[摘要]"糖尿病是一組因胰島素分泌不足和(或)胰島素利用障礙而引發(fā)的糖、蛋白質(zhì)、脂肪、水和電解質(zhì)等物質(zhì)代謝紊亂的綜合征,臨床上以高血糖為其主要特征。隨著生活水平的不斷提高,人們對(duì)高糖、高脂肪、高能量食物的量不斷增加,糖尿病的發(fā)病率也逐年升高。現(xiàn)如今,糖尿病已成為全球性疾病之一。線粒體分裂與融合可維持線粒體的形態(tài)和功能,是線粒體質(zhì)量控制中不可或缺的一部分。研究發(fā)現(xiàn),線粒體分裂與融合與多種疾病的發(fā)生發(fā)展密切相關(guān),尤其是糖尿病相關(guān)微血管損傷。本文討論線粒體分裂與融合的相關(guān)分子機(jī)制及其與糖尿病的關(guān)系,為未來糖尿病相關(guān)微血管損傷的臨床治療提供新思路。
[關(guān)鍵詞]"線粒體動(dòng)力學(xué);線粒體分裂;線粒體融合;糖尿??;微血管損傷;內(nèi)皮細(xì)胞
[中圖分類號(hào)]"R543;R587""""""[文獻(xiàn)標(biāo)識(shí)碼]"A""""""[DOI]"10.3969/j.issn.1673-9701.2024.14.029
線粒體是細(xì)胞中制造能量的細(xì)胞器,具有能量合成、細(xì)胞氧化還原、膽固醇及血紅素合成、鈣離子調(diào)節(jié)、膜電位調(diào)節(jié)、細(xì)胞程序性死亡調(diào)控等多種功能。當(dāng)細(xì)胞受到損傷時(shí),線粒體膜通透性轉(zhuǎn)換孔(mitochondrial"permeability"transition"pore,mPTP)打開,誘導(dǎo)鈣超載、膜電位下降等一系列反應(yīng),最終導(dǎo)致腺苷三磷酸(adenosine"triphosphate,ATP)的生成減少[1-2]。研究表明,線粒體動(dòng)力學(xué)(線粒體分裂與融合)對(duì)維持細(xì)胞穩(wěn)態(tài)至關(guān)重要。
心臟微血管主要由微血管內(nèi)皮細(xì)胞構(gòu)成,是心臟微循環(huán)的基本組成部分,也是保持心肌供血和維持心臟正常功能的主要因素。內(nèi)皮細(xì)胞是覆蓋血管內(nèi)壁的單層細(xì)胞,負(fù)責(zé)維持血管結(jié)構(gòu)和調(diào)節(jié)血管功能。內(nèi)皮細(xì)胞還會(huì)產(chǎn)生并釋放血管收縮劑(內(nèi)皮素、凝血烷)及血管擴(kuò)張劑(一氧化氮、緩激肽)等。正常情況下,血管收縮劑和擴(kuò)張劑處于動(dòng)態(tài)平衡狀態(tài),有助于維持血管狀態(tài)。與心肌細(xì)胞和骨骼肌細(xì)胞相比,內(nèi)皮細(xì)胞的線粒體含量相對(duì)較低,并依賴糖酵解作為能量來源[3-4]。但線粒體損傷可使內(nèi)皮細(xì)胞對(duì)不同類型的細(xì)胞程序性死亡更為敏感,包括細(xì)胞凋亡、細(xì)胞壞死和鐵死亡等[5]。因此,線粒體在微血管損傷中扮演著極為重要的作用。本文討論并總結(jié)線粒體分裂與融合在糖尿病相關(guān)微血管損傷中的作用機(jī)制研究進(jìn)展,并對(duì)糖尿病相關(guān)微血管損傷的治療手段予以展望。
1""線粒體分裂與融合
線粒體通過不斷地分裂與融合調(diào)節(jié)其形態(tài)、分布和功能,此過程稱之為線粒體動(dòng)力學(xué)[6]。較好的線粒體可通過線粒體融合得以保存下來,受損的線粒體則通過線粒體分裂予以清除,線粒體動(dòng)力學(xué)對(duì)于維持線粒體和內(nèi)皮細(xì)胞功能極其重要[7-9]。
1.1""線粒體分裂
受損線粒體通過分裂過程予以清除。一般而言,線粒體的分裂過程大致分為3步:①動(dòng)力相關(guān)蛋白1(dynamin"related"protein"1,Drp1)的激活;②Drp1與其受體結(jié)合;③鳥苷三磷酸(guanosine"triphosphate,GTP)的水解及線粒體的分裂[10]。Drp1在Ser616位點(diǎn)的磷酸化可激活其GTP酶活性,促進(jìn)線粒體分裂;而Ser637位點(diǎn)的磷酸化可抑制Drp1所誘導(dǎo)的GTP水解,從而抑制線粒體分裂[11]。研究表明,線粒體分裂因子、線粒體分裂1蛋白(mitochondrial"fission"1"protein,F(xiàn)is1)的磷酸化可增強(qiáng)對(duì)Drp1的親和力,促進(jìn)線粒體分裂[12-13]。線粒體分裂的增加使得線粒體數(shù)量變多。生理性線粒體分裂對(duì)能量產(chǎn)生及線粒體清除有重要作用,但過度的線粒體分裂會(huì)導(dǎo)致線粒體碎片化[8,14]。
線粒體分裂可能通過以下機(jī)制影響內(nèi)皮細(xì)胞功能:①線粒體過度分裂會(huì)導(dǎo)致線粒體DNA損傷,其損傷與線粒體呼吸功能障礙有關(guān),進(jìn)而導(dǎo)致活性氧(reactive"oxygen"species,ROS)生成;②線粒體ROS過度積累會(huì)導(dǎo)致線粒體脂質(zhì)氧化,降低心磷脂對(duì)細(xì)胞色素C的親和力,導(dǎo)致細(xì)胞色素C從線粒體內(nèi)膜脫落,這是細(xì)胞凋亡的早期標(biāo)志;③線粒體分裂過度會(huì)導(dǎo)致線粒體碎片化,介導(dǎo)電壓依賴性陰離子通道1的多聚化,mPTP開放,最終導(dǎo)致細(xì)胞壞死;""""④線粒體分裂可被核受體亞家族4A組成員1激活,被Bax抑制劑1抑制,進(jìn)而影響細(xì)胞功能[15-17]。
1.2""線粒體融合
線粒體融合包括錨定、外膜融合、內(nèi)膜融合及基質(zhì)內(nèi)含物融合4步,融合由3種GTP酶介導(dǎo),其分別為動(dòng)力蛋白樣GTP酶OPA1、線粒體融合蛋白(mitofusin,Mfn)1和Mfn2。OPA1是通過N-末端的跨膜結(jié)構(gòu)域錨定在線粒體內(nèi)膜中的GTP酶,負(fù)責(zé)線粒體內(nèi)膜的融合。膜結(jié)合長(zhǎng)OPA1可通過兩個(gè)蛋白水解切割位點(diǎn)S1、S2加工形成短OPA1;該切割由兩種線粒體內(nèi)肽酶OMA1和YME1L完成[18-20]。線粒體外膜融合由Mfn1、Mfn2介導(dǎo),而內(nèi)膜融合則由OPA1介導(dǎo)[8,21]。
2""糖尿病相關(guān)微血管損傷
全球約有10%的成年人患有糖尿病,糖尿病已成為最嚴(yán)重和最關(guān)鍵的公共衛(wèi)生問題之一[22]。糖尿病相關(guān)血管病變分為大血管病變和微血管病變。大血管病變是指主要累及大、中動(dòng)脈(如冠狀動(dòng)脈)的動(dòng)脈粥樣硬化病變,其致殘率和致死率均較高。如在糖尿病冠心病中,高血糖所致的冠狀動(dòng)脈內(nèi)皮細(xì)胞損傷是其發(fā)病的主要因素之一。在高糖介導(dǎo)的冠狀動(dòng)脈內(nèi)皮細(xì)胞損傷中,Drp1表達(dá)水平升高,且伴有細(xì)胞活性降低和細(xì)胞凋亡率增加,而當(dāng)敲低Drp1時(shí)這一現(xiàn)象可逆轉(zhuǎn);高糖環(huán)境可能會(huì)誘導(dǎo)冠狀動(dòng)脈內(nèi)皮細(xì)胞分裂進(jìn)而損傷內(nèi)皮細(xì)胞,其具體機(jī)制尚不明確[23-24]。糖尿病相關(guān)微血管病變則主要累及小動(dòng)脈、小靜脈,導(dǎo)致小動(dòng)脈和小靜脈微循環(huán)障礙及微血管基底膜增厚[23]。微血管主要由內(nèi)皮細(xì)胞構(gòu)成,相較于其他細(xì)胞而言,內(nèi)皮細(xì)胞直接與血液接觸,在高糖狀態(tài)下最先且最易受損。隨著糖尿病發(fā)病率的不斷升高,其相關(guān)微血管并發(fā)癥在糖尿病患者中也越來越常見。研究發(fā)現(xiàn),糖尿病相關(guān)微血管疾病的患病率較正常人群高10~20倍[22]。有調(diào)查顯示,高達(dá)25%的糖尿病患者可能已經(jīng)發(fā)生一種或多種微血管并發(fā)癥,包括糖尿病心肌病、糖尿病腎病及糖尿病性視網(wǎng)膜病變等。糖尿病相關(guān)微血管并發(fā)癥會(huì)極大降低患者的生活質(zhì)量、縮短壽命。因此,早期識(shí)別糖尿病相關(guān)微血管并發(fā)癥對(duì)糖尿病患者的疾病發(fā)展和預(yù)后至關(guān)重要[22,25]。
3""線粒體分裂和融合與糖尿病相關(guān)微血管損傷的相關(guān)性
生理性線粒體分裂對(duì)能量產(chǎn)生及線粒體清除有重要作用,但過度線粒體分裂會(huì)導(dǎo)致線粒體碎裂,對(duì)內(nèi)皮細(xì)胞而言是有害的,抑制線粒體過度分裂可減輕內(nèi)皮細(xì)胞損傷[14]。線粒體融合/分裂穩(wěn)態(tài)改變會(huì)引發(fā)高糖誘導(dǎo)的血管損傷,高糖環(huán)境可改變線粒體的碎片化程度,將線粒體動(dòng)態(tài)平衡向增加融合或減少分裂傾斜,從而改善高糖誘導(dǎo)的血管損傷[26]。
多重細(xì)胞和動(dòng)物實(shí)驗(yàn)研究表明,Drp1在高糖所致心臟內(nèi)皮細(xì)胞損傷中發(fā)揮極大作用。高血糖通過c-Jun氨基末端激酶(c-Jun"N-terminal"kinase,JNK)相關(guān)信號(hào)通路激活Drp1的表達(dá),線粒體分裂增加,導(dǎo)致內(nèi)皮細(xì)胞發(fā)生損傷[27]。Drp1表達(dá)水平升高,線粒體ROS產(chǎn)生增多,Mfn2表達(dá)水平下降,最終導(dǎo)致線粒體過度分裂,造成內(nèi)皮細(xì)胞損傷[28]。活化的蛋白激酶C(protein"kinase"C,PKC)δ可磷酸化Drp1,進(jìn)一步導(dǎo)致其易位到線粒體并促進(jìn)線粒體分裂[29]。高糖可提高PKCδ的磷酸化水平,促進(jìn)細(xì)胞外Ca2+內(nèi)流,這種作用被膽汁酸G蛋白偶聯(lián)膜受體5的激活所阻斷;己糖激酶2(hexokinase"2,HK2)是自噬相關(guān)蛋白Parkin的正調(diào)控因子,Drp1通過促進(jìn)HK2和線粒體分離抑制自噬,膽汁酸G蛋白偶聯(lián)膜受體5可通過抑制Ca2+-PKCδ/Drp1信號(hào)通路減少線粒體分裂并通過上調(diào)HK2促進(jìn)線粒體自噬。因此,膽汁酸G蛋白偶聯(lián)膜受體5通過PKCδ/Drp1-HK2-PINK1/"Parkin信號(hào)通路抑制線粒體分裂,增加線粒體自噬,改善線粒體穩(wěn)態(tài),進(jìn)而保護(hù)內(nèi)皮功能[29-30]。ROS參與調(diào)控線粒體動(dòng)力學(xué)和膜電位變化,尤其是線粒體分裂。在高糖環(huán)境下,線粒體分裂增加,Drp1、Fis1等蛋白的表達(dá)上調(diào),線粒體ROS的產(chǎn)生增加,鈣超載增加,從而誘導(dǎo)氧化應(yīng)激和引起組織損傷[31-32]。簇集蛋白通過抑制AMP活化蛋白激酶(AMP-activated"protein"kinase,AMPK)介導(dǎo)的線粒體分裂,減少線粒體ROS產(chǎn)生,保護(hù)內(nèi)皮細(xì)胞免受損傷[33]。
值得注意的是,糖尿病腎病也屬于糖尿病相關(guān)微血管病變。線粒體功能障礙與糖尿病腎病的發(fā)生及嚴(yán)重程度相關(guān)。研究表明,與非糖尿病對(duì)照組相比,糖尿病腎病組患者的腎臟線粒體分裂蛋白(Fis1、Drp1)水平升高[34]。在糖尿病腎小管損傷中,特異性蛋白1和磷酸甘油酸變位酶家族成員5的表達(dá)水平升高,抑制AMPK及Drp1"Ser637位點(diǎn)磷酸化,導(dǎo)致Drp1依賴性線粒體分裂增加[35]。在高糖環(huán)境下,2型1-磷酸鞘氨醇受體拮抗劑通過Ras同源基因家族成員(Ras"homologous"gene"family"member,Rho)A/Rho相關(guān)螺旋蛋白激酶1(Rho-associated"coiled"coil-containing"protein"kinase"1,ROCK1)/Drp1信號(hào)通路保護(hù)腎小球內(nèi)皮細(xì)胞免受高血糖損傷[32]。此外在高糖環(huán)境下,ROCK1通過磷酸化Drp1以促進(jìn)其活化,進(jìn)而促進(jìn)線粒體分裂[36]。
某些藥物也可通過線粒體分裂與融合途徑參與糖尿病相關(guān)微血管損傷的調(diào)控過程中。抑制AMPK磷酸化可導(dǎo)致線粒體融合/分裂不平衡。恩格列凈通過恢復(fù)AMP/ATP比值誘導(dǎo)AMPK的激活,抑制Drp1S616位點(diǎn)磷酸化,促進(jìn)Drp1S637位點(diǎn)磷酸化,抑制線粒體分裂,抑制線粒體ROS的產(chǎn)生和氧化應(yīng)激,從而阻止心臟微血管內(nèi)皮細(xì)胞衰老,保護(hù)心臟內(nèi)皮細(xì)胞屏障功能[37]。維格列汀通過促進(jìn)AMPK及乙酰輔酶A羧化酶磷酸化,降低Drp1和Fis1的水平和活性,抑制線粒體分裂,緩解線粒體氧化應(yīng)激,減少內(nèi)皮細(xì)胞功能障礙[38]。在糖尿病腎小管損傷中,西格列汀可通過恢復(fù)基質(zhì)細(xì)胞衍生因子1α/"CXC基序趨化因子受體4/信號(hào)轉(zhuǎn)導(dǎo)及轉(zhuǎn)錄活化因子3信號(hào)通路,激活OPA1,減少線粒體分裂,進(jìn)而改善糖尿病腎小管損傷[39]。
線粒體分裂與融合具有控制細(xì)胞程序性死亡的作用。在糖尿病性視網(wǎng)膜病變中,對(duì)氧磷酶2的減少可促進(jìn)Fis1的表達(dá),導(dǎo)致線粒體分裂,增強(qiáng)ROS的產(chǎn)生,降低基質(zhì)金屬蛋白酶的水平,促進(jìn)mPTP開放,誘導(dǎo)并釋放細(xì)胞色素C,激活促凋亡途徑;而對(duì)氧磷酶2的過表達(dá)能降低Fis1水平,抑制JNK1/2信號(hào)通路,通過JNK-Fis1軸抑制內(nèi)皮細(xì)胞凋亡[40]。
4""小結(jié)與展望
線粒體通過不斷地分裂與融合調(diào)節(jié)其形態(tài)、分布及功能。線粒體不僅參與多種細(xì)胞生理功能的調(diào)節(jié),還參與多種疾病的發(fā)生過程。近年來,人們已對(duì)線粒體分裂與融合影響內(nèi)皮細(xì)胞功能進(jìn)行了諸多研究。就線粒體質(zhì)量控制而言,線粒體分裂與融合是其中極其重要的組成部分之一。線粒體分裂與融合與多種臨床疾病的發(fā)生發(fā)展密切相關(guān),尤其是糖尿病相關(guān)微血管損傷。使用有效藥物干預(yù)線粒體的分裂與融合對(duì)于糖尿病相關(guān)微血管損傷的治療意義重大,對(duì)于降低糖尿病所致的致殘率和致死率有較大臨床和社會(huì)價(jià)值。鑒于糖尿病的復(fù)雜性和慢病等特點(diǎn),該領(lǐng)域需要開展更多的研究與討論。
利益沖突:所有作者均聲明不存在利益沖突。
[參考文獻(xiàn)]
[1] JIN"H,"ZHU"Y,"LI"Y,"et"al."BDNF-mediated"mitophagy"alleviates"high-glucose-induced"brain"microvascular"endothelial"cell"injury[J]."Apoptosis,"2019,"24(5-6):"511–528.
[2] CZAJA"M"J,"DING"W"X,"DONOHUE"TM"J"R,"et"al."Functions"of"autophagy"in"normal"and"diseased"liver[J]."Autophagy,"2013,"9(8):"1131–1158.
[3] SUN"D,"WANG"J,"TOAN"S,"et"al."Molecular"mechanisms"of"coronary"microvascular"endothelial"dysfunction"in"diabetes"mellitus:"Focus"on"mitochondrial"quality"surveillance[J]."Angiogenesis,"2022,"25(3):"307–329.
[4] WANG"M,nbsp;LI"Y,"LI"S,"et"al."Endothelial"dysfunction"and"diabetic"cardiomyopathy[J]."Front"Endocrinol"(Lausanne),"2022,"13:"851941.
[5] LI"S,"LIU"M,"CHEN"J,"et"al."L-carnitine"alleviates"cardiac"microvascular"dysfunction"in"diabetic"cardiomyopathy"by"enhancing"PINK1-Parkin-dependent"mitophagy"through"the"CPT1a-PHB2-PARL"pathways[J]."Acta"Physiol"(Oxf),"2023,"238(3):"e13975.
[6] JIANG"Y,"KRANTZ"S,"QIN"X,"et"al."Caveolin-1"controls"mitochondrial"damage"and"ROS"production"by"regulating"fission-fusion"dynamics"and"mitophagy[J]."Redox"Biol,"2022,"52:"102304.
[7] SYGITOWICZ"G,"SITKIEWICZ"D."Mitochondrial"quality"control:"The"role"in"cardiac"injury[J]."Front"Biosci"(Landmark"Ed),"2022,"27(3):"96.
[8] CHANG"X,"LI"Y,"CAI"C,"et"al."Mitochondrial"quality"control"mechanisms"as"molecular"targets"in"diabetic"heart[J]."Metabolism,"2022,"137:"155313.
[9] CHEN"Y,"LI"S,"ZHANG"Y,"et"al."The"lncRNA"Malat1"regulates"microvascular"function"after"myocardial"infarction"in"mice"via"miR-26b-5p/Mfn1"axis-mediated"mitochondrial"dynamics[J]."Redox"Biol,"2021,"41:"101910.
[10] WHITLEY"B"N,"ENGELHART"E"A,"HOPPINS"S."Mitochondrial"dynamics"and"their"potential"as"a"therapeutic"target[J]."Mitochondrion,"2019,"49:"269–283.
[11] VáSQUEZ-TRINCADO"C,"GARCíA-CARVAJAL"I,"PENNANEN"C,"et"al."Mitochondrial"dynamics,"mitophagy"and"cardiovascular"disease[J]."J"Physiol,"2016,"594(3):"509–525.
[12] ZHOU"H,"HU"S,"JIN"Q,"et"al."Mff-dependent"mitochondrial"fission"contributes"to"the"pathogenesis"of"cardiac"microvasculature"ischemia/reperfusion"injury"via"induction"of"mROS-mediated"cardiolipin"oxidation"and"HK2/VDAC1"disassociation-involved"mPTP"opening[J]."J"Am"Heart"Assoc,"2017,"6(3):"e005328.
[13] JIN"Q,"LI"R,"HU"N,"et"al."DUSP1"alleviates"cardiac"ischemia/reperfusion"injury"by"suppressing"the"Mff-required"mitochondrial"fission"and"Bnip3-related"mitophagy"via"the"JNK"pathways[J]."Redox"Biol,"2018,"14:"576–587.
[14] SUN"Q,"JIA"H,"CHENG"S,"et"al."Metformin"alleviates"epirubicin-induced"endothelial"impairment"by"restoring"mitochondrial"homeostasis[J]."Int"J"Mol"Sci,"2022,"24(1):"343.
[15] ZOU"R,"SHI"W,"QIU"J,"et"al."Empagliflozin"attenuates"cardiac"microvascular"ischemia/reperfusion"injury"through"improving"mitochondrial"homeostasis[J]."Cardiovasc"Diabetol,"2022,"21(1):"106.
[16] ZHOU"H,"SHI"C,"HU"S,"et"al."BI1"is"associated"with"microvascular"protection"in"cardiac"ischemia"reperfusion"injury"via"repressing"Syk-Nox2-Drp1-mitochondrial"fission"pathways[J]."Angiogenesis,"2018,"21(3):"599–615.
[17] ZHOU"H,"TOAN"S."Pathological"roles"of"mitochondrial"oxidative"stress"and"mitochondrial"dynamics"in"cardiac"microvascular"ischemia/reperfusion"injury[J]."Biomolecules,"2020,"10(1):"85.
[18] SPRENGER"H"G,"LANGER"T."The"good"and"the"bad"of"mitochondrial"breakups[J]."Trends"Cell"Biol,"2019,"29(11):"888–900.
[19] ROMANELLO"V,"SCALABRIN"M,"ALBIERO"M,"et"al."Inhibition"of"the"fission"machinery"mitigates"OPA1"impairment"in"adult"skeletal"muscles[J]."Cells,"2019,"8(6):"597.
[20] ANAND"R,"WAI"T,"BAKER"M"J,"et"al."The"i-AAA"protease"YME1L"and"OMA1"cleave"OPA1"to"balance"mitochondrial"fusion"and"fission[J]."J"Cell"Biol,"2014,"204(6):"919–929.
[21] ZHANG"Y,"WANG"Y,"XU"J,"et"al."Melatonin"attenuates"myocardial"ischemia-reperfusion"injury"via"improving"mitochondrial"fusion/mitophagy"and"activating"the"AMPK-OPA1"signaling"pathways[J]."J"Pineal"Res,"2019,"66(2):"e12542.
[22] YUCHEN"C,"HEJIA"Z,"FANKE"M,"et"al."Exploring"the"shared"molecular"mechanism"of"microvascular"and"macrovascular"complications"in"diabetes:"Seeking"the"hub"of"circulatory"system"injury[J]."Front"Endocrinol"(Lausanne),"2023,"14:"1032015.
[23] LI"Y,"LIU"Y,"LIU"S,"et"al."Diabetic"vascular"diseases:"Molecular"mechanisms"and"therapeutic"strategies[J]."Signal"Transduct"Target"Ther,"2023,"8(1):"152.
[24] 鄭曦,"何藺,"竇曉濤,"等."動(dòng)力相關(guān)蛋白1促進(jìn)高糖誘導(dǎo)的冠狀動(dòng)脈內(nèi)皮細(xì)胞線粒體損傷[J]."解剖學(xué)研究,"2023,"45(4):"379–383.
[25] ZHANG"X,"DUAN"Y,"ZHANG"X,"et"al."Adipsin"alleviates"cardiac"microvascular"injury"in"diabetic"cardiomyopathy"through"Csk-dependent"signaling"mechanism[J]."BMC"Med,"2023,"21(1):"197.
[26] ZHENG"Y,"LUO"A,"LIU"X."The"imbalance"of"mitochondrial"fusion/fission"drives"high-glucose-induced"vascular"injury[J]."Biomolecules,"2021,"11(12):"1779.
[27] QIN"R,"LIN"D,"ZHANG"L,"et"al."Mst1"deletion"reduces"hyperglycemia-mediated"vascular"dysfunction"via"attenuating"mitochondrial"fission"and"modulating"the"JNK"signaling"pathway[J]."J"Cell"Physiol,"2020,"235(1):"294–303.
[28] XIE"J,"CUI"Y,"CHEN"X,"et"al."VDAC1"regulates"mitophagy"in"NLRP3"inflammasome"activation"in"retinal"capillary"endothelial"cells"under"high-glucose"conditions[J]."Exp"Eye"Res,"2021,"209:"108640.
[29] ZHANG"M"Y,"ZHU"L,"BAO"X,"et"al."Inhibition"of"Drp1"ameliorates"diabetic"retinopathy"by"regulating"mitochondrial"homeostasis[J]."Exp"Eye"Res,"2022,"220:"109095.
[30] ZHANG"M"Y,"ZHU"L,"ZHENG"X,"et"al."TGR5"activation"ameliorates"mitochondrial"homeostasis"via"regulating"the"PKCδ/Drp1-HK2"signaling"in"diabetic"retinopathy[J]."Front"Cell"Dev"Biol,"2022,"9:"759421.
[31] ZHANG"Y,"LI"M,"WANG"Y,"et"al."Exosome/"metformin-loaded"self-healing"conductive"hydrogel"rescues"microvascular"dysfunction"and"promotes"chronic"diabetic"wound"healing"by"inhibiting"mitochondrial"fission[J]."Bioact"Mater,"2023,"26:"323–336.
[32] CHEN"W,"XIANG"H,"CHEN"R,"et"al."S1PR2"antagonist"ameliorate"high"glucose-induced"fission"and"dysfunction"of"mitochondria"in"HRGECs"via"regulating"ROCK1[J]."BMC"Nephrol,"2019,"20(1):"135.
[33] REN"L,"HAN"F,"XUAN"L,"et"al."Clusterin"ameliorates"endothelial"dysfunction"in"diabetes"by"suppressing"mitochondrial"fragmentation[J]."Free"Radic"Biol"Med,"2019,"145:"357–373.
[34] JIANG"H,"SHAO"X,"JIA"S,"et"al."The"mitochondria-"targeted"metabolic"tubular"injury"in"diabetic"kidney"disease[J]."Cell"Physiol"Biochem,"2019,nbsp;52(2):"156–171.
[35] LIU"X,"XU"C,"XU"L,"et"al."Empagliflozin"improves"diabetic"renal"tubular"injury"by"alleviating"mitochondrial"fission"via"AMPK/SP1/PGAM5"pathway[J]."Metabolism,"2020,"111:"154334.
[36] WANG"W,"WANG"Y,"LONG"J,"et"al."Mitochondrial"fission"triggered"by"hyperglycemia"is"mediated"by"ROCK1"activation"in"podocytes"and"endothelial"cells[J]."Cell"Metab,"2012,"15(2):"186–200.
[37] ZHOU"H,"WANG"S,"ZHU"P,"et"al."Empagliflozin"rescues"diabetic"myocardial"microvascular"injury"via"AMPK-mediated"inhibition"of"mitochondrial"fission[J]."Redox"Biol,"2018,"15:"335–346.
[38] LIU"H,"XIANG"H,"ZHAO"S,"et"al."Vildagliptin"improves"high"glucose-induced"endothelial"mitochondrial"dysfunction"via"inhibiting"mitochondrial"fission[J]."J"Cell"Mol"Med,"2019,"23(2):"798–810.
[39] ZHANG"Q,"HE"L,"DONG"Y,"et"al."Sitagliptin"ameliorates"renal"tubular"injury"in"diabetic"kidney"disease"via"STAT3-dependent"mitochondrial"homeostasis"through"SDF-1α/CXCR4"pathway[J]."FASEB"J,"2020,"34(6):"7500–7519.
[40] RAVI"R,"SUBRAMANIAM"RAJESH"B."Paraoxonase"2"protects"against"the"CML"mediated"mitochondrial"dysfunction"through"modulating"JNK"pathway"in"human"retinal"cells[J]."Biochim"Biophys"Acta"Gen"Subj,"2022,"1866(1):"130043.
(收稿日期:2023–08–23)
(修回日期:2024–02–21)