,m+ξi,m+1-li,msgnξi,m] (20)

    [ξi,n=-ξi,n-ξi,n-1-li,nsgnξi,n] (21)

    式中[li,n]為設(shè)計(jì)參數(shù)。虛擬控制律和控制輸入為:

    [ai,1=1di(2mibi-32si,1+j∈Niaijxj,2+θTj,1φj,1-Ki,1,112κz2κ-1i,1-Ki,1,212κz2κ-1i,1-diθTi,1φi,1)] (22)

    [ai,2=ai,2-si,2-disi,1-θTi,2φi,2-Ki,2,112κz2κ-1i,2-Ki,2,212κz2κ-1i,2] (23)

    [ai,m=ai,m-si,m-si,m-1-θTi,mφi,m-Ki,m,112κz2κ-1i,m-Ki,m,212κz2κ-1i,m] (24)

    [ui=ai,n-si,n-si,n-1-θTi,nφi,n-Ki,n,112κz2κ-1i,n-Ki,n,212κz2κ-1i,n] (25)

    設(shè)計(jì)自適應(yīng)律為:

    [θi,1=ri,1diφi,1zi,1-ri,1θi,1-1ri,1θ2κ-1i,1] (26)

    [θj,1=-rj,1φj,1zi,1-rj,1θj,1-1rj,1θ2κ-1j,1] (27)

    [θi,l=ri,lφi,lzi,l-ri,lθi,l-1ri,lθ2κ-1i,l] (28)

    式中:[Ki,n,1]、[Ki,n,2]、[κ]、[κ]、[ri,n]、[ri,n]為設(shè)計(jì)參數(shù)。

    步驟1:首先,根據(jù)式(6)得到懲罰函數(shù)的梯度:

    [?P(x1)?x1=vec(?fi(xi,1(t))?xi,1)+Lx1] (29)

    式中[vec?fixi,1(t)?xi,1]是一個(gè)列向量。最優(yōu)解[x*1]滿足:

    [?P(x*1)?x*1=0] (30)

    對(duì)于智能體[i],有:

    [?fi(x*i,1(t))?x*i,1+j∈Niaij(x*i,1-x*j,1)=0] (31)

    根據(jù)式(2)和式(30),可以得到:

    [2mi(x*i,1-bi)+j∈Niaij(x*i,1-x*j,1)=0] (32)

    式中[bi=-12miτi],結(jié)合式(17)和式(31),推出:

    [?P(x1)?xi,1=?fixi,1(t)?xi,1+j∈Niaij(xi,1-xj,1)=2mi(xi,1-bi)+j∈Niaij(xi,1-xj,1)=si,1] (33)

    設(shè)計(jì)第一步Lyapunov函數(shù)為:

    [V1=i=1N12z2i,1+12ri,1θTi,1θi,1+12j=NIaij1rj,1θTj,1θj,1] (34)

    式中[ri,1]和[rj,1]是設(shè)計(jì)參數(shù)。根據(jù)式(17),計(jì)算出:

    [si,1=di(zi,2+ξi,2+ai,2)-j∈Niaijxj,2+di(θTi,1φi,1+θTi,1φi,1+?i,1)-2aibi-j∈Niaij(θTj,1φj,1+θTj,1φj,1+?j,1)] (35)

    式中[di=2mi+j∈Niaij],根據(jù)式(17),得到[zi,1=si,1-ξi,1],并由式(34)、式(35)和引理2,推出:

    [V1=i=1Nzi,1di(zi,2+ξi,2+ai,2)-2aibi-ξi,1+diθTi,1φi,1+θTi,1φi,1+?i,1-j∈Niaijxj,2+(θTj,1φj,1+θTj,1φj,1+?j,1)-1ri,1θTi,1θi,1-j∈Niaij1rj,1θTj,1θj,1] (36)

    根據(jù)引理4,可以得到以下不等式:

    [zi,1li,1sgnξi,1≤z2i,12+l2i,12dizi,1?i,1≤z2i,12+(di?i,1)22zi,1j∈Niaij?j,1≤z2i,12+(j∈Niaij?j,1)22] (37)

    將設(shè)計(jì)的補(bǔ)償項(xiàng)式(18)、虛擬控制器式(22)、自適應(yīng)律式(26)和式(27)以及上述不等式代入式(36),可以計(jì)算出:

    [V1≤i=1Ndizi,1zi,2-Ki,1,112κz2κi,1+Di,1+1r2i,1θi,1θ2κ-1i,1-Ki,1,212κz2κi,1+ri,1ri,1θTi,1θi,1+j∈Niaijrj,1rj,1θTj,1θj,1+1r2j,1θj,1θ2κ-1j,1] (38)

    式中[Di,1=l2i,12+(di?i,1)22+j∈Niaij?j,122]。

    步驟2:設(shè)計(jì)第2步Lyapunov函數(shù)為:

    [V2=V1+i=1N12z2i,2+12ri,2θTi,2θi,2] (39)

    根據(jù)系統(tǒng)式(1)和式(17),可以推出:

    [zi,2=zi,3+ξi,3+ai,3+θTi,2φi,2+θTi,2φi,2+?i,2-ai,2-ξi,2] (40)

    對(duì)Lyapunov函數(shù)求導(dǎo)得到:

    [V2=V1+i=1Nzi,2(zi,3+ξi,3+ai,3-ai.2-ξi,2+θTi,2φi,2+θTi,2φi,2+?i,2)-1ri,2θTi,2θi,2" " " " " " " " " " " " " " " " " " " " " " (41)]

    根據(jù)引理4,以下不等式恒成立:

    [zi,2li,2sgnξi,2≤z2i,22+l2i,22zi,2?i,2≤z2i,22+?2i,2 2] (42)

    將設(shè)計(jì)的補(bǔ)償項(xiàng)式(19)、虛擬控制器式(23)、自適應(yīng)律式(28)和上述不等式代入式(41),可以計(jì)算出:

    [V2≤i=1Nl=12zi,2zi,3-Ki,l,112κz2κi,l-Ki,l,212κz2κi,l+ri,lri,lθTi,lθi,l+1r2i,lθi,lθ2κ-1i,l+Di,2+j∈Niaijrj,1rj,1θTj,1θj,1+1r2j,1θj,1θ2κ-1j,1] (43)

    式中[Di,2=Di,1+l2i,22+?2i,2 2]。

    步驟[m]:設(shè)計(jì)第[m]步Lyapunov函數(shù)為:

    [Vm=Vm-1+i=1N12z2i,m+12ri,mθTi,mθi,m] (44)

    根據(jù)系統(tǒng)式(1)和式(17),可以推出:

    [zi,m=zi,m+1+ξi,m+1+ai,m+1+θTi,mφi,m+θTi,mφi,m+?i,m-ai,m-ξi,m] (45)

    對(duì)Lyapunov函數(shù)求導(dǎo)得到:

    [Vm=Vm-1+i=1Nzi,m(zi,m+1+ξi,m+1+ai,m+1-ai.m-ξi,m+θTi,mφi,m+θTi,mφi,m+?i,m)-1ri,mθTi,mθi,m] (46)

    根據(jù)引理4,以下不等式恒成立:

    [zi,mli,msgnξi,m≤z2i,m2+l2i,m2zi,m?i,m≤z2i,m2+?2i,m 2] (47)

    將設(shè)計(jì)的補(bǔ)償項(xiàng)式(20)、虛擬控制器式(24)、自適應(yīng)律式(28)和上述不等式代入式(46),可以計(jì)算出:

    [Vm≤i=1Nl=1mzi,mzi,m+1-Ki,l,112κz2κi,l-Ki,l,212κz2κi,l+ri,lri,lθTi,lθi,l+1r2i,lθi,lθ2κ-1i,l+Di,m+j∈Niaijrj,1rj,1θTj,1θj,1+1r2j,1θj,1θ2κ-1j,1] (48)

    式中[Di,m=Di,m-1+l2i,m2+?2i,m 2]。

    步驟[n]:設(shè)計(jì)第[n]步Lyapunov函數(shù)為:

    [Vn=Vn-1+i=1N12z2i,n+12ri,nθTi,nθi,n] (49)

    根據(jù)系統(tǒng)式(1)和式(17),通過(guò)計(jì)算得到:

    [zi,n=ui+θTi,nφi,n+θTi,nφi,n+?i,n-ai,n-ξi,n] (50)

    對(duì)Lyapunov函數(shù)求導(dǎo)得到:

    [Vn=Vn-1+i=1Nzi,n(ui-ai.n-ξi,n+θTi,nφi,n+θTi,nφi,n+?i,n)-1ri,nθTi,nθi,n] (51)

    根據(jù)引理4,以下不等式恒成立:

    [zi,nli,nsgnξi,n≤z2i,n2+l2i,n2zi,n?i,n≤z2i,n2+?2i,n 2] (52)

    將設(shè)計(jì)的補(bǔ)償項(xiàng)式(21)、控制輸入式(25)、自適應(yīng)律式(28)和上述不等式代入式(51),可以得到:

    [Vn≤i=1Nl=1n-Ki,l,1z2i,l2κ-Ki,l,2z2i,l2κ+ri,lri,lθTi,lθi,l+1r2i,lθi,lθ2κ-1i,l+Di,n+j∈Niaijrj,1rj,1θTj,1θj,1+1r2j,1θj,1θ2κ-1j,1] (53)

    式中[Di,n=Di,n-1+l2i,n2+?2i,n 2]。

    2.3" 穩(wěn)定性分析

    證明:定義[εi,1=minKi,1,1,Ki,2,1,…,Ki,n,1],[εi,2=minKi,1,2,Ki,2,2,…,Ki,n,2],根據(jù)引理5,可以得到下述不等式:

    [-k=1nKi,k,1z2i,k2κ≤-εi,1k=1nz2i,k2κ-k=1nKi,k,2z2i,k2κ≤-εi,2nκ-1k=1nz2i,k2κ] (54)

    根據(jù)楊氏不等式可以得到:

    [l=1nri,lri,lθTi,lθi,l≤-l=1nri,l2ri,lθ2i,l+l=1nri,l2ri,lθ*2i,lj∈Niaijrj,1rj,1θTj,1θj,1≤j∈Niaij(-rj,12rj,1θ2j,1+rj,12rj,1θ*2j,1)] (55)

    通過(guò)參考文獻(xiàn)[26]和引理5可以推出:

    [l=1n1r2i,lθi,lθ2κ-1i,l≤Θ*i,n-εi,nηκ-1l=1nθ2i,l2ri,lκj∈Niaij1r2j,1θj,1θ2κ-1j,1≤Θ*i-εil=1naijθ2j,l2rj,lκ] (56)

    [l=1nri,l2ri,lθ2i,lκ≤?κ+l=1nri,l2ri,lθ2i,lrj,12rj,1θ2j,1κ≤?κ+rj,12rj,1θ2j,1] (57)

    式中[?κ=1-κκκ/1-κgt;0]。通過(guò)計(jì)算得到:

    [Vn≤i=1N-εi,1k=1nz2i,k2κ-εi,2nκ-1k=1nz2i,k2κ-εi,nηκ-1l=1nθ2i,l2ri,lκ-εij∈Niaijθ2j,12rj,1κ-l=1nri,l2ri,lθ2i,lκ-j∈Niaijrj,12rj,1θ2j,1κ+Dn] (58)

    式中[Dn=Di,n+2?κ+l=1nri,l2ri,lθ*2i,l+j∈Niaijrj,12rj,1θ*2j,1+]

    [Θ*i,n+Θ*i]。

    通過(guò)式(58)和引理2,可以推出:

    [Vn≤-γVκn-cVκn+Dn] (59)

    式中:[γ=minεi,1,rκi,l,rκj,1];[c=minεi,2nκ-1,εi,nnκ-1,εi]。

    根據(jù)引理2,可以確定系統(tǒng)的收斂時(shí)間并證明了系統(tǒng)的穩(wěn)定性。

    步驟[n]+1:設(shè)計(jì)如下的Lyapunov函數(shù):

    [Vn+1=i=1Nk=1n12ξ2i,k] (60)

    對(duì)式(60)進(jìn)行求導(dǎo)可得:

    [Vn+1=i=1Nm=2n-1ξi,mai,m+1-ai,m+diξi,1ai,2-ai,1-k=1nli,kξi,k-1+diξ2i,1-j=2nξ2i,j≤i=1Ndiξi,1ai,2-ai,1+m=2n-1ξi,mai,m+1-ai,m-k=1nli,kξi,k-k=2nξ2i,k] (61)

    根據(jù)文獻(xiàn)[27]可以得到[ai,k-ai,1≤ηi,k],其中,[k=1,2,…,n-1],[ηi,k]是一個(gè)已知常數(shù),可以推出:

    [Vn+1≤-k=1nξ2i,k-li,1-diηi,1ξi,1-k=2n-1li,k-ηi,kξi,k-li,nξi,n≤-K1V1n+1-K2V12n+1] (62)

    式中:[K2=2minli,1-diηi,1,li,k-ηi,k,li,n];[K1=Nn-3]。

    根據(jù)引理2,[ξi,k]在固定時(shí)間內(nèi)收斂于原點(diǎn)。上述的基于固定時(shí)間的自適應(yīng)反演策略及其穩(wěn)定性分析總結(jié)在定理1。

    定理1:對(duì)于具有未建模動(dòng)態(tài)的高階MASs(1),在假設(shè)1和假設(shè)2成立的前提下,通過(guò)設(shè)計(jì)虛擬控制律式(22)~式(24)、控制輸入式(25)、誤差補(bǔ)償信號(hào)式(18)~式(21)以及自適應(yīng)律式(26)~式(28),可以保證誤差在固定時(shí)間內(nèi)收斂到平衡點(diǎn)的一個(gè)小鄰域,并且系統(tǒng)的輸出信號(hào)收斂到分布式優(yōu)化問(wèn)題的最優(yōu)解[x*1]。

    3" 數(shù)值仿真

    為了驗(yàn)證上文所提出的方法,在本節(jié)中進(jìn)行了數(shù)值仿真。

    考慮由5個(gè)智能體組成的MASs,其通信拓?fù)鋱D如圖1所示。

    考慮到如下的二階MASs:

    [xi,1=xi,2+hi,1Xi,1xi,2=ui+hi,2Xi,2yi=xi,1] (63)

    式中:[i=1,2,3,4,5],各個(gè)智能體的初始狀態(tài)為:[x1(0)=[0.1,0.1]," x2(0)=[0.2,0.2]," x3(0)=[0.3,0.3],][x4(0)=[0.4,0.4]," x5(0)=[0.5,0.5]]。

    設(shè)計(jì)系統(tǒng)中未建模動(dòng)態(tài)為:

    [h1,1=h2,1=h3,1=h4,1=h5,1=0h1,2=x1,1-0.25x1,2-x31,1h2,2=x2,1-0.25x2,2-x32,1+0.1x22,1+x22,212h3,2=x3,1-0.25x3,2-x33,1+0.2x23,1+2x23,212h4,2=x4,1-0.25x4,2-x34,1+0.22x24,1+2x24,212h5,2=x35,1+x25,2-x35,1+0.3x25,1+x25,212]

    虛擬控制律、誤差補(bǔ)償信號(hào)、自適應(yīng)律以及控制輸入中參數(shù)部分的設(shè)計(jì)為:[Ki,1,1=Ki,2,1=0.8],[Ki,1,2=Ki,2,2=0.5],[κ=1113,κ=1513],[li,1=li,2=0.1],[ri,1=ri,2=rj,1=1],[ri,1=ri,2=rj,1=80]。由引理2和式(58)計(jì)算可知:[Tmax=14.13]。在這個(gè)數(shù)值仿真實(shí)驗(yàn)中,令[b1=sint],[b2=2sint],[b3=3sint],[b4=4sint],[b5=5sint]。通過(guò)計(jì)算,可以得到最優(yōu)解[x*1=3sint]。

    根據(jù)懲罰函數(shù)的定義式(6),求解分布式優(yōu)化問(wèn)題的最優(yōu)條件為:

    [?P(x*1)?x*1=0]

    圖2~圖5為仿真結(jié)果。圖2表明了每個(gè)智能體的輸出最終與最優(yōu)解保持一致,可以看出圖中存在一定的誤差。圖3表示的是跟蹤誤差的軌跡[si,1],可以清楚地看出[si,1]在5 s內(nèi)收斂到0,滿足引理2的[Ts≤Tmax]。圖4表示的是系統(tǒng)的控制輸入。圖5顯示了懲罰函數(shù)梯度的值,從圖中可以看出,梯度在固定時(shí)間內(nèi)很好地收斂到零,這符合求解分布式優(yōu)化問(wèn)題的最優(yōu)條件。

    由數(shù)值仿真結(jié)果可見,該算法可以保證具有未建模動(dòng)態(tài)的高階MASs中所有智能體的輸出均在固定時(shí)間內(nèi)收斂到最優(yōu)解。跟蹤誤差在固定時(shí)間內(nèi)收斂到一個(gè)小的原點(diǎn)區(qū)域,同時(shí),懲罰函數(shù)的梯度能夠成功收斂到零。采用該方法所設(shè)計(jì)的控制器不僅保證所有智能體在固定時(shí)間內(nèi)能夠達(dá)到共識(shí),而且還考慮了MASs的分布式優(yōu)化問(wèn)題。

    4" 結(jié)" 語(yǔ)

    本文研究了具有未建模動(dòng)態(tài)的高階MASs的分布式優(yōu)化問(wèn)題。首先在懲罰函數(shù)的基礎(chǔ)上,解除一致性約束條件來(lái)重構(gòu)全局目標(biāo)函數(shù),使得所有智能體的輸出既能達(dá)到共識(shí),又能達(dá)到分布式優(yōu)化問(wèn)題的最優(yōu)解;然后,通過(guò)引入命令濾波技術(shù)來(lái)避免固定時(shí)間回溯控制中產(chǎn)生的“奇點(diǎn)”和“復(fù)雜性爆炸”問(wèn)題。最后通過(guò)Lyapunov穩(wěn)定性理論證明了所有輸出信號(hào)在固定時(shí)間內(nèi)能夠達(dá)到最優(yōu)解。仿真結(jié)果表明,所提出的方法可以使得系統(tǒng)在固定時(shí)間內(nèi)達(dá)到共識(shí),并且收斂到最優(yōu)軌跡。下一步的工作是研究具有隨機(jī)擾動(dòng)的MASs分布式優(yōu)化問(wèn)題。

    參考文獻(xiàn)

    [1] BAI W W, ZHANG W J, CAO L, et al. Adaptive control for multi?agent systems with actuator fault via reinforcement learning and its application on multi?unmanned surface vehicle [J]. Ocean engineering, 2023, 280: 114545.

    [2] 王琪,范慶東.彈性模型結(jié)合改進(jìn)滑??刂破鞯臒o(wú)人機(jī)協(xié)同控制[J].電光與控制,2022,29(11):44?49.

    [3] ZHAO L, JIA Y M. Decentralized adaptive attitude synchronization control for spacecraft formation using nonsingular fast terminal sliding mode [J]. Nonlinear dynamics, 2014, 78(4): 2779?2794.

    [4] 索良澤,王冬,王紅蕾,等.無(wú)線網(wǎng)絡(luò)通信下多無(wú)人飛行器編隊(duì)飛行控制[J].電光與控制,2018,25(9):49?52.

    [5] ZHENG Y L, LIU Q S. A review of distributed optimization: Problems, models and algorithms [J]. Neurocomputing, 2022, 483: 446?459.

    [6] LI S L, NIAN X H, DENG Z H. Distributed optimization of general linear multi?agent systems with external disturbance [J]. Journal of the Franklin Institute, 2021, 358(11): 5951?5970.

    [7] KIA S S, CORTéS J, MARTíNEZ S. Periodic and event?triggered communication for distributed continuous?time convex optimization [C]// 2014 American Control Conference. New York: IEEE, 2014: 5010?5015.

    [8] DENG Z H, WANG X H, HONG Y G. Distributed optimisation design with triggers for disturbed continuous?time multi?agent systems [J]. IET control theory amp; applications, 2017, 11(2): 282?290.

    [9] XU G H, GUAN Z H, HE D X, et al. Distributed tracking control of second?order multi?agent systems with sampled data [J]. Journal of the Franklin Institute, 2014, 351(10): 4786?4801.

    [10] YANG F, YU Z, HUANG D, et al. Distributed optimization for second?order multi?agent systems over directed networks [J]. Mathematics, 2022, 10(20): 3803.

    [11] MO L P, HU H K, YU Y G, et al. Distributed optimization without boundedness of gradients for second?order multi?agent systems over unbalanced network [J]. Information sciences, 2021, 565: 177?195.

    [12] XIE Y J, LIN Z L. Global optimal consensus for higher?order multi?agent systems with bounded controls [J]. Automatica, 2019, 99: 301?307.

    [13] QIN Z Y, LIU T F, JIANG Z P. Distributed optimization of nonlinear uncertain systems: An adaptive backstepping design [J]. IFAC?PapersOnLine, 2020, 53(2): 5653?5658.

    [14] YAO Y H, YUAN J X, CHEN T, et al. Distributed convex optimization of bipartite containment control for high?order nonlinear uncertain multi?agent systems with state constraints [J]. Mathematical biosciences and engineering, 2023, 20(9): 17296?17323.

    [15] LIN P, REN W, FARRELL J A. Distributed continuous?time optimization: Nonuniform gradient gains, finite?time convergence, and convex constraint set [J]. IEEE transactions on automatic control, 2016, 62(5): 2239?2253.

    [16] HU Z L, YANG J Y. Distributed finite?time optimization for second order continuous?time multiple agents systems with time?varying cost function [J]. Neurocomputing, 2018, 287: 173?184.

    [17] POLYAKOV A. Nonlinear feedback design for fixed?time stabilization of linear control systems [J]. IEEE transactions on automatic control, 2011, 57(8): 2106?2110.

    [18] YU Z Y, YU S Z, JIANG H J, et al. Distributed fixed?time optimization for multi?agent systems over a directed network [J]. Nonlinear dynamics, 2021, 103: 775?789.

    [19] CHEN G, LI Z Y. A fixed?time convergent algorithm for distributed convex optimization in multi?agent systems [J]. Automatica, 2018, 95: 539?543.

    [20] 劉建剛,黃志武,王晶.不確定多智能體互聯(lián)動(dòng)態(tài)系統(tǒng)分布式魯棒[H∞]協(xié)同控制[J].控制與決策,2014,29(7):1267?1273.

    [21] SUN X M, WANG W. Integral input?to?state stability for hybrid delayed systems with unstable continuous dynamics [J]. Automatica, 2012, 48(9): 2359?2364.

    [22] DONG G E, LI X M, YAO D Y, et al. Command filtered fixed?time control for a class of multi?agent systems with sensor faults [J]. International journal of robust and nonlinear control, 2021, 31(18): 9588?9603.

    [23] LIU Y C, ZHU Q D, ZHAO N, et al. Adaptive fuzzy backstepping control for nonstrict feedback nonlinear systems with time?varying state constraints and backlash?like hysteresis [J]. Information sciences, 2021, 574: 606?624.

    [24] 劉宜成,熊宇航,楊海鑫.基于RBF神經(jīng)網(wǎng)絡(luò)的多關(guān)節(jié)機(jī)器人固定時(shí)間滑??刂芠J].控制與決策,2022,37(11):2790?2798.

    [25] HUA C C, LI Y F, GUAN X P. Finite/fixed?time stabilization for nonlinear interconnected systems with dead?zone input [J]. IEEE transactions on automatic control, 2017, 62(5): 2554?2560.

    [26] WANG F, LAI G Y. Fixed?time control design for nonlinear uncertain systems via adaptive method [J]. Systems amp; control letters, 2020, 140: 104704.

    [27] FARRELL J A, POLYCARPOU M M, SHARMA M, et al. Command filtered backstepping [J]. IEEE transactions on automatic control, 2009, 54(6): 1391?1395.

    作者簡(jiǎn)介:孫" 慶(2001—),女,江蘇人,在讀研究生,研究方向?yàn)槎嘀悄荏w分布式優(yōu)化。

    楊" 慧(1977—),女,山東人,博士,講師,研究方向?yàn)槎嘀悄荏w分布式優(yōu)化。

    精品人妻熟女毛片av久久网站| 少妇 在线观看| 丁香六月天网| 国产精品久久久久久久电影| 又大又黄又爽视频免费| 91精品国产国语对白视频| 欧美3d第一页| 观看免费一级毛片| 精品国产一区二区三区久久久樱花| 欧美bdsm另类| 久久久久久久精品精品| 18禁动态无遮挡网站| 国产精品人妻久久久久久| 欧美区成人在线视频| 亚洲av成人精品一二三区| 亚洲,一卡二卡三卡| 狂野欧美激情性bbbbbb| 亚洲精华国产精华液的使用体验| 欧美精品一区二区大全| 国产一区亚洲一区在线观看| 男人爽女人下面视频在线观看| 国产日韩欧美亚洲二区| 寂寞人妻少妇视频99o| 99久久中文字幕三级久久日本| 少妇裸体淫交视频免费看高清| 国产中年淑女户外野战色| 精品视频人人做人人爽| 日韩一本色道免费dvd| xxx大片免费视频| 午夜福利影视在线免费观看| 一级爰片在线观看| a级毛片在线看网站| 国产成人精品婷婷| 亚洲欧美日韩另类电影网站| 国产精品99久久久久久久久| 免费观看a级毛片全部| 黑人猛操日本美女一级片| 国产精品嫩草影院av在线观看| 高清在线视频一区二区三区| 午夜福利在线观看免费完整高清在| 精品一区二区免费观看| 男人和女人高潮做爰伦理| 国产高清三级在线| 欧美精品人与动牲交sv欧美| 亚洲av电影在线观看一区二区三区| 97精品久久久久久久久久精品| av专区在线播放| 91久久精品电影网| 国产精品女同一区二区软件| 国产爽快片一区二区三区| 五月开心婷婷网| 免费观看a级毛片全部| 日本爱情动作片www.在线观看| 在线观看www视频免费| 80岁老熟妇乱子伦牲交| 国产极品天堂在线| 91在线精品国自产拍蜜月| 久久精品久久久久久久性| 麻豆成人av视频| av播播在线观看一区| 99九九线精品视频在线观看视频| 热re99久久精品国产66热6| tube8黄色片| 丰满少妇做爰视频| 欧美bdsm另类| 少妇人妻一区二区三区视频| 黑人猛操日本美女一级片| 久久人人爽av亚洲精品天堂| 国产成人免费无遮挡视频| 精品久久久精品久久久| 美女中出高潮动态图| 男的添女的下面高潮视频| 国产亚洲午夜精品一区二区久久| 少妇熟女欧美另类| 成年人免费黄色播放视频 | av在线播放精品| 特大巨黑吊av在线直播| 国产男女超爽视频在线观看| 免费不卡的大黄色大毛片视频在线观看| 最后的刺客免费高清国语| 乱码一卡2卡4卡精品| 一级毛片黄色毛片免费观看视频| 黑人猛操日本美女一级片| 秋霞在线观看毛片| www.av在线官网国产| 国产欧美日韩综合在线一区二区 | 欧美老熟妇乱子伦牲交| 日韩伦理黄色片| 精品少妇内射三级| 久久国产精品男人的天堂亚洲 | 色网站视频免费| 18禁裸乳无遮挡动漫免费视频| 大香蕉97超碰在线| 日韩成人伦理影院| 色婷婷av一区二区三区视频| 国产 精品1| 人人妻人人看人人澡| 街头女战士在线观看网站| 一级毛片久久久久久久久女| 自线自在国产av| 欧美区成人在线视频| 国产男人的电影天堂91| 日本黄色片子视频| 夫妻性生交免费视频一级片| 精品久久国产蜜桃| 久久久久久久大尺度免费视频| 三级经典国产精品| 日韩av免费高清视频| 亚洲精品第二区| 国产伦理片在线播放av一区| 草草在线视频免费看| 亚洲综合精品二区| 少妇被粗大的猛进出69影院 | 成年人免费黄色播放视频 | 特大巨黑吊av在线直播| 免费观看av网站的网址| 亚洲欧洲日产国产| 亚洲av不卡在线观看| 欧美最新免费一区二区三区| 2018国产大陆天天弄谢| 香蕉精品网在线| 黄色日韩在线| 欧美国产精品一级二级三级 | 99热网站在线观看| 免费黄色在线免费观看| 日本黄色日本黄色录像| 日本vs欧美在线观看视频 | 熟女电影av网| 青春草亚洲视频在线观看| 欧美成人精品欧美一级黄| .国产精品久久| 国产亚洲91精品色在线| 一级av片app| 国产一区二区三区综合在线观看 | 五月伊人婷婷丁香| 久久久久网色| 免费看光身美女| 日韩制服骚丝袜av| 秋霞在线观看毛片| 99视频精品全部免费 在线| 免费久久久久久久精品成人欧美视频 | 天天躁夜夜躁狠狠久久av| 99九九线精品视频在线观看视频| 精品亚洲成国产av| 2022亚洲国产成人精品| 午夜老司机福利剧场| 欧美97在线视频| 国产黄色免费在线视频| 一本久久精品| 日韩成人伦理影院| 日韩三级伦理在线观看| 亚洲精品中文字幕在线视频 | 日本爱情动作片www.在线观看| 伊人久久国产一区二区| 国产精品国产三级专区第一集| 啦啦啦视频在线资源免费观看| 日本91视频免费播放| 天天躁夜夜躁狠狠久久av| 最近中文字幕高清免费大全6| 亚洲精品一区蜜桃| 欧美精品一区二区免费开放| 精品国产国语对白av| 国产色婷婷99| 看非洲黑人一级黄片| 我要看黄色一级片免费的| 国产精品国产av在线观看| 3wmmmm亚洲av在线观看| 乱系列少妇在线播放| 精品人妻熟女毛片av久久网站| 女人精品久久久久毛片| 成人二区视频| av网站免费在线观看视频| 校园人妻丝袜中文字幕| h视频一区二区三区| 国产真实伦视频高清在线观看| 亚洲国产最新在线播放| 80岁老熟妇乱子伦牲交| 国产成人91sexporn| 国产成人aa在线观看| 日韩成人伦理影院| 国产亚洲欧美精品永久| 亚洲国产精品国产精品| 亚洲精品视频女| 日日爽夜夜爽网站| 免费看不卡的av| 最新中文字幕久久久久| 亚洲精品成人av观看孕妇| 日韩熟女老妇一区二区性免费视频| av又黄又爽大尺度在线免费看| 99热这里只有是精品在线观看| 波野结衣二区三区在线| 一级毛片久久久久久久久女| 精品一品国产午夜福利视频| 极品人妻少妇av视频| 狂野欧美激情性bbbbbb| 久久人妻熟女aⅴ| 亚洲情色 制服丝袜| 精品人妻一区二区三区麻豆| 国产亚洲5aaaaa淫片| 好男人视频免费观看在线| 日韩一区二区视频免费看| 最黄视频免费看| 久久国内精品自在自线图片| 黄色一级大片看看| 亚州av有码| 91精品伊人久久大香线蕉| 极品人妻少妇av视频| 精品国产乱码久久久久久小说| 国产日韩一区二区三区精品不卡 | 国产一区二区在线观看av| 精品午夜福利在线看| 亚洲精品国产成人久久av| 亚洲高清免费不卡视频| 热re99久久国产66热| 亚洲精品成人av观看孕妇| 久久婷婷青草| 国产成人午夜福利电影在线观看| 波野结衣二区三区在线| 日本色播在线视频| 噜噜噜噜噜久久久久久91| 在线观看美女被高潮喷水网站| 视频中文字幕在线观看| 欧美少妇被猛烈插入视频| 97在线视频观看| av天堂久久9| 日韩亚洲欧美综合| 国产精品嫩草影院av在线观看| 99热这里只有是精品在线观看| av黄色大香蕉| 女人久久www免费人成看片| 夫妻性生交免费视频一级片| 少妇丰满av| 欧美日韩精品成人综合77777| 七月丁香在线播放| 免费观看性生交大片5| 婷婷色综合www| 国产乱来视频区| 女的被弄到高潮叫床怎么办| 亚洲美女搞黄在线观看| 一个人看视频在线观看www免费| 亚洲欧美成人综合另类久久久| 9色porny在线观看| 丝袜在线中文字幕| 精品少妇黑人巨大在线播放| 久久久久久久久久久久大奶| 日韩av免费高清视频| 男人爽女人下面视频在线观看| 男人添女人高潮全过程视频| 国产成人精品无人区| 国产精品免费大片| 人妻少妇偷人精品九色| 99久久精品一区二区三区| av网站免费在线观看视频| a级毛片免费高清观看在线播放| 简卡轻食公司| a级一级毛片免费在线观看| 亚洲一区二区三区欧美精品| 精品午夜福利在线看| 夫妻午夜视频| 久久青草综合色| 日韩电影二区| 大码成人一级视频| videos熟女内射| 少妇人妻一区二区三区视频| 青春草国产在线视频| 高清黄色对白视频在线免费看 | 国产精品久久久久久久电影| 18禁在线无遮挡免费观看视频| 人人妻人人爽人人添夜夜欢视频 | 国产日韩欧美亚洲二区| 一区二区av电影网| 三上悠亚av全集在线观看 | 老熟女久久久| 视频区图区小说| 国产精品国产三级国产专区5o| 永久网站在线| 亚洲va在线va天堂va国产| 人妻制服诱惑在线中文字幕| 天美传媒精品一区二区| 国产成人午夜福利电影在线观看| 夫妻午夜视频| 精品一品国产午夜福利视频| 又粗又硬又长又爽又黄的视频| 丝瓜视频免费看黄片| 欧美日韩在线观看h| 一本一本综合久久| 精品国产露脸久久av麻豆| 久久6这里有精品| 97超碰精品成人国产| 日韩中文字幕视频在线看片| 观看免费一级毛片| 日韩大片免费观看网站| 精品亚洲成国产av| 亚洲av.av天堂| 亚洲精品中文字幕在线视频 | 热99国产精品久久久久久7| 久久久国产精品麻豆| 色视频在线一区二区三区| 日韩一区二区视频免费看| 中国三级夫妇交换| 在线观看人妻少妇| 精品久久久久久久久亚洲| 亚洲婷婷狠狠爱综合网| 午夜久久久在线观看| a级毛片免费高清观看在线播放| 女性被躁到高潮视频| 亚洲丝袜综合中文字幕| 日产精品乱码卡一卡2卡三| 亚洲欧洲精品一区二区精品久久久 | 极品少妇高潮喷水抽搐| 一个人看视频在线观看www免费| 视频区图区小说| 欧美 亚洲 国产 日韩一| a级一级毛片免费在线观看| 国产一区二区三区av在线| 99久久综合免费| 十八禁高潮呻吟视频 | 我要看黄色一级片免费的| 少妇的逼水好多| 亚洲国产av新网站| 欧美丝袜亚洲另类| 大话2 男鬼变身卡| 久久韩国三级中文字幕| 日日摸夜夜添夜夜添av毛片| 日韩中文字幕视频在线看片| 久热久热在线精品观看| 亚洲一区二区三区欧美精品| 我要看黄色一级片免费的| 性高湖久久久久久久久免费观看| 亚洲国产精品一区三区| 一级爰片在线观看| 亚洲欧美成人综合另类久久久| 在线观看www视频免费| 国产女主播在线喷水免费视频网站| 久久6这里有精品| 国产精品不卡视频一区二区| 大码成人一级视频| 亚洲图色成人| 国产女主播在线喷水免费视频网站| 天美传媒精品一区二区| 精品人妻一区二区三区麻豆| 成人毛片60女人毛片免费| 亚洲情色 制服丝袜| 新久久久久国产一级毛片| 国产亚洲5aaaaa淫片| 51国产日韩欧美| 男的添女的下面高潮视频| 国产片特级美女逼逼视频| av.在线天堂| 丰满少妇做爰视频| 久久人妻熟女aⅴ| 亚洲欧美清纯卡通| 日本-黄色视频高清免费观看| 午夜91福利影院| 亚洲av二区三区四区| 高清不卡的av网站| 精品酒店卫生间| av国产精品久久久久影院| 亚洲欧美日韩东京热| 日本爱情动作片www.在线观看| 亚洲久久久国产精品| 少妇裸体淫交视频免费看高清| 午夜福利,免费看| 在线观看国产h片| 久久久欧美国产精品| a级毛片免费高清观看在线播放| 国产av一区二区精品久久| 男女边吃奶边做爰视频| 日韩成人伦理影院| 久久99热这里只频精品6学生| 伊人久久精品亚洲午夜| av卡一久久| 亚洲av二区三区四区| 18禁在线无遮挡免费观看视频| 老司机影院毛片| 日韩欧美精品免费久久| 一级毛片黄色毛片免费观看视频| 亚洲精品日本国产第一区| 高清黄色对白视频在线免费看 | 91aial.com中文字幕在线观看| 天堂俺去俺来也www色官网| 日产精品乱码卡一卡2卡三| 99热这里只有是精品在线观看| 日本与韩国留学比较| 51国产日韩欧美| 99精国产麻豆久久婷婷| 男男h啪啪无遮挡| av天堂中文字幕网| 91在线精品国自产拍蜜月| 久久精品熟女亚洲av麻豆精品| 欧美精品国产亚洲| 18+在线观看网站| 一级二级三级毛片免费看| 亚洲性久久影院| 久久久久久久精品精品| 人人妻人人澡人人爽人人夜夜| videossex国产| 最近中文字幕2019免费版| 夜夜骑夜夜射夜夜干| 亚洲欧美一区二区三区黑人 | 观看av在线不卡| 国产精品蜜桃在线观看| 色婷婷av一区二区三区视频| 夜夜爽夜夜爽视频| 噜噜噜噜噜久久久久久91| 国产毛片在线视频| 91精品国产国语对白视频| 老司机影院毛片| 我要看黄色一级片免费的| 永久免费av网站大全| 国产精品99久久99久久久不卡 | 欧美性感艳星| 五月开心婷婷网| 99九九在线精品视频 | 妹子高潮喷水视频| 看非洲黑人一级黄片| 久久久久久久久久久丰满| 十分钟在线观看高清视频www | 99热网站在线观看| 成人综合一区亚洲| 中国国产av一级| 亚洲在久久综合| 美女福利国产在线| 制服丝袜香蕉在线| 99热6这里只有精品| 嫩草影院入口| 亚洲欧美精品自产自拍| 久久精品夜色国产| 91aial.com中文字幕在线观看| 国产欧美日韩一区二区三区在线 | 一区二区三区免费毛片| 国产精品一区二区性色av| 丝袜脚勾引网站| 亚洲精品日韩在线中文字幕| 亚洲精品中文字幕在线视频 | 亚洲精品中文字幕在线视频 | 免费看日本二区| 又大又黄又爽视频免费| 国产成人精品一,二区| 免费久久久久久久精品成人欧美视频 | 嫩草影院新地址| 精品酒店卫生间| 午夜福利影视在线免费观看| 日韩av不卡免费在线播放| 国产69精品久久久久777片| 99热国产这里只有精品6| 新久久久久国产一级毛片| 午夜激情久久久久久久| 国产成人一区二区在线| a 毛片基地| 男女啪啪激烈高潮av片| 热re99久久精品国产66热6| 免费播放大片免费观看视频在线观看| 少妇精品久久久久久久| 精品一区在线观看国产| 久久鲁丝午夜福利片| 精品国产国语对白av| 亚洲av日韩在线播放| 免费在线观看成人毛片| 亚洲欧洲国产日韩| 大又大粗又爽又黄少妇毛片口| 亚洲欧洲精品一区二区精品久久久 | 欧美变态另类bdsm刘玥| 久久青草综合色| 人体艺术视频欧美日本| 最近2019中文字幕mv第一页| 最黄视频免费看| 精品亚洲成国产av| 伦理电影免费视频| 欧美激情极品国产一区二区三区 | 午夜福利视频精品| 人妻夜夜爽99麻豆av| 国产精品一二三区在线看| 精品久久久久久久久亚洲| 精品亚洲成国产av| 搡老乐熟女国产| 五月开心婷婷网| 男人和女人高潮做爰伦理| 汤姆久久久久久久影院中文字幕| 纯流量卡能插随身wifi吗| 日韩大片免费观看网站| 亚洲精品一二三| 天美传媒精品一区二区| 亚洲电影在线观看av| 亚洲人与动物交配视频| 日韩精品有码人妻一区| 丁香六月天网| 色吧在线观看| 国产高清三级在线| 天天躁夜夜躁狠狠久久av| 国产欧美日韩综合在线一区二区 | 成人美女网站在线观看视频| 色吧在线观看| 国产在线一区二区三区精| 国产精品国产三级国产av玫瑰| 午夜影院在线不卡| 黑人猛操日本美女一级片| 国产伦理片在线播放av一区| av天堂久久9| 在线观看一区二区三区激情| 777米奇影视久久| 国产淫语在线视频| 国产精品三级大全| av专区在线播放| 九色成人免费人妻av| 亚洲丝袜综合中文字幕| 久久ye,这里只有精品| 亚洲无线观看免费| av在线播放精品| 波野结衣二区三区在线| 国产成人免费无遮挡视频| 夫妻性生交免费视频一级片| 我要看黄色一级片免费的| 寂寞人妻少妇视频99o| 国产精品久久久久久精品电影小说| 成人毛片a级毛片在线播放| 秋霞在线观看毛片| 国产真实伦视频高清在线观看| 18禁动态无遮挡网站| 人人妻人人澡人人看| 特大巨黑吊av在线直播| 在线观看av片永久免费下载| 99久国产av精品国产电影| 久久国产精品大桥未久av | 18+在线观看网站| 久久ye,这里只有精品| 少妇被粗大的猛进出69影院 | 国产日韩欧美在线精品| 七月丁香在线播放| 99久久人妻综合| 人人妻人人澡人人看| 亚洲精品乱码久久久v下载方式| 婷婷色综合大香蕉| 内地一区二区视频在线| 观看av在线不卡| 午夜激情福利司机影院| 91午夜精品亚洲一区二区三区| 国语对白做爰xxxⅹ性视频网站| 成人亚洲欧美一区二区av| 午夜91福利影院| 欧美区成人在线视频| 亚洲综合精品二区| 看十八女毛片水多多多| 热re99久久国产66热| 国产av码专区亚洲av| 热99国产精品久久久久久7| 寂寞人妻少妇视频99o| 少妇 在线观看| 少妇人妻一区二区三区视频| 99久久人妻综合| 在线观看三级黄色| 国产av一区二区精品久久| 青春草亚洲视频在线观看| 亚洲久久久国产精品| 最近中文字幕高清免费大全6| 岛国毛片在线播放| 18禁在线无遮挡免费观看视频| 寂寞人妻少妇视频99o| a级毛色黄片| 搡女人真爽免费视频火全软件| 精品久久久噜噜| 97在线视频观看| 亚洲精品一二三| 91精品国产国语对白视频| av天堂中文字幕网| 欧美日韩av久久| 亚洲精品乱码久久久久久按摩| 一本一本综合久久| 国产精品.久久久| 国语对白做爰xxxⅹ性视频网站| 色94色欧美一区二区| 9色porny在线观看| 国产精品国产av在线观看| 在线观看三级黄色| 在线观看人妻少妇| 多毛熟女@视频| 色5月婷婷丁香| 久久青草综合色| 大陆偷拍与自拍| 老司机亚洲免费影院| 日韩欧美 国产精品| 亚洲精品第二区| 看非洲黑人一级黄片| 十八禁高潮呻吟视频 | 亚洲av不卡在线观看| 一区二区av电影网| 国产一区有黄有色的免费视频| 国产精品欧美亚洲77777| 国产伦理片在线播放av一区| 一二三四中文在线观看免费高清| 欧美日韩一区二区视频在线观看视频在线| 国产淫片久久久久久久久| 亚洲精品视频女| 特大巨黑吊av在线直播| 日日撸夜夜添| 午夜免费观看性视频| 嫩草影院新地址| 亚洲av二区三区四区| 色婷婷久久久亚洲欧美| 欧美日韩在线观看h| 国产欧美日韩精品一区二区| 亚洲国产最新在线播放| 国产熟女午夜一区二区三区 | 久久久亚洲精品成人影院| 国产亚洲av片在线观看秒播厂| 国产高清有码在线观看视频| a级毛片在线看网站| av在线老鸭窝| 午夜福利视频精品| av播播在线观看一区| 午夜免费观看性视频| 美女cb高潮喷水在线观看| 久久久久精品久久久久真实原创| 精品卡一卡二卡四卡免费| 深夜a级毛片|