李慧敏 顧海波
摘要: 考慮一類動態(tài)模糊系統(tǒng), 該系統(tǒng)由模糊Atangana-Baleanu分數(shù)階微分包含和變分不等式組成, 稱為模糊分數(shù)階微分變分不等式(FFDVI), 它包括了模糊分數(shù)階微分包含和變分不等式兩個領(lǐng)域的研究, 拓寬了模糊環(huán)境下的可研究問題, 該模型在同一框架內(nèi)捕獲了模糊分數(shù)微分包含和分數(shù)微分變分不等式的期望特征. 利用Krasnoselskii不動點定理, 得到了FFDVI在某些溫和條件下解的存在性.
關(guān)鍵詞: Atangana-Baleanu分數(shù)階導(dǎo)數(shù); 分數(shù)階模糊微分變分不等式; Krasnoselskii不動點定理; 解的存在性
中圖分類號: O175.14文獻標志碼: A文章編號: 1671-5489(2024)02-0222-15
Existence of Solutions for a Class of Fuzzy Fractional DifferentialInclusion Systems Driven by Variational Inequalities
LI Huimin, GU Haibo
(School of Mathematical Sciences, Xinjiang Normal University, Urumqi 830017, China)
Abstract: We considered a class of dynamic fuzzy systems, which consisted of fuzzy Atangana-Baleanu fractional differential inclusion and variational inequalities, called fuzzy fractional differential variational inequalities (FFDVI). It included the two fields of fuzzy fractional differential inclusion and variational inequalities, expanding the researchable problems in fuzzy environments. The model captured the desired features of the fuzzy fractional differential inclusion and fractional differential variational inequalities within the same framework. By using Krasnoselskii fixed point theorem, the existence of solutions of FFDVI under some mild conditions was obtained.
Keywords: Atangana-Baleanu fractional derivative; fractional fuzzy differential variational inequality; Krasnoselskii fixed point theorem; existence of solution
0 引 言
分數(shù)階微積分作為經(jīng)典整數(shù)階微積分的一種自然推廣, 近年來備受關(guān)注. 由于整數(shù)階微分方程具有一定的局限性, 而分數(shù)階模糊微分方程在應(yīng)用中比整數(shù)階模糊微分方程更貼合實際, 因此對分數(shù)階模糊變分不等式系統(tǒng)的研究很有必要, 已廣泛應(yīng)用于電動力學(xué)、 生物技術(shù)、 空氣動力學(xué)、 分布式螺旋槳設(shè)計和控制動力系統(tǒng)中[1-8]. 最常用的分數(shù)式積分和微分算子是Riemann-Liouville,Hadamard,Grunwald-Letnikov,Caputo和Riesz-Caputo. Atangana和Baleanu[9]引入了一種新的分數(shù)階導(dǎo)數(shù), 它包含由Mittag-Leffler函數(shù)描述的非局部和非奇異核, Atangana-Baleanu分數(shù)階微積分[9-10]是一種強大的數(shù)學(xué)工具, 可以解釋和描述各種復(fù)雜的物理現(xiàn)象、 化學(xué)反應(yīng)過程、 種群動力學(xué)行為等問題[11-15].
近年來, Caputo和Fabrizio[16]基于實值函數(shù)空間中的冪函數(shù)核, 引入了Caputo意義上的分數(shù)階導(dǎo)數(shù)新定義如下:CFDαa+x(t)=M(α)/1-α∫taexp-α/1-α(t-s)d/dsx(s)ds,其中α∈(0,1), M(α)是滿足M(0)=M(1)=1的歸一化常數(shù). 目前, Caputo-Fabrizio(CF)[17-18]分數(shù)階導(dǎo)數(shù)已經(jīng)在擴散建模和質(zhì)量彈簧-阻尼器系統(tǒng)領(lǐng)域得到廣泛應(yīng)用.
最近, 研究者提出了一個新的分數(shù)階導(dǎo)數(shù)概念, 基于將CF分數(shù)階導(dǎo)數(shù)公式中的函數(shù)核exp{z}替換為函數(shù)(一個參數(shù))Eα,1(z), 這個概念被稱為定義在Caputo意義上的Atangana-Baleanu分數(shù)階導(dǎo)數(shù)(ABC)[9,19]:ABCDαa+x(t)=M(α)/1-α∫taEα,1-α/1-α(t-s)αd/dsx(s)ds,ABC分數(shù)階導(dǎo)數(shù)在傳熱、 變分問題、 混沌理論和經(jīng)濟模型等領(lǐng)域應(yīng)用廣泛.
模糊微分包含在人工智能、 人口動力學(xué)、 石油工程、 力學(xué)、 醫(yī)學(xué)等領(lǐng)域[20-21]的不確定現(xiàn)象建模方面有許多重要應(yīng)用. 最早, Hüllermeier[22]基于在知識系統(tǒng)中的應(yīng)用, 介紹并研究了以下一類模糊微分包含:x′(t)∈[F(t,x(t))]α, α∈[0,1],
x(0)∈[x0]α.Guo等[23]建立了模糊脈沖泛函微分包含的一些存在性結(jié)果, 并在模糊總體模型中提供了一個應(yīng)用; Min等[24]研究了一類隱式模糊微分包含, 并給出了其在鉆井石油工程動力學(xué)中的應(yīng)用; Majumdar等[25]討論了模糊微分包含問題在大氣和醫(yī)學(xué)控制論中的應(yīng)用; Liu等[26]進一步討論了模糊延遲微分包含; Wu等[27]建立了半線性模糊微分包含的一些存在性結(jié)果; Dai等[28]研究了一類通用振子模糊微分方程; Liu等[26]給出了模糊過程、 混合過程和不確定過程的一些基本概念, 并發(fā)展了一種模糊微積分, 提出了一類新的模糊微分方程; Hung等[29]研究了Banach空間中一類具有可解算子的模糊微分包含體.
變分不等式理論是優(yōu)化理論的重要組成部分, 它作為一種數(shù)學(xué)規(guī)劃工具廣泛應(yīng)用于建模等許多優(yōu)化和決策問題中[30-31]. 但在數(shù)學(xué)優(yōu)化、 控制理論、 運籌學(xué)和博弈論等領(lǐng)域中出現(xiàn)許多決策問題, 其面臨著不確定性. 針對這些不確定性, Zadeh[32]首先提出并研究了模糊集的概念. 模糊集理論由于可作為建模不確定問題的有力工具, 也獲得了廣泛關(guān)注. Chang等[33]提出了模糊映射的概念和簡單的模糊變分不等式, 而這種模糊變分不等式之所以能引起研究者的廣泛關(guān)注, 是因為它可以解決如圖像處理、 接觸力學(xué)和動態(tài)交通網(wǎng)絡(luò)等問題, 包括Chang等[34]引入并研究了由模糊映射驅(qū)動的向量擬變分不等式; Chang[35]證明了模糊向量擬變分類不等式解的存在性; 在適當?shù)臈l件下, Huang等[36]應(yīng)用F-KKM[KG*8]定理研究了一類f互補問題; Tang等[37]研究了有限維空間中具有模糊映射的攝動變分不等式的存在定理.
參考文獻
[1]BALEANU D, MACHADO J A T, LUO A C J. Fractional Dynamics and Control [M]. Switzerland: Springer Publishing Company, 2011: 1-218.
[2]KILBAS A A, SRIVASTAVA H M, TRUJILLO J J. Theory and Applications of Fractional Differential Equations [M]//North-Holland Mathematics Studies. Amsterdam: Elsevier Science, 2006: 1-459.
[3]LIU Z H, ZENG S D, BAI Y R. Maximum Principles for Multi-term Space-Time Variable-Order Fractional Diffusion Equations and Their Applications [J]. Fractional Calculus and Applied Analysis, 2016, 19(1): 188-211.
[4]MIGRSKI S, NGUYEN V T, ZENG S D. Solvability of Parabolic Variational-Hemivariational Inequalities [JP2]Involving Space-Fractional Laplacian [J]. Applied Mathematics and Computation, 2020, 364: 124668-1-124668-9.
[5]NAIK P A, ZU J, OWOLABI K M. Modeling the Mechanics of Viral Kinetics under Immune Control during Primary Infection of HIV-1 with Treatment in Fractional Order [J]. Physica A: Statistical Mechanics and Its Applications, 2020, 545: 123816-1-123816-19.
[6]OWOLABI K M, HAMMOUCH Z. Mathematical Modeling and Analysis of Two-Variable System with Noninteger-Order Derivative [J]. Chaos: An Interdisciplinary Journal of Nonlinear Science, 2019, 29(1): 013145-1-013145-15.
[7]SAMKO S G, KILBAS A A, MARICHEV O I. Fractional Integrals and Derivatives [M]. Yverdon, Switzerland: Gordon and Breach Science Publishers, 1993: 1-976.
[8]ZENG S D, MIGRSKI S. A Class of Time-Fractional Hemivariational Inequalities with Application to Frictional Contact Problem [J]. Communications in Nonlinear Science and Numerical Simulation, 2018, 56: 34-48.
[9]ATANGANA A, BALEANU D. New Fractional Derivatives with Nonlocal and Non-singular Kernel: Theory and Application to Heat Transfer Model [J/OL]. Thermal Science, (2016-01-20)[2023-05-09]. https://doi.org/10.48550/arxiv.1602.03408.
[10]ATANGANA A, KOCA I. Chaos in a Simple Nonlinear System with Atangana-Baleanu Derivatives with Fractional Order [J]. Chaos, Solitons & Fractals, 2016, 89: 447-454.
[11]ABDELJAWAD T, BALEANU D. Integration by Parts and Its Applications of a New Nonlocal Fractional Derivative with Mittag-Leffler Nonsingular Kernel [J]. Journal of Nonlinear Sciences and Applications, 2017, 10(3): 1098-1107.
[12]AL-REFAI M, HAJJI M A. Analysis of a Fractional Eigenvalue Problem Involving Atangana-Baleanu Fractional Derivative: A Maximum Principle and Applications [J]. Chaos: An Interdisciplinary Journal of Nonlinear Science, 2019, 29(1): 013135-1-013135-7.
[13]DJIDA J D, MOPHOU G, AREA I. Optimal Control of Diffusion Equation with Fractional Time Derivative with Nonlocal and Nonsingular Mittag-Leffler Kernel [J]. Journal of Optimization Theory and Applications, 2019, 182(2): 540-557.
[14]HEYDARI M H, ATANGANA A. A Cardinal Approach for Nonlinear Variable-Order Time Fractional Schrdinger Equation Defined by Atangana-Baleanu-Caputo Derivative [J]. Chaos, Solitons & Fractals, 2019, 128: 339-348.
[15]OWOLABI K M, ATANGANA A. Computational Study of Multi-species Fractional Reaction-Diffusion System with ABC Operator [J]. Chaos, Solitons & Fractals, 2019, 128: 280-289.
[16]CAPUTO M, FABRIZIO M. A New Definition of Fractional Derivative without Singular Kernel [J]. Progress in Fractional Differentiation & Applications, 2015, 1(2): 73-85.
[17]AL-SALTI N, KARIMOV E, SADARANGANI K. On a Differential Equation with Caputo-Fabrizio Fractional Derivative of Order 1<β≤2 and Application to Mass-Spring-Damper System [J]. Progress in Fractional Differentiation and Applications, 2016, 2(4): 257-263.
[18]HRISTOV J. Transient Heat Diffusion with a Non-singular Fading Memory: From the Cattaneo Constitutive Equation with Jeffreys Kernel to the Caputo-Fabrizio Time-Fractional Derivative [J]. Thermal Science, 2016, 20(2): 757-762.
[19]BALEANU D, FERNANDEZ A. On Some New Properties of Fractional Derivatives with Mittag-Leffler Kernel [J]. Communications in Nonlinear Science and Numerical Simulation, 2018, 59: 444-462.
[20]BADOSOV V A. Fuzzy Differential Inclusions [J]. Journal of Applied Mathematics and Mechanics, 1990, 54(1): 8-13.
[21]CHEN M H, FU Y Q, XUE X P, et al. Two-Point Boundary Value Problems of Undamped Uncertain Dynamical Systems [J]. Fuzzy Sets and Systems, 2008, 159(16): 2077-2089.
[22]HLLERMEIER E. An Approach to Modelling and Simulation of Uncertain Dynamical Systems [J]. International Journal of Uncertainty, Fuzziness and Knowledge-Based Systems, 1997, 5(2): 117-137.
[23]GUO M S, XUE X P, LI R L. Impulsive Functional Differential Inclusions and Fuzzy Population Models [J]. Fuzzy Sets and Systems, 2003, 138(3): 601-615.
[24]MIN C, HUANG N J, LIU Z B, et al. Existence of Solutions for Implicit Fuzzy Differential Inclusions [J]. Applied Mathematics and Mechanics, 2015, 36(3): 401-416.
[25]MAJUMDAR K K, MAJUMDER D D. Fuzzy Differential Inclusions in Atmospheric and Medical Cybernetics [J]. IEEE Transactions on Systems, Man, and Cybernetics, Part B (Cybernetics), 2004, 34(2): 877-887.
[26]LIU Z B, TIAN K Z, WEN G Q, et al. Uniqueness and Continuous Dependence of the Solutions of Fuzzy Delay Differential Inclusions [J]. Journal of Intelligent & Fuzzy Systems, 2017, 33(4): 2171-2176.
[27]WU Z B, ZOU Y Z, HUANG N J. A New Class of Global Fractional-Order Projective Dynamical System with an Application [J]. Journal of Industrial and Management Optimization, 2020, 16(1): 37-53.
[28]DAI R, CHEN M H, MORITA H. Fuzzy Differential Equations for Universal Oscillators [J]. Fuzzy Sets and Systems, 2018, 347: 89-104.
[29]HUNG N V, TAM V M, OREGAN D. Existence of Solutions for a New Class of Fuzzy Differential Inclusions with Resolvent Operators in Banach Spaces [J]. Computational and Applied Mathematics, 2020, 39(2): 42-1-42-23.
[30]CAPATINA A. Variational Inequalities and Frictional Contact Problems [M]. New York: Springer, 2014: 1-235.
[31]AUSSEL D, DUTTA J. Generalized Nash Equilibrium Problem, Variational Inequality and Quasiconvexity [J]. Operations Research Letters, 2008, 36(4): 461-464.
[32]ZADEH L A. Fuzzy Sets [J]. Information and Control, 1965, 8(3): 338-353.
[33]CHANG S S L, ZADEH L A. On Fuzzy Mapping and Control [J]. IEEE Transactions on Systems, Man, and Cybernetics, 1972(1): 30-34.
[34]CHANG S S, LEE G M, LEE B S. Vector Quasivariational Inequalities for Fuzzy Mappings (Ⅱ) [J]. Fuzzy Sets and Systems, 1999, 102(2): 333-344.
[35]CHANG S S. Existence of Vector Quasi-variational-like Inequalities for Fuzzy Mappings [J]. Fuzzy Sets and Systems, 2013, 233: 89-95.
[36]HUANG N J, LI J, OREGAN D. Generalized f-Complementarity Problems in Banach Spaces [J]. Nonlinear Analysis: Theory, Methods & Applications, 2008, 68(12): 3828-3840.
[37]TANG G J, ZHAO T, WAN Z P, et al. Existence Results of a Perturbed Variational Inequality with a Fuzzy Mapping [J]. Fuzzy Sets and Systems, 2018, 331: 68-77.
[38]GIANNESSI F. On Minty Variational Principle [C]//New Trends in Mathematical Programming. Boston: Kluwer Academic Publishers, 1998: 93-99.
[39]KENMOCHI N. Nonlinear Operators of Monotone Type in Reflexive Banach Spaces and Nonlinear Perturbations [J]. Hiroshima Mathematical Journal, 1974, 4(1): 229-263.
[40]DJEBALI S, GRNIEWICZ L, OUAHAB A. First-Order Periodic Impulsive Semilinear Differential Inclusions: Existence and Structure of Solution Sets [J]. Mathematical and Computer Modelling, 2010, 52(5/6): 683-714.
(責(zé)任編輯: 趙立芹)
收稿日期: 2023-06-02. 網(wǎng)絡(luò)首發(fā)日期: 2024-03-02.
第一作者簡介: 李慧敏(1997—), 女, 回族, 碩士研究生, 從事微分方程理論及其應(yīng)用的研究, E-mail: 1275013458@qq.com.
通信作者簡介: 顧海波(1982—), 男, 漢族, 博士, 教授, 從事微分方程理論及其應(yīng)用的研究, E-mail: hbgu_math@163.com.
基金項目: 國家自然科學(xué)基金(批準號: 11961069)、 新疆優(yōu)秀青年科技人才培訓(xùn)計劃項目(批準號: 2019Q022)、 新疆維吾爾自治區(qū)自然科學(xué)基金(批準號: 2019D01A71)和新疆師范大學(xué)青年拔尖人才計劃項目(批準號: XJNUQB2022-14).
網(wǎng)絡(luò)首發(fā)地址: https://link.cnki.net/urlid/22.1340.o.20240228.1502.003.