丁聰 劉楊 陽鶯 沈瑞剛
摘要: 利用虛單元方法在多面體網格上求解一種三維穩(wěn)態(tài)Poisson-Nernst-Planck(PNP)方程, 并給出PNP方程的虛單元離散形式, 推導電勢方程及離子濃度方程的剛度矩陣與荷載向量的矩陣表達式. 數(shù)值實驗結果表明, 在3種不同的多面體網格下實現(xiàn)了PNP方程的虛單元計算, 數(shù)值解在L2和H1范數(shù)下均達到最優(yōu)階.
關鍵詞: Poisson-Nernst-Planck方程; 虛單元方法; 多面體網格; 三維
中圖分類號:? O241.82文獻標志碼: A文章編號: 1671-5489(2024)02-0293-09
Virtual Element Computation for a Three-Dimensional Poisson-Nernst-Planck Equations
DING Cong1, LIU Yang2, YANG Ying1, SHEN Ruigang1
(1. Guangxi Colleges and Universities Key Laboratory of Data Analysis and Computation, Guangxi Applied Mathematics Center (GUET), School of Mathematics and Computing Science, Guilin University of Electronic Technology, Guilin 541004, Guangxi Zhuang Autonomous Region, China;2. School of Mathematics and Computational Science, Xiangtan University, Xiangtan 411105, Hunan Province, China)
Abstract: The virtual element method was used to solve a three-dimensional steady-state Poisson-Nernst-Planck (PNP) equations on polyhedral meshes. The virtual element discrete forms of the PNP equations were given, and the matrix expressions of the stiffness matrix and the load vector of the electric potential equation and ion concentration equation were derived. The numerical experimental results show that the virtual element computation of PNP equations is realized in three different polyhedral meshes, and the numerical solutions reach the optimal order in both L2 and H2 norms.
Keywords: Poisson-Nernst-Planck equation; virtual element method; polyhedral mesh; three-dimension
PNP(Poisson-Nernst-Planck)方程[1]是由Poisson方程和NP(Nernst-Planck)方程耦合而成的一類非線性偏微分方程系統(tǒng), 常用于描述電擴散反應過程, 在半導體[2]、 電化學系統(tǒng)[3]和生物膜通道[4]等領域應用廣泛.
PNP方程因其自身的強耦合性和非線性性, 使得對該方程的求解較困難, 且在極少情況下有解析解. 早期求解PNP方程的主要方法為有限元[5]、 有限差分[6]和有限體積[7]等方法, 其中: 有限差分法易于編程實現(xiàn), 但不適用于非規(guī)則區(qū)域; 有限體積法能處理非結構化網格和復雜的邊界條件, 但由于高階控制體設計困難, 因此很難達到較高的精度; 有限元方法因適用于處理不規(guī)則幾何形狀區(qū)域和復雜邊界問題而被廣泛應用, 在求解一些PNP 方程中取得了很好的效果. 但經典的有限元方法精度依賴于網格質量, 對具有復雜界面的PNP方程效果不佳. Beiro等[8]提出的虛單元法具有更好的網格適應性, 對于多邊形或多面體單元, 甚至包含非凸單元組成的網格剖分, 虛單元法都可以進行靈活計算; 文獻[9]闡述了虛單元方法的理論發(fā)展, 通過介紹虛單元方法在Poisson方程、 線彈性、 非線性等問題中的應用, 展現(xiàn)了虛單元方法在工程科學計算領域的巨大潛力; 劉楊[10]對一類二維PNP方程設計了相應的虛單元格式, 并給出了其在H1范數(shù)下的誤差估計; Su等[11]在多面體網格上提出了PNP方程的保正和自由能耗散混合格式, 并給出了離子濃度的正性及自由能耗散等性質, 但僅對Poisson方程使用虛單元法, 而對NP方程采用有限體積法求解.
本文采用虛單元方法計算三維穩(wěn)態(tài)PNP方程, 介紹了虛單元空間、 自由度以及虛單元方法中三類投影算子的定義, 給出三維穩(wěn)態(tài)PNP方程的虛單元離散形式, 并利用投影算子的張量形式對虛單元離散下PNP方程的剛度矩陣和荷載向量矩陣給出表達式. 將PNP耦合系統(tǒng)解耦成單個的子方程進行求解, 對Poisson方程的虛單元解h的梯度利用虛單元投影算子做近似, 再代入NP方程的非線性項中形成耦合迭代. 進行三維PNP模型問題的數(shù)值實驗結果表明, 虛單元解在L2和H1范數(shù)下都達到最優(yōu)階, 說明虛單元方法對于三維穩(wěn)態(tài)PNP方程的計算有效.
綜上所述, 本文將虛單元方法應用于三維穩(wěn)態(tài)[WTBZ]PNP方程的計算, 給出了PNP方程的虛單元離散格式, 以及電勢方程與離子濃度方程的剛度矩陣和荷載矩陣的形式. 數(shù)值實驗結果表明, 六面體網格、 四面體網格和Voronoi網格下的虛單元解的L2模誤差達到2階收斂階, H1模誤差的收斂階達到1階收斂階. 實驗結果表明了虛單元法在多面體網格下求解三維穩(wěn)態(tài)PNP方程的有效性. 此外, 該方法還可以應用到時間相關的PNP方程以及更復雜的離子通道PNP方程[1]中.
參考文獻
[1]YANG Y, TANG M, LIU C, et al. Superonvergent Gradient Recovery for Nonlinear Poisson-Nernst-Planck Equations with Applications to the Ion Channel Problem [J]. Advances in Computational Mathematics, 2020, 46(6): 78-1-78-35.
[2]GAJEWSKI H, JEROME J W. Analysis of Charge Transport: A Mathematical Study of Semiconductor Devices [M]. New York: Springer-Verlag, 1996: 14-18.
[3]MARCICKI J, CONLISK A T, RIZZONI G. Comparison of Limiting Descriptions of the Electrical Double Layer Using a Simplified Lithium-Ion Battery Model [J]. ECS Transactions, 2012, 41(14): 9-21.
[4]EISENBERG B, HYON Y, LIU C. Energy Variational Analysis of Ions in Water and Channels: Field Theory for Primitive Models of Complex Ionic Fluids [J]. The Journal of Chemical Physics, 2010, 133(10): 104104-1-104104-23.
[5]LU B Z, HOLST M J, McCAMMON J A, et al. Poisson-Nernst-Planck Equations for Simulating Biomolecular Diffusion-Reaction Processes Ⅰ: Finite Element Solutions [J]. Journal of Computational Physics, 2010, 229(19): 6979-6994.
[6]FLAVELL A, MACHEN M, EISENBERG B, et al. A Conservative Finite Difference Scheme for Poisson-Nernst-Planck Equations [J]. Journal of Computational Electronics, 2014, 13: 235-249.
[7]FUHRMANN J. Activity Based Finite Volume Methods for Generalised Nernst-Planck-Poisson Systems [M]. [S.l.]: Springer, 2014: 597-605.
[8]BEIRO DA VEIGA L, BREZZI F, CANGIANI A, et al. Basic Principles of Virtual Element Methods [J]. Mathematical Models and Methods in Applied Sciences, 2013, 23(1): 199-214.
[9]劉傳奇, 許廣濤, 魏宇杰. 虛單元計算方法的最新理論與應用進展 [J]. 力學進展, 2022, 52(4): 874-913. (LIU C Q, XU G T, WEI Y J. Virtual Element Method: Theory and Applications [J]. Advances in Mechanics, 2022, 52(4): 874-913.)
[10]劉楊. 二維穩(wěn)態(tài)Poisson-Nernst-Planck方程的一種虛單元方法 [D]. 湘潭: 湘潭大學, 2020. (LIU Y. A Virtual Element Method for Two-Dimensional Steady-State Poisson-Nernst-Planck Equations [D]. Xiangtan: Xiangtan University, 2020.)
[11]SU S, TANG H Z. A Positivity-Preserving and Free Energy Dissipative Hybrid Scheme for the Poisson-Nernst-Planck Equations on Polygonal and Polyhedral Meshes [J]. Computers & Mathematics with Applications, 2022, 108: 33-48.
[12]BEIRO DA VEIGA L, BREZZI F, MARINI L D, et al. Virtual Element Method for General Second-Order Elliptic Problems on Polygonal Meshes [J]. Mathematical Models and Methods in Applied Sciences, 2016, 26(4): 729-750.
[13]BEIRO DA VEIGA L, BREZZI F, MARINI L D, et al. The Hitchhikers Guide to the Virtual Element Method [J]. Mathematical Models and Methods in Applied Sciences, 2014, 24(8): 1541-1573.
[14]AHMAD B, ALSAEDI A, BREZZI F, et al. Equivalent Projectors for Virtual Element Methods [J]. Computers & Mathematics with Applications, 2013, 66(3): 376-391.
[15]BEIRO DA VEIGA L, LOVADINA C, RUSSO A. Stability Analysis for the Virtual Element Method [J]. Mathematical Models and Methods in Applied Sciences, 2017, 27(13): 2557-2594.
[16]LIU Y, SHU S, WEI H Y, et al. A Virtual Element Method for the Steady-State Poisson-Nernst-Planck Equations on Polygonal Meshes [J]. Computers & Mathematics with Applications, 2021, 102: 95-112.
[17]YANG Y, LU B Z, XIE Y. A Decoupling Two-Grid Method for the Steady-State Poisson-Nernst-Planck Equations [J]. Journal of Computational Mathematics, 2019, 37(4): 556-578.
(責任編輯: 趙立芹)
收稿日期: 2023-06-27.
第一作者簡介: 丁 聰(1998—), 男, 漢族, 碩士研究生, 從事偏微分方程數(shù)值求解的研究, E-mail: dingcongup@qq.com.
通信作者簡介: 陽 鶯(1976—), 女, 漢族, 博士, 教授, 從事偏微分方程數(shù)值求解的研究, E-mail: yangying@lsec.cc.ac.cn.
基金項目: 廣西科技基地和人才專項基金(批準號: 桂科AD23026048)和國家自然科學基金(批準號: NSFC12161026; 12101595).