摘要:【目的】利用立地條件相對均一的圃地建立短期測定林,通過分析67個參試杉木無性系苗期生長性狀的遺傳變異情況及遺傳-環(huán)境互作效應(yīng)對各性狀選擇的影響程度,探討無性系苗期超早期選擇策略,進一步對大量候選無性系開展快速初篩和超早期選擇,以降低長期測定成本,提高無性系選育效率。【方法】利用杉木第3代種子園子代實生群體選擇優(yōu)良單株,扦插繁育成無性系,于圃地做性狀短期測定。參試無性系67個,重復(fù)10次,12株小區(qū),完全隨機區(qū)組設(shè)計。造林1 a后,測定苗高、地徑、側(cè)枝數(shù)和最長側(cè)枝長度共4個生長性狀指標,通過構(gòu)建表型方差分析模型,估算遺傳方差分量,以及遺傳與環(huán)境互作效應(yīng)方差分量的值,并利用ASReml軟件分別估算遺傳力和重復(fù)力。【結(jié)果】在圃地栽植1 a后,參試無性系的苗高、地徑、側(cè)枝數(shù)和最長側(cè)枝長度均值分別為0.640 m、1.010 cm、10.30條和0.28 m,4個觀察性狀的表型變異系數(shù)分別為12.86%、14.88%、21.34%和14.89%;參試67個無性系在苗高、地徑、側(cè)枝數(shù)和最長側(cè)枝長度性狀上存在顯著遺傳差異,測定性狀的重復(fù)力均達0.74左右,遺傳力估值均穩(wěn)定在0.48左右;所測4個性狀的遺傳與環(huán)境互作方差分量占總遺傳方差的35%左右;地徑與苗高、側(cè)枝數(shù)和最長側(cè)枝長度存在顯著相關(guān),遺傳相關(guān)系數(shù)均達0.9以上;以地徑性狀為指標進行選擇,苗高、地徑、側(cè)枝數(shù)和最長側(cè)枝長度的遺傳增益估值隨著入選率的降低逐漸增高,但苗高、側(cè)枝數(shù)和最長側(cè)枝長度重復(fù)力、遺傳力以及遺傳-環(huán)境互作方差比例均保持在較為穩(wěn)定的范圍內(nèi),呈現(xiàn)出一定程度的波狀變化;而地徑則隨著入選率的降低,重復(fù)力和遺傳力估值下降,遺傳-環(huán)境互作方差比例增大。當(dāng)入選率降低到40%以下時,杉木無性系的苗高、側(cè)枝數(shù)和最長側(cè)枝長度3個性狀的遺傳-環(huán)境互作方差比例分別達到41.18%~48.61%、37.82%~40.13%和39.61%~54.37%,但地徑的遺傳-環(huán)境互作方差比例由45.91%快速上升至94.33%,當(dāng)入選無性系數(shù)量由19個降至16個時,地徑遺傳力和遺傳-環(huán)境互作方差比例發(fā)生顯著變化,地徑遺傳力由0.226 3降至0.091 4,遺傳-環(huán)境互作方差比例由63.09%迅速增加到83.26%;取30%左右入選率,篩選出19個無性系用于山地造林長期測定,初選材料的苗高、地徑、側(cè)枝數(shù)和最長側(cè)枝長度的均值分別為0.73 m、1.20 cm、12.4條和0.33 m,遺傳增益均值分別為10.81%、15.45%、16.66%和13.88%,分別比群體均值高出14.06%、18.81%、20.39%和17.86%?!窘Y(jié)論】遺傳-環(huán)境互作效應(yīng)對杉木無性系表型性狀的影響不可忽視,其互作方差在總遺傳方差中具有較大的占比;杉木無性系苗高生長和側(cè)枝生長受遺傳與環(huán)境互作作用影響相對較小,地徑可能對圃地微環(huán)境變化等因素更為敏感,因而將苗高和地徑性狀綜合起來進行杉木無性系超早期選擇能夠取得較為理想的結(jié)果;降低入選率并不能剔除遺傳-環(huán)境互作效應(yīng)對地徑和最長側(cè)枝長度的影響,高強度的選擇反而會增加遺傳-環(huán)境互作的影響,但適當(dāng)?shù)娜脒x強度既能保留無性系間目標性狀遺傳變異的豐富度,又能固定大部分的遺傳-環(huán)境互作效應(yīng);短期圃地測定,能對大量待測杉木無性系進行快速初篩,縮小長期測定林面積,降低測定成本;對參試無性系性狀遺傳與環(huán)境互作效應(yīng)特征進行早期解析,可為充分利用遺傳與環(huán)境的有益互作效應(yīng)提供重要依據(jù)。
關(guān)鍵詞:杉木;無性系;短期測定;遺傳和環(huán)境互作分量;重復(fù)力;早期選擇
中圖分類號:S791.27 文獻標志碼:A開放科學(xué)(資源服務(wù))標識碼(OSID):
文章編號:1000-2006(2024)03-0063-08
Genetic variation analysis and selection of clones based on short-term nursery testing on Cunninghamia lanceolata
XIAO Hui1, LIN Zezhong1, SU Shunde1, JIANG Xiaoli2, CHEN Haiqiang3,WU Wei2, LUO Shuijin2, PAN Longying4, ZHENG Renhua1*
(1. Fujian Academy of Forestry, Key Laboratory of National Forestry and Grassland Administration on Timber Forest Breeding and Cultivation for Mountainous Areas in Southern China, Fujian Key Laboratory of Forest Cultivation and Forest Products Processing, Fuzhou 350012, China; 2. National Forest Farm of Jiangle, Jiangle 353300,China;3. Fujian Jinshuo Biotechnology Co., Ltd., Jiangle 353300, China; 4. Fujian Jinsen Forestry Co., Ltd., Jiangle 353300, China)
Abstract:【Objective】 The efficiency of selection and long-term testing costs for clonal propagation candidates of Cunninghamia lanceolata were improved by implementing a short-term nursery test with 67 clonal propagation candidates. By analyzing the genetic variation of growth traits and the impact of genetic environmental interactions on the selection of various traits of clones during the seedling stage, this study explores strategies for ultra early selection of clone seedlings. 【Method】 A selection procedure was conducted from a population of two million seedlings, with 275 well performing individuals selected for further prorogation. The seeds were collected from a local third generation C. lanceolata seed orchard.The selected plants were propagated into clones by hedged cutting. Of the propagated clones, 67 individuals with a fine rooting ability were selected for further testing under a completely random block design with 12 plants per plot and 10 replications. Four traits (seedling height, diameter above ground, number of branches and the length of the longest branch) were measured after one year’s growth. Furthermore, a phenotypic analysis of variance model was constructed to estimate the values of genetic variance component and genetic environmental interaction effect variance component, and ASReml software was used to estimate in heritance and repeatability, respectively.
【Result】 After planting in the nursery for one year, the average seedling height, ground diamete, number of lateral branches and longest lateral branch length of the tested clones were 0.640 m, 1.010 cm, 10.30 and 0.28 m, respectively. The phenotypic variation coefficients of the four observed traits were 12.86%, 14.88%, 21.34% and 14.89%, respectively. There were notable genetic differences found in the traits of seedling height, diameter above ground, number of lateral branches, and length of the longest lateral branches among the tested clones, and the repeatability of the measured traits exceeded 0.74, and the estimated heritability remained stable at around 0.48. The variance component of the genetic and environmental interaction accounted for about 35% of the total genetic variance. There is a significant correlation between ground diameter and seedling height, number of lateral branches, and length of the longest lateral branch, with genetic correlation coefficients above 0.9. The genetic gain estimates of seedling height, number of lateral branches, and longest lateral branch length gradually increase with the decrease of selection rate based on the ground diameter trait. However, the variance ratios of repeatability, heritability, and genetic environmental interaction of seedling height, number of lateral branches, and longest lateral branch length remain within a relatively stable range, exhibiting varying degrees of wavy fluctuations. As the selection rate decreases, the value of repeatability and heritability of ground diameter decrease, while the variance ratio of genetic environmental interaction increases. When the selection rate decreased to below 40%, the genetic environmental interaction variance ratios of the three traits of seedling height, number of lateral branches, and longest lateral branch length of C. lanceolata clones reached 41.18%-48.61%, 37.82%-40.13% and 39.61%-54.37%, respectively. However, the genetic environmental interaction variance ratio of diameter rapidly increased from 45.91% to 94.33%.When the number of selected clones decreased from 19 to 16, the genetic environmental interaction variance ratios of ground diameter heritability and genetic environmental interaction variance ratios changed significantly, with diameter heritability decreasing from 0.226 3 to 0.091 4 and genetic environmental interaction variance ratios rapidly increasing from 63.09% to 83.26%. Based on a selection rate of approximately 30%, 19 clones were selected for further evaluation in multiple sites in a long-term afforestation project in a mountain area. The average seedling height, ground diameter, number of lateral branches, and longest lateral branch length of the selected clones were 0.73 m, 1.20 cm, 12.4 branches and 0.33 m, respectively. The estimated average genetic gains of the four observed traits were 10.81%, 15.45%, 16.66% and 13.88%, which were 14.06%, 18.81%, 20.39% and 17.86% higher than the population average, respectively. 【Conclusion】 The effect of genetic environmental interaction on the phenotypic traits of C. lanceolata clones cannot be ignored, and its interaction variance accounts for a large proportion of the total genetic variance. The growth of height and lateral branches of C. lanceolata clones are relatively less affected by the genetic environmental interaction effect, while the growth of ground diameter are more sensitive to changes in the microenvironment of the nursery or from unknown factors. Therefore, combining the growth performance of tree height and ground diameter of C. lanceolata clones for short-term testing can achieve ideal of selection. Reducing the selection rate does not eliminate the influence of genetic environmental interaction on ground diameter and longest lateral branch length. High intensity selection can actually increase the influence of genetic environmental interaction. Appropriate selection intensity can not only retain the richness of genetic variation in target traits between clones, but also fix most of the genetic environmental interaction effects. Short-term nursery testing can serve as a rapid preliminary screening technique, especially when there is a large amount of clonal candidates to be tested. Several benefits were apparent, including forest-land use and the long-term cost efficiency of testing. The clonal traits, genetic components, and interaction between genetics and environment could be evaluated in the super-early stage of clonal evaluation.
Keywords:Cunninghamia lanceolata; clones; short-term testing; genetic and environmental interaction components; repeatability; early selection
杉木(Cunninghamia lanceolata),是我國南方主要的針葉造林用材樹種。近半世紀以來,應(yīng)用無性系造林在世界人工林培育中發(fā)揮了重要作用[1-2]。20世紀80年代開始,我國對杉木無性系選育和造林應(yīng)用潛力開展了較多的研究[2-3],特別是在無性系性狀遺傳差異和無性系的規(guī)模繁育方面開展了許多有益的探索,為杉木無性系選育和推廣應(yīng)用奠定了良好基礎(chǔ)[4-14]。杉木的遺傳改良是一項系統(tǒng)工程[15-18],而無性系選擇和利用是杉木長期遺傳改良程序中,固定雜種優(yōu)勢和正向的遺傳和環(huán)境互作效應(yīng),實現(xiàn)遺傳增益最大化的重要途徑。有關(guān)杉木無性系的生長[8,10-11]、樹形和材性[9]等性狀的重復(fù)力,遺傳與環(huán)境交互作用,早晚相關(guān)與早期選擇林齡等[12,15]方面報道較多。但是有關(guān)超早期的遺傳和環(huán)境互作效應(yīng)對杉木無性系表現(xiàn)評價的影響研究報道較少。本研究利用立地條件相對一致的苗圃地,進行杉木無性系測定和初篩,旨在通過控制環(huán)境異質(zhì)性,解析遺傳和環(huán)境互作效應(yīng)對無性系生長的影響,并探索無性系的超早期選擇可行性,以期改善杉木無性系及選育的時空利用效率。
1 材料與方法
1.1 試驗材料
2016年春,從杉木第3代良種播種培育的苗木中挑選275株超級苗,在福建省將樂國有林場營建采穗圃。2020年春,以采穗圃穗條扦插育苗,培育供試無性系苗木,其中有67個無性系苗高超過30 cm,株型發(fā)育完好,且扦插成苗率達到90%以上的無性系,用于圃地超短期測定試驗。
1.2 樣地概況及試驗方法
試驗圃地位于福建省將樂縣萬安鎮(zhèn)坊頭村(117.48°E,26.73°N),海拔225 m,年均氣溫17.7 ℃,平均日照時間1 730 h,無霜期288 d,年均降水量1 726.3 mm。圃地前作為水稻,2020年秋水稻收割后排水曬田(通常稻田土質(zhì)和肥力分布較均勻)。2021年2月全墾深挖整地,施基肥鈣鎂磷750 kg/hm2,經(jīng)2~3次翻耕和土塊破碎后整畦作床,畦面寬1.2 m,高30 cm,步道寬30 cm,四周開設(shè)排水溝。
試驗采用完全隨機區(qū)組設(shè)計(RCB設(shè)計),參試無性系67個,10次重復(fù),12株小區(qū),株行距30 cm×30 cm。2021年5月栽植。2022年5月,按小區(qū)調(diào)查每個無性系的苗高、地徑、側(cè)枝數(shù)量、最長側(cè)枝長度。
1.3 統(tǒng)計分析方法
1.3.1 方差分析和遺傳-環(huán)境互作方差分解模型
按完全隨機區(qū)組設(shè)計進行方差分析,并估算遺傳方差分量以及遺傳與環(huán)境互作效應(yīng)方差分量的大小,來衡量兩者對無性系表型方差的貢獻大小和相對重要性。表型方差可以分解為基因型方差與環(huán)境方差兩部分[17],表達式為σ2P=σ2G+σ2E。式中:σ2P為表型方差;σ2G為遺傳方差;σ2E為環(huán)境隨機誤差方差。在完全隨機區(qū)組試驗設(shè)計條件下,無性系的總遺傳方差又可以拆分為基因型遺傳方差和遺傳與環(huán)境交互作用方差(簡稱遺傳-環(huán)境互作)分量[19]:σ2G=σ2cG+σ2ge。因此,無性系的表型方差可表達為σ2=σ2cG+σ2ge+σ2E。式中:σ2cG為遺傳方差;σ2ge為遺傳-環(huán)境互作方差。無性系重復(fù)力和遺傳力定義分別為H2=σ2Gσ2P=(σ2cG+σ2ge)(σ2cG+σ2ge+σ2E),h2=σ2cG(σ2cG+σ2ge+σ2E)。式中:H2為重復(fù)力;h2為遺傳力。遺傳-環(huán)境互作方差比例(NR)定義為遺傳力與重復(fù)力的比值h2H2,即(σ2cGσ2cG+σ2ge),可度量無性系(基因型)的遺傳穩(wěn)定性,其比值越趨近于1,表明遺傳與環(huán)境互作方差愈小,無性系表型性狀表現(xiàn)愈穩(wěn)定;反之,則說明無性系對環(huán)境的變化反應(yīng)敏感性強。如設(shè)h2H2=a,則有σ2ge=[(1-a)/a]σ2cG,即總的遺傳方差中,遺傳-環(huán)境互作方差占比為(1-a)×100%。
1.3.2 遺傳參數(shù)估算
利用ASReml分別估算遺傳力和重復(fù)力[20]。以個體模型進行分析,yijk=μ+Bi+Tijk+EBPik+eijk。式中:yijk為個體觀測值,μ為總平均值,Bi為區(qū)組效應(yīng),EBPik為區(qū)組內(nèi)小區(qū)效應(yīng),Tijk為加性遺傳效應(yīng),eijk為隨機誤差;μ、Bi為固定效應(yīng),其余為隨機效應(yīng)。在ASReml中,將個體作為隨機因子,其值代表遺傳-環(huán)境互作效應(yīng)。無性系的σ2cG值則代表加性遺傳效應(yīng),無性系值(Gi)與遺傳增益(ΔG)計算公式為Gi=H2(x-);ΔG=ι/×100%。式中:ι為入選無性系的無性系值均值[19,21]。
2 結(jié)果與分析
2.1 無性系遺傳變異分析
在圃地栽植1 a后,參試無性系的苗高、地徑、側(cè)枝數(shù)和最長側(cè)枝長度均值分別為0.640 m、1.010 cm、10.30條和0.28 m,4個觀察性狀的表型變異系數(shù)分別為12.86%、14.88%、21.34%和14.89%(表1)。由表1還可見,參試無性系間苗高、地徑、側(cè)枝數(shù)及長度性狀上出現(xiàn)了明顯的變異,其中分生側(cè)枝數(shù)的變異系數(shù)大于其他3個性狀。
無性系超早期測定的4個性狀的方差分析、重復(fù)力和遺傳力估算結(jié)果見表1。由表1可見,參試無性系的苗高、地徑、側(cè)枝數(shù)和最長側(cè)枝長度4個性狀的遺傳方差分量,均達到了極顯著差異水平。4個性狀的無性系重復(fù)力估值均穩(wěn)定在0.74左右,遺傳力估值均穩(wěn)定在0.48左右。說明待測無性系間存在真實的遺傳變異,利用立地條件均一的圃地,進行杉木無性系生長性狀的超早期測定,獲取無性系的遺傳差異信息是可行的。試驗結(jié)果還說明,超早期測定同時能很好地估計杉木無性系(基因型)與環(huán)境的交互作用效應(yīng)。本試驗中,參試無性系苗高、地徑、側(cè)枝數(shù)和最長側(cè)枝長度性狀上分離到的遺傳和環(huán)境交互作用方差分量均占總遺傳方差的35%左右,顯見遺傳-環(huán)境交互作用對杉木無性系總遺傳方差分量的貢獻,值得深入分析。
2.2 遺傳-環(huán)境互作效應(yīng)對苗期性狀選擇的影響
苗高、地徑、側(cè)枝數(shù)量和最長側(cè)枝長度間遺傳相關(guān)性如表2所示。地徑與苗高、側(cè)枝數(shù)量和最長側(cè)枝長度的遺傳相關(guān)系數(shù)均達0.9以上,說明地徑與其他幾個性狀的遺傳相關(guān)性最高。據(jù)此,將參試無性系按地徑均值大小排序,每次剔除地徑生長排序倒數(shù)三位的3個無性系,并估算每次剩余無性系后的遺傳增益,同時再依據(jù)剩余無性系的觀測值重新估算各性狀的遺傳參數(shù)。結(jié)果表明,隨著剔除末位無性系數(shù)量的增多,入選率降低,苗高、地徑、側(cè)枝數(shù)和最長側(cè)枝長度的遺傳增益估值逐漸增高(圖1)。由圖1可見,苗高、側(cè)枝數(shù)的重復(fù)力和遺傳力,以及遺傳-環(huán)境互作方差比例,并未隨著入選率的降低而出現(xiàn)明顯的規(guī)律性變化,均保持在較為穩(wěn)定的范圍內(nèi)(圖1a、1c)。而地徑、最長側(cè)枝長度,當(dāng)入選率降低到40%以下時,重復(fù)力和遺傳力估值下降,遺傳-環(huán)境互作方差比例增大(圖1b、1d)。以上分析表明,對于杉木扦插繁殖的無性系苗木,選擇強度提高并不能剔除遺傳-環(huán)境互作效應(yīng)對地徑和最長側(cè)枝長度的影響,高強度的選擇反而會增加遺傳-環(huán)境互作的影響。這是否意味著提高苗期測定選擇強度,有利于固定地徑等性狀上的正向遺傳-環(huán)境互作效應(yīng),并通過扦插在無性世代間傳遞,有待深入探討。
2.3 超短期測定遺傳參數(shù)變化與杉木無性系初篩策略
不同入選率下遺傳參數(shù)見列表3。由表3可見,當(dāng)入選率低于42%時,重復(fù)力、遺傳力以及遺傳-環(huán)境互作方差比例在苗高、側(cè)枝數(shù)和最長側(cè)枝長度中均呈現(xiàn)出波狀浮動,并且這種波動現(xiàn)象在三者中存在明顯區(qū)別。當(dāng)67個測定材料中入選數(shù)量由28個降低至7個無性系,即入選率由41.79%降低至10.45%時,苗高各遺傳參數(shù)值浮動呈現(xiàn)明顯的先降后升或者先升后降趨勢,其中重復(fù)力在0.672 9~0.708 3間波動,遺傳力在0.345 8~0.416 6間波動,遺傳-環(huán)境互作方差比例在41.18%~48.61%間波動;側(cè)枝數(shù)各遺傳參數(shù)在不同入選率下的值較為穩(wěn)定,其中重復(fù)力在0.713 6~0.725 6間波動,遺傳力在0.427 3~0.451 2間波動,遺傳-環(huán)境互作方差比例在37.82%~40.13%間波動;最長側(cè)枝長度各遺傳參數(shù)值的浮動幅度較大,其中重復(fù)力在0.647 8~0.716 3間波動,遺傳力在0.295 6~0.432 5間波動,遺傳-環(huán)境互作方差比例在39.61%~54.37%間波動。因此,可通過無性繁殖固定遺傳-環(huán)境互作效應(yīng),使遺傳-環(huán)境互作方差比例控制在一定范圍內(nèi)(表3)。
但隨著入選率降低(即淘汰強度提高),地徑的重復(fù)力降低趨勢較慢,遺傳力降低趨勢較快,遺傳-環(huán)境互作效應(yīng)急劇增大。當(dāng)入選無性系數(shù)量為19個時,地徑遺傳力為0.226 3,遺傳-環(huán)境互作方差比例達63.09%;當(dāng)入選無性系數(shù)量為16個時,地徑遺傳力降低到0.091 4,遺傳-環(huán)境互作方差比例迅速增加到83.26%。足見遺傳-環(huán)境互作效應(yīng)在杉木無性系苗期測定中的重要性。對于杉木無性系超短期苗期測定和初篩,應(yīng)充分重視遺傳-環(huán)境互作效應(yīng)。篩選排序前19名的無性系作為進入大面積的多點造林測試的材料,既能保留無性系間目標性狀遺傳變異的豐富度,又能固定60%左右的遺傳-環(huán)境互作效應(yīng),達到圃地超短期測定篩選無性系測定材料的目的。本試驗初步篩選的19個供大面積造林測試的無性系性狀及遺傳增益見表4。
由表4可見,初選材料的苗高、地徑、側(cè)枝數(shù)量和最長側(cè)枝長度的均值分別為0.73 m、1.20 cm、12.4條和0.33 m,遺傳增益均值分別為10.81%、15.45%、16.66%和13.88%,分別比群體均值高出14.06%、18.81%、20.39%和17.86%。其中,苗高和地徑生長是圃地超早期測定的主要觀察指標,而側(cè)枝數(shù)量和最長側(cè)枝長度則反映了植株初期樹冠發(fā)育的重要評價指標。
3 討 論
在現(xiàn)代林木遺傳育種策略中,充分利用種間或種內(nèi)雜交獲得雜種優(yōu)勢群體,再通過無性系選擇和無性繁殖技術(shù)大量克隆優(yōu)選無性系,是發(fā)展無性系營林產(chǎn)業(yè)鏈中不可或缺的關(guān)鍵技術(shù)環(huán)節(jié)。而加速大量候選材料的遺傳測定和優(yōu)選無性系種苗的產(chǎn)業(yè)化、標準化生產(chǎn),在不降低無性系選擇精度的情況下,縮短無性系的測定周期,加速優(yōu)質(zhì)無性系苗木的繁殖,節(jié)省無性系選擇和良種繁育的時間、人力、物力成本,是目前無性系營林產(chǎn)業(yè)鏈上要解決的“卡脖子”問題。
本研究通過對67個無性系1 a圃地測定,檢測到無性系間在苗高、地徑、側(cè)枝數(shù)量和最長側(cè)枝長度性狀上,存在著統(tǒng)計學(xué)水準的極顯著差異,估計的重復(fù)力和遺傳力分別為0.74和0.48左右。依據(jù)參試地徑生長量排序結(jié)果,篩選出位列最前的無性系19個。其苗高、地徑、側(cè)枝數(shù)和最長側(cè)枝長度均值,分別高于群體均值的14.06%、18.81%、20.39%和17.86%。這批材料既為下一步多地點造林測定和長期觀察奠定了遺傳材料基礎(chǔ),同時又有效降低了造林比較試驗林規(guī)模和性狀測定工作量,顯著節(jié)約了無性系選育綜合成本。說明利用圃地開展杉木無性系的超短期測定,進行大量試驗材料的初篩是可行的。
本試驗結(jié)果還表明,杉木無性系性狀的遺傳-環(huán)境互作效應(yīng)對表型性狀的影響是值得重視的。在4個觀察性狀的總遺傳方差中,遺傳-環(huán)境互作方差比例達到35%左右,說明遺傳-環(huán)境互作效應(yīng)對杉木無性系的表現(xiàn)型值有顯著的影響。有關(guān)遺傳-環(huán)境互作對楊樹無性系生根性狀變異的報道中,發(fā)現(xiàn)美洲黑楊×青楊(Populus deltoides × P. euramericana)無性系水培生根試驗中,無性系的所有生根性狀均明顯受到可傳遞遺傳-環(huán)境互作效應(yīng)的影響[22]。本試驗以杉木無性系地徑生長量排序去劣留優(yōu),逐步淘汰地徑生長量小的無性系,發(fā)現(xiàn)選擇強度與遺傳-環(huán)境互作的聯(lián)動關(guān)系。當(dāng)入選率降低到40%以下時,隨著淘汰無性系數(shù)量的增加,杉木無性系的苗高、側(cè)枝數(shù)量和最長側(cè)枝長度3個性狀的遺傳-環(huán)境互作方差比例分別達到41.18%~48.61%、37.82%~40.13%和39.61%~54.37%,但地徑的遺傳-環(huán)境互作方差比例由45.91%快速上升至94.33%。這表明在圃地超短期測定中,杉木無性系苗高生長和分枝性狀受遺傳-環(huán)境互作效應(yīng)影響相對較小,而地徑生長對圃地微環(huán)境變化或不明因素擾動較為敏感,因而該性狀可能易受遺傳-互作效應(yīng)影響。所以在杉木無性系超短期測定時,將苗高和地徑性狀綜合起來進行選擇可能更為理想。
優(yōu)良基因型的無性繁殖,通常認為是一種可充分利用該基因型的加性和非加性遺傳效應(yīng),保持無性系原株優(yōu)良特性的繁殖方法[23]。但對于待測無性系來說,既有不同基因型對生存環(huán)境波動反應(yīng)規(guī)范的不同,也有諸如C-效應(yīng)(C-effects)對無性系表現(xiàn)的附加效應(yīng)等因素,影響到對基因型的客觀評價。杉木遺傳早期的遺傳測定結(jié)果發(fā)現(xiàn),試驗中某性狀遺傳-環(huán)境互作方差分量雖然達到統(tǒng)計的顯著或極顯著水準,但并不意味著所有參試材料、所有性狀上都是遺傳-環(huán)境互作敏感基因型[24]。就高生長和材積生長量而言,一般1/3左右基因型為“穩(wěn)定速生型”,另外1/3左右的基因型是屬于“遺傳-環(huán)境互作敏感型”(生長波動型或不穩(wěn)定型),其余1/3左右為“持續(xù)慢生型”。顯然,從生長量性狀來考慮,“持續(xù)慢生型”無性系無疑是淘汰對象,但往往“遺傳-環(huán)境敏感型”無性系常因其性狀不穩(wěn)定而被忽視。實際上,杉木無性系測定群體中“遺傳-環(huán)境敏感型”無性系,最大的特點是具較強的逆境感知和自我保護能力,一旦逆境解除即可恢復(fù)生長,是適應(yīng)特殊逆境定向栽培品種候選材料來源。對于固定“遺傳-環(huán)境敏感型”無性系中遺傳-環(huán)境互作效應(yīng)的可行性還有待深入研究。
除了基因型與環(huán)境的互作效應(yīng)對無性系的影響,還有一類廣義地被稱作“C-效應(yīng)”的非典型的遺傳效應(yīng)(atypical genetic effects)的影響,如位置效應(yīng)(topophysis)、成熟效應(yīng)(cyclophysis)、環(huán)境預(yù)調(diào)節(jié)效應(yīng)(environmental pre-conditioning effects)、母體效應(yīng)(maternal effects)和細胞核外(如線粒體和葉綠體的)DNA遺傳物質(zhì)導(dǎo)致的效應(yīng)。據(jù)報道這類非DNA序列變異導(dǎo)致的效應(yīng),能在遺傳材料的有性或無性繁殖世代間多代傳遞,形成表型性狀的附加修飾,使得基因型效應(yīng)估計偏高或偏低于根據(jù)經(jīng)典遺傳學(xué)理論和方法計算得到的估值[19]。國內(nèi)也有在不同樹種上發(fā)現(xiàn)C-效應(yīng)的存在對無性系表現(xiàn)的不良影響的報道,國內(nèi)報道有涉及杉木、楊樹(Populus spp.)、青海云杉(Picea crassifolia)等樹種的無性系繁殖時,插穗的位置效應(yīng)、成熟效應(yīng)導(dǎo)致的無性系分株間性狀的不穩(wěn)定性和生長量下降等問題[25-27]。為了在源頭上控制待測無性系苗木繁育階段C-效應(yīng)的前置影響,本研究嚴格執(zhí)行《中華人民共和國林業(yè)行業(yè)標準:杉木無性系扦插育苗技術(shù)規(guī)程》(LY/T 1885—2010)[28],從無性系原株選擇、采穗圃營建管理、穗條采集調(diào)制、扦插和苗圃管理等每個關(guān)鍵環(huán)節(jié)都嚴格把關(guān),有效控制了位置效應(yīng)、成熟效應(yīng)等C-效應(yīng)對無性系苗的不利影響,利用圃地順利開展了超短期杉木無性系測定,從67個無性系材料中初篩出19個表現(xiàn)優(yōu)良的無性系開展多地點長期測定,不僅顯著降低了無性系測定的綜合成本,而且也為杉木無性系多地點長期測定材料來源提供了保障。
參考文獻(reference):
[1]韓剛,黃少偉.無性系林業(yè)與林業(yè)可持續(xù)發(fā)展[J].福建林業(yè)科技,2003,30(4):89-92.HAN G,HUANG S W.Clone forest and the sustainable development of forestry[J].J Fujian For Sci Technol,2003,30(4):89-92.DOI: 10.13428/j.cnki.fjlk.2003.04.026.
[2]康向陽.關(guān)于無性系林業(yè)若干問題的認識和建議:以楊樹為例[J].北京林業(yè)大學(xué)學(xué)報,2017,39(9):1-7.KANG X Y.Cognition and suggestions on some issues related to clonal forestry:taking poplar as an example[J].J Beijing For Univ,2017,39(9):1-7.DOI: 10.13332/j.1000-1522.20170019.
[3]彭萬喜,吳義強,張仲鳳,等.中國的杉木研究現(xiàn)狀與發(fā)展途徑[J].世界林業(yè)研究,2006,19(5):54-58.PENG W X,WU Y Q,ZHANG Z F,et al.Situation and developing trends of Chinese Fir[J].World For Res,2006,19(5):54-58.DOI: 10.13348/j.cnki.sjlyyj.2006.05.010.
[4]馬常耕.杉木近期良種選育的基本策略[J].廣東林業(yè)科技,1992,8(4):1-5.MA C G.Basic strategy of Chinese fir breeding in the near future[J].Guangdong For Sci Technol,1992,8(4):1-5.
[5]王港,陳駿,侯娜,等.杉木無性系規(guī)模化組培繁育技術(shù)研究[J].湖北林業(yè)科技,2014,43(5):7-9,63.WANG G,CHEN J,HOU N,et al.Study on large-scale tissue culture propagation technology of Cunninghamia lanceolata[J].Hubei For Sci Technol,2014,43(5):7-9,63.DOI: 10.3969/j.issn.1004-3020.2014.05.003.
[6]歐陽磊,鄭仁華,翁玉榛,等.杉木優(yōu)良無性系組培快繁技術(shù)體系的建立[J].南京林業(yè)大學(xué)學(xué)報(自然科學(xué)版),2007,31(3):47-51.OUYANG L,ZHENG R H,WENG Y Z,et al.Establishment of technique system of tissue culture on Chinese fir superior clones[J].J Nanjing For Univ (Nat Sci Ed),2007,31(3):47-51.DOI: 10.3969/j.issn.1000-2006.2007.03.010.
[7]吳擢溪,李振問,吳大忠.杉木組織培養(yǎng)繁殖體系建立的研究[J].福建林學(xué)院學(xué)報,1991,11(1):67-74.WU Z X,LI Z W,WU D Z.Study on the establishment for breeding system Chinese fir tissue culture[J].J Fujian Coll For,1991,11(1):67-74.
[8]賈茹,孫海燕,王玉榮,等.杉木無性系新品種‘洋020’和‘洋061’10年生幼齡材微觀結(jié)構(gòu)與力學(xué)性能的相關(guān)性[J].林業(yè)科學(xué),2021,57(5):165-175.JIA R,SUN H Y,WANG Y R, et al.Relativity of microstructures and mechanical properties of juvenile woods of 10-year-old new Chinese fir clones ‘Yang 020’ and ‘Yang 061’[J].Sci Silvae Sin,2021,57(5):165-175.DOI: 10.11707/j.1001-7488.20210516.
[9]李榮麗,黃壽先,梁機,等.杉木無性系生長和木材品質(zhì)性狀遺傳變異研究[J].南方農(nóng)業(yè)學(xué)報,2014,45(9):1626-1631.LI R L,HUANG S X,LIANG J,et al.Genetic variation of growth traits and wood properties in Chinese fir clones[J].J South Agric,2014,45(9):1626-1631.DOI: 10.3969/j.issn.2095-1191.2014.9.1626.
[10]彭華貴,李兆佳,周志平,等.4個杉木品系在廣東省天井山林場的生長比較[J].林業(yè)與環(huán)境科學(xué),2017,33(4):25-28.PENG H G,LI Z J,ZHOU Z P,et al.The comparison of growth performance of four provenances Cunninghamia lanceolata in Guangdong Tianjingshan Forest Farm[J].For Environ Sci,2017,33(4):25-28.DOI: 10.3969/j.issn.1006-4427.2017.04.005.
[11]孫云,李鑫,李勇,等.幼樹階段杉木不同無性系生長與形態(tài)性狀分析[J].中南林業(yè)科技大學(xué)學(xué)報,2019,39(3):34-39.SUN Y,LI X,LI Y,et al.Analysis of growth traits and morphological characters among different clones of Cunninghamia lanceolata in young tree stage[J].J Cent South Univ For Technol,2019,39(3):34-39.DOI: 10.14067/j.cnki.1673-923x.2019.03.006.
[12]胡德活,林緒平,阮梓材,等.杉木無性系早-晚齡生長性狀的相關(guān)性及早期選擇的研究[J].林業(yè)科學(xué)研究,2001,14(2):168-175.HU D H,LIN X P,RUAN Z C,et al.Study on the growth character correlation of Chinese fir clone and early selection[J].For Res,2001,14(2):168-175.DOI: 10.3321/j.issn:1001-1498.2001.02.008.
[13]何貴平,陳益泰,關(guān)志山,等.杉木無性系生長及分枝習(xí)性的遺傳變異[J].林業(yè)科學(xué)研究,1997,10(5):556-559.HE G P,CHEN Y T,GUAN Z S,et al.Genetic variation of growth and branching habits of Chinese fir clones[J].For Res,1997,10(5):556-559.
[14]段紅靜,曹森,鄭會全,等.杉木不同無性系主要經(jīng)濟性狀變異分析[J].西南林業(yè)大學(xué)學(xué)報,2016,36(2):78-83.DUAN H J,CAO S,ZHENG H Q,et al.Variation analysis on the main economic characters of Chinese fir clones[J].J Southwest For Univ (Nat Sci),2016,36(2):78-83.DOI: 10.11929/j.issn.2095-1914.2016.02.013.
[15]饒顯生,程書建,劉化桐,等.杉木無性系苗期選擇可靠性分析[J].福建林學(xué)院學(xué)報,2002,22(1):82-85.RAO X S,CHENG S J,LIU H T,et al.Study on reliability of clones selection in Chinese fir on seedling stage[J].J Fujian Coll For,2002,22(1):82-85.
[16]齊明,何貴平,曹高銓,等.杉木耐貧瘠優(yōu)良無性系苗期初選[J].林業(yè)科學(xué)研究,2013,26(3):379-383.QI M,HE G P,CAO G Q,et al.Preliminary evaluation on fine clones of Chinese fir based on sexual progeny tests[J].For Res,2013,26(3):379-383.DOI: 10.13275/j.cnki.lykxyj.2013.03.019.
[17]王明庥.林木遺傳育種學(xué)[M].北京:中國林業(yè)出版社,2001.WANG M X.Forest tree genetics and breeding[M].Beijing:China Forestry Publishing House,2001.
[18]陳岳武,施季森.杉木遺傳改良中的若干基本問題[J].南京林業(yè)大學(xué)學(xué)報(自然科學(xué)版),1983,7(4):5-19.CHEN Y W,SHI J S.Some fundamental problems in genetic improvement of Chinese fir[J].J Nanjing ForUniv,1983,7(4):5-19.
[19]WHITE T L, ADAMS W T, NEALE D B. Forest Genetics[M]. Massachusetts, USA: CABI Publishing, 2007.
[20]林元震.R與ASReml-R統(tǒng)計學(xué)[M].北京:中國林業(yè)出版社,2017.LIN Y Z.R and ASReml-R statistics[M].Beijing:China Forestry Publishing House,2017.
[21]朱之悌.林木遺傳學(xué)基礎(chǔ)[M].北京:中國林業(yè)出版社,1990.ZHU Z T.Basis of forest genetics[M].Beijing:China Forestry Publishing House,1990.
[22]李火根,黃敏仁,陳道明.美洲黑楊×青楊F1無性系生根性狀的遺傳變異及C效應(yīng)[J].東北林業(yè)大學(xué)學(xué)報,1998,26(3):12-15.LI H G,HUANG M R,CHEN D M.Genetic variation and ceffect of rooting characters of Populus deltoides× Populus euramericana F1 clone[J].J Northeast For Univ,1998,26(3):12-15.
[22]李火根,黃敏仁,陳道明.美洲黑楊×青楊F_1無性系生根性狀的遺傳變異及C效應(yīng)[J].東北林業(yè)大學(xué)學(xué)報,1998,26(3):12-15.LI H G,HUANG M R,CHEN D M.Genetic variation and C-effectsin rooting characteristicsof Populus deltoides × P.cathayana F1clones[J].J Northeast For Univ,1998,26(3):12-15.
[23]NGUYEN H T,CHEN Z Q,F(xiàn)RIESA,et al.Effect of additive,dominant and epistatic variances on breeding and deployment strategy in Norway spruce[J].Forestry,2022,95(3):416-427.DOI: 10.1093/forestry/cpab052.
[24]楊米嬌. 杉木半同胞家系種批和空間重復(fù)對育種值估計的影響[D]. 南京:南京林業(yè)大學(xué),2016.YANG M J. Different planting time and the space repeat effects on the estimation of the breeding value for the Half-sib families of Chinese fir[D]. Nanjing: Nanjing Forestry University,2016.
[25]平文麗,楊鐵釗.體細胞無性系變異及其在作物育種中的應(yīng)用[J].西北農(nóng)業(yè)學(xué)報,2005,14(5):23-31.PING W L,YANG T Z.Somaclonal variation and it’s application in crop breeding[J].Acta Agric Boreali Occidentalis Sin,2005,14(5):23-31.DOI: 10.3969/j.issn.1004-1389.2005.05.006.
[26]王軍輝,張建國,張守攻,等.青海云杉硬枝扦插的激素、年齡和位置效應(yīng)研究[J].西北農(nóng)林科技大學(xué)學(xué)報(自然科學(xué)版),2006,34(7):65-71.WANG J H,ZHANG J G,ZHANG S G,et al.Research of hormone,age and position effect of hardwood cutting in Picea crassifolia Kom[J].J Northwest Sci Tech Univ Agric For (Nat Sci Ed),2006,34(7):65-71.DOI: 10.13207/j.cnki.jnwafu.2006.07.015.
[27]郭長花.白楊年齡與位置效應(yīng)的生理生化機制研究[D].北京:北京林業(yè)大學(xué),2008.GUO C H.Study on physiological and biochemical mechanism of age effect and position effect in white poplar[D].Beijing:Beijing Forestry University,2008.
[28]國家林業(yè)局.杉木無性系扦插育苗技術(shù)規(guī)程:LY/T 1885—2010[S].北京:中國標準出版社,2010.State Forestry Administration of the People’s Republic of China.Technical regulation of cutting propagation for Cunninghamia lanceolata clones:LY/T 1885—2010[S].Beijing:Standards Press of China,2010.
(責(zé)任編輯 吳祝華)