• 
    

    
    

      99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

      玉米籽粒主要品質(zhì)性狀遺傳分析與基因定位研究進展

      2024-07-02 11:28:47肖艷梅高沐甜邱冠杰廖志杰賈魏徐瑩羅紅兵黃成
      江蘇農(nóng)業(yè)科學(xué) 2024年9期
      關(guān)鍵詞:品質(zhì)籽粒玉米

      肖艷梅 高沐甜 邱冠杰 廖志杰 賈魏 徐瑩 羅紅兵 黃成

      摘要:玉米籽粒品質(zhì)是玉米籽粒營養(yǎng)價值的重要決定因素,提高玉米籽粒品質(zhì)是當前玉米育種工作的主要目標之一。玉米籽粒品質(zhì)性狀是典型的數(shù)量性狀,受多個基因控制且易受環(huán)境因素的影響,具有復(fù)雜的遺傳機制。近年來,眾多研究者利用數(shù)量性狀位點(quantitative trait locus,QTL)定位和全基因組關(guān)聯(lián)分析(genome-wide association study,GWAS)等方法,全面解析了玉米籽粒品質(zhì)性狀的遺傳基礎(chǔ),為玉米籽粒品質(zhì)性狀的遺傳改良奠定了良好的基礎(chǔ)。本文主要綜述國內(nèi)外玉米籽粒主要品質(zhì)性狀(蛋白質(zhì)含量、淀粉含量、油分含量)相關(guān)QTL及功能基因的研究進展,根據(jù)優(yōu)質(zhì)玉米的品質(zhì)需求,探討各品質(zhì)性狀之間的相關(guān)性以及提高玉米籽粒品質(zhì)的研究前景,以期為研究并改良玉米籽粒主要品質(zhì)性狀提供參考。

      關(guān)鍵詞:玉米;籽粒;品質(zhì);QTL;基因

      中圖分類號:S513.032文獻標志碼:A

      文章編號:1002-1302(2024)09-0012-06

      玉米是食物、飼料、生物能源和工業(yè)原材料的重要來源[1],其籽粒中含70%的淀粉、10%的蛋白質(zhì)、4%的油分,這些組分不僅為種子萌發(fā)和早期幼苗生長提供關(guān)鍵營養(yǎng)物質(zhì),而且還為動物飼料和乙醇生產(chǎn)提供主要的原料來源[2-3]。近年來,由于畜牧業(yè)、加工業(yè)的快速發(fā)展,人們越來越關(guān)注玉米籽粒的品質(zhì)。目前,很多玉米品種籽粒的營養(yǎng)品質(zhì)較差,不能滿足人們對營養(yǎng)和健康的需求。開展玉米籽粒品質(zhì)性狀的遺傳改良研究,對提高玉米營養(yǎng)品質(zhì)和優(yōu)質(zhì)玉米品種的培育具有重要意義。

      玉米籽粒品質(zhì)性狀主要指蛋白質(zhì)含量、淀粉含量、油分含量等,這些營養(yǎng)成分含量的高低是決定玉米品質(zhì)優(yōu)劣的重要指標[4]。近年來,隨著現(xiàn)代分子生物學(xué)技術(shù)的發(fā)展,國內(nèi)外研究者對玉米籽粒品質(zhì)相關(guān)性狀進行數(shù)量性狀位點定位(quantitative trait locus,QTL)和全基因組關(guān)聯(lián)分析(genome-wide association study,GWAS),并在不同染色體上檢測到大量與籽粒淀粉、蛋白質(zhì)、油分含量等品質(zhì)性狀密切相關(guān)的QTL及候選基因。

      本文系統(tǒng)綜述與玉米籽粒主要品質(zhì)性狀(蛋白質(zhì)、淀粉、油分)相關(guān)的QTL及功能基因,以期為玉米籽粒主要品質(zhì)性狀的遺傳改良提供理論基礎(chǔ)。

      1 玉米籽粒主要品質(zhì)性狀QTL研究進展

      1.1 玉米籽粒蛋白質(zhì)含量QTL

      玉米籽粒蛋白質(zhì)含量(protein content,PC)是由多基因控制的數(shù)量性狀,在不同品種間存在顯著差異。本文總結(jié)國內(nèi)外研究者鑒定的與PC相關(guān)的共107個QTL,發(fā)現(xiàn)群體變異和環(huán)境變異極大影響蛋白質(zhì)含量QTL的鑒定[5-12]。Liu等利用Dan232和N04雜交產(chǎn)生的F2 ∶3、BC2F2群體并分別結(jié)合183、170個SSR分子標記對玉米籽粒蛋白質(zhì)含量進行QTL定位,結(jié)果在2個群體中共檢測到7個與蛋白質(zhì)含量相關(guān)的QTL,分布在1、4、6、7、8號染色體上,單個QTL表型變異的解釋率為5%~14.3%[6]。Zhang等利用玉米自交系178和P53雜交產(chǎn)生的498個重組自交系,并結(jié)合151個SSR分子標記,在6個環(huán)境中共檢測到25個與玉米籽粒蛋白質(zhì)相關(guān)的QTL,分布在1、2、3、4、5、6、9、10號染色體,單個QTL表型變異的解釋率為2.16%~11.35%[7]。

      1.2 玉米籽粒淀粉含量QTL

      淀粉是玉米籽粒的主要成分,占籽粒干重的65%~75%,并且與籽粒產(chǎn)量呈正相關(guān)關(guān)系。淀粉作為淀粉體基質(zhì)中的不溶性顆粒,沉積在胚乳細胞中,由直鏈淀粉和支鏈淀粉組成,其中直鏈淀粉含量一般為15%~25%,支鏈淀粉含量一般為75%~85%[13-14]。近年來,國內(nèi)外研究者利用不同的定位群體和統(tǒng)計方法對玉米籽粒淀粉含量進行了大量QTL定位研究,本文共總結(jié)135個與玉米籽粒淀粉含量相關(guān)的QTL。

      Liu等利用Dan232和N04雜交產(chǎn)生的F2 ∶3、BC2F2群體并分別結(jié)合183、170個SSR分子標記對玉米籽粒淀粉含量進行QTL定位,結(jié)果在2個群體中共檢測到6個與淀粉含量相關(guān)的QTL,分布在1、3、5、7號染色體,單個QTL表型變異的解釋率為5.2%~10.6%[6]。Zhang等利用玉米自交系178和P53雜交產(chǎn)生的498個重組自交系,并結(jié)合151個SSR分子標記在6個環(huán)境中共定位到31個與玉米籽粒淀粉含量相關(guān)的QTL,單個QTL表型變異率為2.85%~10.93%[7]。趙丹利用自交系LH8012和13218008雜交得到的F2 ∶3群體為材料進行田間試驗檢測籽粒淀粉相關(guān)QTL,結(jié)果共檢測到13個與之相關(guān)的QTL,分布在1、4、5、8、9號染色體上,其中位于區(qū)間umc1348~umc1990的QTL具有最高的表型貢獻率(15.3%)[15]。

      1.3 玉米籽粒油分含量QTL

      玉米油分含量是一種混合物,主要由5種脂肪酸組成,包括棕櫚酸(16 ∶0)、硬脂酸(18 ∶0)、油酸(18 ∶1)、亞油酸(18 ∶2)、亞麻酸(18 ∶30)[16]。隨著測序技術(shù)的發(fā)展,高密度的分子標記被應(yīng)用于QTL定位,大大提高了QTL定位的精確性[17-18]。同時,利用分離群體在玉米中鑒定到大量調(diào)控籽粒油分含量的QTL[19-20]。趙志鑫等利用優(yōu)良自交系許178和K12雜交衍生的150個重組自交系在7個環(huán)境下對玉米籽粒油分含量進行QTL定位,結(jié)果共檢測到5個與籽粒油分含量相關(guān)的QTL,分布在1、2、5號染色體。單個QTL表型貢獻率為5.0%~12.0%,其中qOil5-1在2個環(huán)境中被檢測到,LOD值為2.55~3.52,可解釋8%~12%的表型變異[21]。Guo等利用B73和By804雜交衍生的245個重組自交系,總共定位到24個與籽粒油分含量相關(guān)的QTL,分布在1、2、3、4、5、6、8、9、10號染色體,單個QTL貢獻率范圍為3.17%~19.91%[8]。另外,Yang等同樣利用B73和By804雜交產(chǎn)生的245個重組自交系,并結(jié)合228個SSR分子標記對玉米籽粒油分含量進行QTL定位,共鑒定到12個與玉米籽粒油分含量相關(guān)的QTL,分布在1、2、4、5、6、7、8、9、10號染色體,單個QTL表型貢獻率為1.3%~14.3%[22]。

      玉米籽粒主要品質(zhì)性狀QTL定位研究結(jié)果見表1。

      2 玉米籽粒主要品質(zhì)性狀的功能基因

      2.1 玉米籽粒蛋白質(zhì)含量相關(guān)基因

      研究者篩選到與玉米籽粒蛋白質(zhì)含量相關(guān)的Shrunken2突變體、Opaque2突變體。分析發(fā)現(xiàn),Opaque2突變體雖然降低籽粒醇溶蛋白含量,卻可以增加非醇溶蛋白含量,從而增加總蛋白質(zhì)含量[6,27-32]。研究發(fā)現(xiàn),與野生型籽粒相比,Opaque2突變體使籽??偟鞍踪|(zhì)含量水平基本不變,而使非玉米醇溶蛋白增加70%[31]。Huang等利用野生大芻草與B73作為親本經(jīng)過多代回交和自交衍生的BC6F3群體為試驗材料,對玉米籽粒蛋白質(zhì)含量進行QTL定位,在9號染色體上鑒定到1個主效QTL(Thp9),發(fā)現(xiàn)Thp9基因編碼天冬酰胺合成酶,其在大芻草中高度表達,而在B73中低表達。進一步將Thp9的大芻草等位基因滲入現(xiàn)代玉米自交系和雜交種中,可以顯著增強玉米籽粒中游離氨基酸特別是天冬酰胺的積累,進而增加玉米籽粒蛋白質(zhì)含量,同時不影響玉米產(chǎn)量[32]。

      2.2 玉米籽粒淀粉含量相關(guān)基因

      Hu等利用一個多親本群體對玉米籽粒淀粉含量進行定位分析,鑒定到1個候選基因ZmTPS9,其編碼1個海藻糖-6-磷酸合成酶。敲除ZmTPS9基因增加玉米籽粒淀粉含量,進而增加玉米籽粒重量,表明ZmTPS9基因同時調(diào)控玉米籽粒淀粉合成和籽粒發(fā)育[33]。Wang等利用一套由CI7、K22構(gòu)建的包含210份材料的重組自交系群體,對玉米籽粒淀粉含量進行QTL定位,共篩選到7個控制玉米籽粒淀粉含量的候選基因,其中ZmGAL、ZmTPS、ZmKCS編碼非淀粉代謝途徑中的關(guān)鍵酶,可能通過調(diào)控玉米籽粒油分含量間接影響籽粒淀粉含量,或通過影響淀粉代謝中的重要中間產(chǎn)物葡萄糖含量直接影響籽粒淀粉含量;ZmWRKY78、ZmMYB132分別編碼WRKY、MYB轉(zhuǎn)錄因子,可能調(diào)控淀粉代謝過程中關(guān)鍵基因的表達;ZmSnRK1編碼1個絲氨酸/蘇氨酸蛋白激酶,可能與ZmSnRK1l相互作用共同調(diào)控淀粉生物合成中關(guān)鍵酶的活性,從而影響玉米籽粒淀粉含量[24]。

      2.3 玉米籽粒油分含量相關(guān)基因

      Zheng等利用高油分含量自交系A(chǔ)SKC28IB1和正常油分含量自交系PH09B為親本產(chǎn)生BC2群體,并使用SSR、SNP分子標記對玉米籽粒油分含量進行QTL定位及候選基因篩選,結(jié)果在6號染色體鑒定到1個高油QTL:qOH6。進一步構(gòu)建近等基因系BC3S2群體進行精細定位,將基因DGAT1-2定為qOH6候選基因,該基因編碼?;o酶A:二酰甘油酰基轉(zhuǎn)移酶,過表達基因DGAT1-2可增加玉米籽粒41%的油分含量[34]。Shen等通過過表達基因ZmLEC1、ZmWRI1研究玉米籽粒油分含量調(diào)控機制,發(fā)現(xiàn)過表達基因ZmLEC1可增加48.7%玉米籽粒油分含量;過表達基因ZmWRI1可提高籽粒油分含量,且適度提高玉米籽粒油分含量不會導(dǎo)致減產(chǎn)[35]。Zheng等利用248個自交系并結(jié)合83 057個SNP分子標記對玉米籽粒油分含量進行QTL定位,共篩選到3個控制玉米籽粒油分含量的候選基因。其中基因GRMZM2G433942編碼棕櫚酸轉(zhuǎn)移酶,絲氨酸棕櫚?;D(zhuǎn)移酶(SPT)是鞘磷脂生物合成的關(guān)鍵酶,而鞘磷脂是植物細胞的重要組成部分,因此它對玉米的含油量有一定的影響;基因GRMZM2G134308編碼β-14木糖基轉(zhuǎn)移酶,該酶與糖脂、多糖和糖蛋白等代謝密切相關(guān),可能通過影響β-14木糖基轉(zhuǎn)移酶活性及基因表達水平,進而影響玉米籽粒油分含量;基因GRMZM2G033544編碼丙烷-脂肪酰-磷脂合成酶,該基因可通過影響合成酶的活性和基因表達水平,從而影響玉米籽粒油分含量[36]。

      玉米籽粒主要品質(zhì)性狀的基因研究結(jié)果見表2。

      3 提高玉米籽粒主要品質(zhì)性狀及其研究前景

      蛋白質(zhì)、淀粉、油分是玉米籽粒中的主要化學(xué)成分。在玉米籽粒中,70%的蛋白質(zhì)存在于胚芽中,98%的淀粉存在于胚乳中,85%的油分存在于胚中。前人的研究表明,玉米籽粒淀粉含量與籽粒蛋白質(zhì)含量、油分含量呈高度負相關(guān)關(guān)系,而籽粒蛋白質(zhì)含量與油分含量呈正相關(guān)[5,8,26,36]。玉米籽粒蛋白質(zhì)含量與油分含量之間的正相關(guān)關(guān)系表明,可以同時增加籽粒蛋白質(zhì)含量和油分含量[8],而對于淀粉含量與蛋白質(zhì)含量、油分含量之間的負相關(guān)關(guān)系,可以利用生物技術(shù)等方法進行遺傳改良。

      國內(nèi)外研究表明,玉米產(chǎn)量和品質(zhì)存在負相關(guān)關(guān)系[56]。在育種過程中,玉米育種研究人員較難平衡產(chǎn)量和品質(zhì)。因此,如何在持續(xù)提高玉米產(chǎn)量的同時開展玉米優(yōu)質(zhì)育種,將是目前玉米育種研究人員所共同面臨的新挑戰(zhàn)。

      參考文獻:

      [1]Godfray H C J,Beddington J R,Crute I R,et al. Food security:the challenge of feeding 9 billion people[J]. Science,2010,327 (5967):812-818.

      [2]Li G S,Wang D F,Yang R L,et al. Temporal patterns of gene expression in developing maize endosperm identified through transcriptome sequencing[J]. Proceedings of the National Academy of Sciences of the United states of America,2014,111(21):7582-7587.

      [3]Zhang Z Y,Zheng X X,Yang J,et al. Maize endosperm-specific transcription factors O2 and PBF network the regulation of protein and starch synthesis[J]. Proceedings of the National Academy of Sciences of the United states of America,2016,113(39):10842-10847.

      [4]韋小了,何騰兵. 玉米品質(zhì)的形成及其調(diào)控[J]. 植物學(xué)研究,2022,11(4):541-551.

      [5]Yang G,Dong Y,Li Y,et al. QTL verification of grain protein content and its correlation with oil content by using connected RIL populations of high-oil maize[J]. Genetics and Molecular Research,2014,13:881-894.

      [6]Liu Y Y,Dong Y B,Niu S Z,et al. QTL identification of kernel composition traits with popcorn using both F2 ∶3 and BC2F2 populations developed from the same cross[J]. Journal of Cereal Science,2008,48(3):625-631.

      [7]Zhang H D,Jin T T,Huang Y Q,et al. Identification of quantitative trait loci underlying the protein,oil and starch contents of maize in multiple environments[J]. Euphytica,2015,205:169-183.

      [8]Guo Y Q,Yang X H,Chander S,et al. Identification of unconditional and conditional QTL for oil,protein and starch content in maize[J]. The Crop Journal,2013,1(1):34-42.

      [9]Yang Z,Li X,Zhang N,et al. Detection of quantitative trait loci for kernel oil and protein concentration in a B73 and Zheng58 maize cross[J]. Genetics and Molecular Research,2016,15(3):gmr.15038951.

      [10]Karn A,Gillman J D,F(xiàn)lint-Garcia S A. Genetic analysis of teosinte alleles for kernel composition traits in maize[J]. Genes Genomes Genetics,2017,7(4):1157-1164.

      [11]Zhang J,Lu X Q,Song X F,et al. Mapping quantitative trait loci for oil,starch,and protein concentrations in grain with high-oil maize by SSR markers[J]. Euphytica,2008,162:335-344.

      [12]Lu X,Zhou Z Q,Wang Y H,et al. Genetic basis of maize kernel protein content revealed by high-density bin mapping using recombinant inbred lines[J]. Frontiers in Plant Science,2022,13:1045854.

      [13]Hannah L C,Boehlein S K. Starch biosynthesis in maize endosperm[M]//Maize kernel development. Boston:CABI,2017:149-159.

      [14]Seung D,Smith A M. Starch granule initiation and morphogenesis-progress in Arabidopsis and cereals[J]. Journal of Experimental Botany,2019,70(3):771-784.

      [15]趙 丹. 玉米籽粒營養(yǎng)品質(zhì)性狀的QTL分析[D]. 雅安:四川農(nóng)業(yè)大學(xué),2016:35-37.

      [16]Lambert R J,Hallauer A R. High-oil corn hybrids[M]//Specialty corns. Boca Raton:CRC Press:123-145.

      [17]Chia J M,Song C,Bradbury P J,et al. Maize HapMap2 identifies extant variation from a genome in flux[J]. Nature Genetics,2012,44:803-807.

      [18]Bukowski R,Guo X S,Lu Y L,et al. Construction of the third-generation Zea mays haplotype map[J]. Giga Science,2018,7(4):1-12.

      [19]Yang X H,Guo Y Q,Yan J B,et al. Major and minor QTL and epistasis contribute to fatty acid compositions and oil concentration in high-oil maize[J]. Theoretical and Applied Genetics,2010,120(3):665-678.

      [20]Fang H,F(xiàn)u X Y,Wang Y B,et al. Genetic basis of kernel nutritional traits during maize domestication and improvement[J]. The Plant Journal,2020,101(2):278-292.

      [21]趙志鑫,崔婷婷,何坤輝,等.? 多環(huán)境下玉米籽粒品質(zhì)性狀的QTL定位[J]. 農(nóng)業(yè)生物技術(shù)學(xué)報,2018,26(12):2027-2035.

      [22]Yang X H,Ma H L,Zhang P,et al. Characterization of QTL for oil content in maize kernel[J]. Theoretical and Applied Genetics,2012,125(6):1169-1179.

      [23]Yang G H,Dong Y B,Li Y L,et al. Verification of QTL for grain starch content and its genetic correlation with oil content using two connected RIL populations in high-oil maize[J]. PLoS One,2013,8(1):e53770.

      [24]Wang T T,Wang M,Hu S T,et al. Genetic basis of maize kernel starch content revealed by high-density single nucleotide polymorphism markers in a recombinant inbred line population[J]. BMC Plant Biology,2015,15:1-2.

      [25]Lin F,Zhou L,He B,et al. QTL mapping for maize starch content and candidate gene prediction combined with co-expression network analysis[J]. Theoretical and Applied Genetics,2019,32:1931-1941.

      [26]Wang Y Z,Li J Z,Li Y L,et al. QTL detection for grain oil and starch content and their associations in two connected F2 ∶3 populations in high-oil maize[J]. Euphytica,2010,174:239-252.

      [27]Han X H,Zhou B,Xu W. Transcriptome analysis revealed sh2 gene mutation leads reduced zein protein accumulation in maize endosperm[J]. Genetic Resources and Crop Evolution,2023,70(6):1663-1676.

      [28]Sethi M,Singh A,Kaur H,et al. Expression profile of protein fractions in the developing kernel of normal,Opaque2 and quality protein maize[J]. Scientific Reports,2021,11:2469.

      [29]周昱婕,韓潔楠,王美娟,等.? Opaque2基因?qū)ε从衩鬃恿F焚|(zhì)的影響分析[J]. 玉米科學(xué),2021,29(2):29-34.

      [30]Li C S,Xiang X L,Huang? Y C,et al. Long-read sequencing reveals genomic structural variations that underlie creation of quality protein maize[J]. Nature Communications,2020,11:17.

      [31]Segal G,Song R,Messing J. A new opaque variant of maize by a single dominant RNA-interference-inducing transgene[J]. Genetics,2003,165(1):387-397.

      [32]Huang Y C,Wang H H,Zhu Y D,et al. THP9 enhances seed protein content and nitrogen-use efficiency in maize[J]. Nature,2022,612:292-300.

      [33]Hu S T,Wang M,Zhang X,et al. Genetic basis of kernel starch content decoded in a maize multi-parent population[J]. Plant Biotechnology Journal,2021,19(11):2192-2205.

      [34]Zheng P Z,Allen W B,Roesler K,et al. A phenylalanine in DGAT is a key determinant of oil content and composition in maize[J]. Nature Genetics,2008,40:367-372.

      [35]Shen B,Allen W B,Zheng P Z,et al. Expression of ZmLEC1 and ZmWRI1 increases seed oil production in maize[J]. Plant Physiology,2010,153(3):980-987.

      [36]Zheng Y Y,Yuan F,Huang Y Q,et al. Genome-wide association studies of grain quality traits in maize[J]. Scientific Reports,2021,11:9797.

      [37]Ning L H,Wang Y C,Shi X,et al. Nitrogen-dependent binding of the transcription factor PBF1 contributes to the balance of protein and carbohydrate storage in maize endosperm[J]. The Plant Cell,2023,35(1):409-434.

      [38]Wang J,Wang H W,Li K,et al. Characterization and transcriptome analysis of maize small-kernel mutant smk7a in different development stages[J]. Plants,2023,12(2):354.

      [39][JP3]郭晉杰,劉文斯,鄭云霄,等.? 基于4個測交群體玉米籽粒品質(zhì)相關(guān)性狀關(guān)聯(lián)分析[J]. 農(nóng)業(yè)生物技術(shù)學(xué)報,2019,27(5):809-824.

      [40]Myers A M,James M G,Lin Q H,et al. Maize opaque5 encodes monogalactosyldiacylglycerol synthase and specifically affects galactolipids necessary for amyloplast and chloroplast function[J]. The Plant Cell,2011,23(6):2331-2347.

      [41]He Y H,Yang Q,Yang J,et al. Shrunken4 is a mutant allele of ZmYSL2 that affects aleurone development and starch synthesis in maize[J]. Genetics,2021,218(2):iyab070.

      [42]Finegan C,Boehlein S K,Leach K A,et al. Genetic perturbation of the starch biosynthesis in maize endosperm reveals sugar-responsive gene networks[J]. Frontiers in Plant Science,2021,12:800326.

      [43]Zang J,Huo Y Q,Liu J,et al. Maize YSL2 is required for iron distribution and development in kernels[J]. Journal of Experimental Botany,2020,71(19):5896-5910.

      [44]Zhang X,von Mogel K J H,Lor V S,et al. Maize sugary enhancer1 (se1) is a gene affecting endosperm starch metabolism[J]. Proceedings of the National Academy of Sciences of the United states of America,2019,116(41):20776-20785.

      [45]Han N,Li W C,Xie C X,et al. The effects of SBEIIb gene mutation on physicochemical properties of starch in maize[J]. Theoretical and Experimental Plant Physiology,2022,34(3):381-393.

      [46]Qi X,Li S X,Zhu Y X,et al. ZmDof3,a maize endosperm-specific Dof protein gene,regulates starch accumulation and aleurone development in maize endosperm[J]. Plant Molecular Biology,2017,93(1/2):7-20.

      [47]Li P P,Ma H Z,Xiao N,et al. Overexpression of the ZmSUS1 gene alters the content and composition of endosperm starch in maize (Zea mays L.)[J]. Planta,2023,257(5):97.

      [48]Zhang W L,Yang W P,Wang M C,et al. Increasing lysine content of waxy maize through introgression of opaque-2 and opaque-16 genes using molecular assisted and biochemical development[J]. PLoS One,2013,8(2):e56227.

      [49]Lu D L,Lu W P. Effects of protein removal on the physicochemical properties of waxy maize flours[J]. Starch-Strke,2012,64(11):874-881.

      [50]Qi X T,Dong L,Liu C L,et al. Systematic identification of endogenous RNA polymerase Ⅲ promoters for efficient RNA guide-

      based genome editing technologies in maize[J]. The Crop Journal,2018,6(3):314-320.

      [51]Zhao Y J,Li N,Li B,et al. Reduced expression of starch branching enzyme IIa and IIb in maize endosperm by RNAi constructs greatly increases the amylose content in kernel with nearly normal morphology[J]. Planta,2015,241(2):449-461.

      [52]Guo X M,Ge Z P,Wang M,et al. Genome-wide association study of quality traits and starch pasting properties of maize kernels[J]. BMC Genomics,2023,24(1):59.

      [53]Liu N,Xue Y D,Guo Z Y,et al. Genome-wide association study identifies candidate genes for starch content regulation in maize kernels[J]. Frontiers in Plant Science,2016,7:1046.

      [54]Hao X M,Li X W,Yang X H,et al. Transferring a major QTL for oil content using marker-assisted backcrossing into an elite hybrid to increase the oil content in maize[J]. Molecular Breeding,2014,34(2):739-748.

      [55]Chai Y C,Hao X M,Yang X H,et al. Validation of DGAT1-2 polymorphisms associated with oil content and development of functional markers for molecular breeding of high-oil maize[J]. Molecular Breeding,2012,29(4):939-949.

      [56]Yagˇd K,Sozen E. Heritability,variance components and correlations of yield and quality traits in durum wheat (Triticum durum Desf.)[J]. Pakistan Journal of Botany,2009,41(2):753-759.

      收稿日期:2024-03-29

      基金項目:湖南省科技創(chuàng)新計劃(編號:2023RC3153);長沙市杰出創(chuàng)新青年培養(yǎng)計劃(編號:kq2209016);湖南省普通高校青年骨干教師培養(yǎng)項目(編號:202210537001gg)。

      作者簡介:肖艷梅(1999—),女,湖南邵陽人,碩士研究生,主要從事玉米種質(zhì)資源創(chuàng)新與利用研究。E-mail:xym66@stu.hunau.edu.cn。

      通信作者:黃 成,博士,副教授,主要從事大豆和玉米分子遺傳育種研究。E-mail:hc66@hunau.edu.cn。

      猜你喜歡
      品質(zhì)籽粒玉米
      收玉米啦!
      籽粒莧的飼用價值和高產(chǎn)栽培技術(shù)
      籽粒莧的特性和種植技術(shù)
      我的玉米送給你
      玉米機械脫粒籽粒含水量與破碎率的相關(guān)研究
      玉米
      大灰狼(2018年6期)2018-07-23 16:52:44
      商麥1619 籽粒灌漿的特性
      氯化鈣處理對鮮切蘿卜生理與品質(zhì)的影響
      “鄞紅”、“巨峰”、“紅富士”葡萄及其雜交后代品質(zhì)分析
      淺談民生新聞欄目特色的挖掘
      今傳媒(2016年9期)2016-10-15 22:48:38
      库尔勒市| 黔西| 余干县| 香格里拉县| 天全县| 茌平县| 台南市| 黔南| 哈巴河县| 岐山县| 金门县| 绥化市| 沅陵县| 文化| 台南市| 伊川县| 永靖县| 大新县| 根河市| 措勤县| 观塘区| 隆回县| 新营市| 延津县| 深水埗区| 辉南县| 来凤县| 富阳市| 信丰县| 成安县| 永和县| 苍溪县| 西华县| 乡宁县| 重庆市| 福鼎市| 延寿县| 理塘县| 涡阳县| 从化市| 乡城县|