張蕊 張東霞 朱興秋 鄭衛(wèi)鋒 李婭 郭艷瓊 庾琴
摘? ? 要:【目的】明確阿維菌素致死中濃度(LC50)連續(xù)處理對(duì)梨小食心蟲(Grapholita molesta)的抗性風(fēng)險(xiǎn)及其交互抗性?!痉椒ā吭谑覂?nèi)條件下,采用浸果法測(cè)定阿維菌素對(duì)梨小食心蟲田間種群(F)初孵幼蟲的LC50值;以F種群為基礎(chǔ),建立梨小食心蟲對(duì)阿維菌素相對(duì)敏感品系(SS)、F種群連續(xù)6代接觸LC50濃度阿維菌素的田間抗性品系(FR)和6代未接觸阿維菌素的田間對(duì)照品系(FS),測(cè)定阿維菌素對(duì)不同品系梨小食心蟲初孵幼蟲的毒力,計(jì)算其抗性水平;測(cè)定高效氯氟氰菊酯、吡蟲啉和氯蟲苯甲酰胺對(duì)不同品系的毒力,分析不同品系與其交互抗性。【結(jié)果】田間種群對(duì)阿維菌素抗性倍數(shù)為4.608倍,敏感性降低;阿維菌素致死中濃度汰選2代后,梨小食心蟲對(duì)阿維菌素抗性為低水平,汰選4代后升至中等水平,6代后升至20.304倍;未接觸阿維菌素的梨小食心蟲從第4代降為敏感,第6代時(shí)敏感性進(jìn)一步恢復(fù)??剐云废悼剐袁F(xiàn)實(shí)遺傳力h2=0.186,在致死率50%~90%選擇壓力下,梨小食心蟲對(duì)阿維菌素抗性增加10倍,預(yù)計(jì)需汰選4~9代。汰選6代品系對(duì)高效氯氟氰菊酯抗性倍數(shù)為8.487倍,有交互抗性;對(duì)吡蟲啉和氯蟲苯甲酰胺無交互抗性。對(duì)照品系對(duì)高效氯氟氰菊酯、吡蟲啉和氯蟲苯甲酰胺均無交互抗性。【結(jié)論】梨小食心蟲對(duì)阿維菌素存在快速產(chǎn)生抗性的風(fēng)險(xiǎn),中抗品系與高效氯氟氰菊酯有交互抗性,低敏感品系與3種藥劑均無交互抗性。田間使用阿維菌素時(shí)可通過間隔用藥或與無交互抗性藥劑輪換使用來減緩抗性發(fā)展。
關(guān)鍵詞:梨小食心蟲;阿維菌素;初孵幼蟲;抗性風(fēng)險(xiǎn)評(píng)估;交互抗性
中圖分類號(hào):S661.2;S436.612 文獻(xiàn)標(biāo)志碼:A 文章編號(hào):1009-9980(2024)03-0525-08
Resistance risk assessment and the cross-resistance of Grapholita molesta to avermectin
ZHANG Rui1, ZHANG Dongxia2, ZHU Xingqiu1, ZHENG Weifeng2, LI Ya1, GUO Yanqiong1, YU Qin1*
(1College of Plant Protection, Shanxi Agricultural University, Taiyuan 030031, Shanxi, China; 2Shanxi Provincial Plant Protection and Quarantine Station, Taiyuan 030801, Shanxi, China)
Abstract: 【Objective】 Grapholita molesta is a major pest of many kinds of fruit crops in the world and China. Due to its characteristics of boring, hiding and generations overlapping, G. molesta is difficult to control. With the climate warming, and the change of cultivation mode and management technology in pear orchards, the damage of G. molesta has been increasing year by year in several major fruit species in China, including peaches, pears and apples. Currently, chemical pesticides are still one of the most effective measure to control G. molesta. Long-term frequent and non-standard use of pesticides has led to a gradual decline in the effectiveness of chemical control to G. molesta, and G. molesta has developed varying degrees of resistance to some pesticides in pear orchards. Avermectin, a high efficiency and low toxicity pesticide used in pear orchards frequently, was used for 5-7 times in a year to control many kinds of pests, such as G. molesta, Aphis citricola Van der Goot, Tetranychus viennensis Zacher, and so on. Over the past 20 years, the application concentration of avermectin has increased by 40 times in pear orchards due to its high dose and exceessive usage times. Studies on avermectin mainly focus on its toxicity, control efficacy, management and efficience in pear orchards. The change patterns of resistance and sensitiveness were studied with lethal concentration of 50% of avermectin to G. molesta in this paper. By studying the resistance and sensitivity changes, it is expected to obtain change patterns of resistance, development speed, resistance heritability of G. molesta to avermectin, and its interaction resistance with other pesticides that were also used in pear orchards, such as imidacloprid, chlorphenicol benzamide, lambda-cyhalothrin and so on. The objective of this experiment was to obtain theoretical basis for reasonable use avermectin to delay the development of its resistance in pear orchards. 【Methods】 In order to measure control efficiency of avermectin to G. molesta neonate larvae, the survival rate and damage rate of G. molesta neonate larvae were measured with fruitlets as the sample. The G. molesta neonate larvae and larvae were fed in an artificial intelligence incubator under the following conditions: (25±1) ℃, 70%-80% relative humidity, 3000-4000 lx illumination and 15 h//9 h (L/D) photoperiod. The test agent was 92.00% avermectin, 96.0% Lambda-cyhalothrin, 96% imidacloprid and 96% chlorantraniliprole. Fruit dipping method was used to measure the resistance development of G. molesta to avermectin. These methods included: (1) the young fruits of apple with same variety, consistent size, and good appearance were wash with pure water, dried in air, and soaked in the pesticide solution for 10 seconds. (2) The young fruits were taken out from pesticide solution, excessive pesticide solution was absorbed with a filter paper, and they were placed on a plastic container with a wet filter paper and a lid at the bottom. (3) The paper containing 50 G. molesta ready-to-hatch eggs was placed on the young fruit gently, then the egg was managed to contact the fruit, and the relative humidity in the container was maintained above 90%. (4) Tween-80 aqueous solution with a mass fraction of 0.02% was taken as the control. Each process was repeated for three times. (5) The survival rate of G. molesta neonate larvae was surveyed in 78 h after laying eggs. Survey method was determined by observing carefully pest morphological characteristic and damage symptoms of G. molesta neonate larvae on apple and damage rate in 78 h. According to mortality of G. molesta neonate larvae, the toxicity equation and LC50 were calculated with SPPS. Two strains of G. molesta neonate larvae were obtained from field populations, which were resistance-selection by LC50 of avermectin. The field population was collected from pear orchards in Yanhu District, Yuncheng City, Shanxi province in 2022. Two strains were field resistant strain and field control strain. Field resistant strain was selected with LC50 of avermectin, and the toxicity of earlier generation of G. molesta neonate larvae was measured for six times. Field control strain was fed with apples, which were not touched by any pesticides. The comparative strain G. molesta was susceptible strain that was reared 100 generations continuously in the lab. The toxicity of different strains of G. molesta was measured in 2 generations, 4 generations and 6 generations, respectively. The resistance ratio (RR) and sensitivity level of different strains G. molesta were calculated with resistance multiple formulas. In order to obtain cross-resistance of different strains of G. molesta, Lambda-cyhalothrin, imidacloprid and chlorflubenzamide that were used frequently in pear orchards were selected to assess the cross-resistance to field resistant strain and field control strain of G. molesta. Experimental data were analyzed with Duncans new multiple range test (p<0.05). 【Results】 The LC50 of avermectin of field population of G. molesta was 1.092 mg·L-1, and its resistance ratio was 4.608 times higher than the susceptible strain, with low sensitivity. The resistance level of field population selected with LC50 avermectin at second generation was up to low resistance from low sensitivity. The LC50 of field population increased continuously with the increase of selection generations when the resistance ratios were 11.966 and 20.304 times at fourth generation and sixth generation respectively, which increased to the medium resistance level. The sensitivity of the field population without exposure to avermectin increased gradually. The resistance ratio of the field population decreased to 2.802 times at fourth generations, which was sensitivity. The toxicity of the field population of G. molesta without exposure to avermectin decreased from first generation to sixth generation and its sensitivity was further improved. The results also showed that the continuous use of avermectin in field populations of G. molesta caused a rapid increase in the level of resistance to avermectin. The sensitivity of strains of G. molesta without continued exposure to avermectin increased sensitivity to avermectin. The field population of G. molesta was selected with LC50 avermectin for 6 generations, and its actual heritability of resistance was h2 = 0.186. The actual heritability of F0-F2 and F4-F6 selection stage was 0.242 and 0.196, respectively. In the case of resistance heritability of 0.186, the resistance of G. molesta to avermectin increased by 10 times in about 4-9 generations. The resistance ratio of the 6th generation resistant strain of G. molesta to lambda-cyhalothrin was 8.487, which was a cross-resistance between them. The resistance ratio to chlorantraniliprole was 3.940, and its resistance ratio also increased. The resistance ratio to imidacloprid was 1.487 with no cross-resistance. The resistance ratios of the field population control strain to lambda-cyhalothrin, imidacloprid and chlorantraniliprole were 1.688, 0.962 and 1.243, respectively, and there was no cross-resistance among them. 【Conclusion】 G. molesta could develop resistance to avermectin rapidly. The low-sensitive field population of G. molesta could decrease sensitiveness with no exposure to avermectin. The medium-resistant strain had cross-resistance to lambda-cyhalothrin, and the low-sensitive strain had no cross-resistance to lambda-cyhalothrin, imidacloprid and chlorantraniliprole. The development of resistance of G. molesta to avermectin can be slowed down by interval medication or rotative application of avermectin and its non-cross-resistance pesticides in pear orchards. Therefore, avermectin should be used in pear orchards with an interval, and growers should reduce or limit the use frequency of lambda-cyhalothrin and chlorantraniliprole to avoid or delay the emergence and development of resistance, and ensure the control efficacy of avermectin and other pesticides, which were used in pear orchards frequently.
Key words: Grapholita molesta; Avermectin; Neonate larvae; Resistance risk assessment; Cross-resistance
梨小食心蟲(Grapholita molesta)為世界和中國(guó)重大果樹害蟲,因其鉆蛀性、隱蔽性、世代重疊嚴(yán)重等特點(diǎn),其防治較為困難[1-3]。目前梨小食心蟲多采用化學(xué)藥劑防控,藥劑主要包括阿維菌素、氯蟲苯甲酰胺、高效氯氟氰菊酯、毒死蜱等,化學(xué)藥劑長(zhǎng)期頻繁不規(guī)范使用已導(dǎo)致害蟲產(chǎn)生了不同程度的抗性[4],其化學(xué)防治效果逐年下降[5-6],阿維菌素為生物源類殺蟲劑,生產(chǎn)上主要用于防治多種害蟲[7-9]。因其殺蟲活性強(qiáng)、殺蟲譜廣,在梨園中常用于防治梨小食心蟲、梨木虱、黃粉蚜和山楂葉螨等多種害蟲[10-12],年使用次數(shù)5~7次。因其用藥不規(guī)范,20 a(年)間,阿維菌素在梨園中的施藥濃度由0.5%制劑稀釋4000倍增至5%制劑稀釋1000倍,增加了40倍。筆者課題組測(cè)定了山西省不同區(qū)域的田間種群,部分種群已具中等抗性水平(待發(fā)表)。作為梨園主要防治藥劑,阿維菌素在當(dāng)前及今后較長(zhǎng)時(shí)間內(nèi)仍頻繁使用,因而,如何合理科學(xué)使用該藥劑成為生產(chǎn)上迫切需要解決的問題。目前阿維菌素田間使用次數(shù)主要從農(nóng)藥殘留和果品安全性等角度來確定,未從其抗性角度研究其使用技術(shù);阿維菌素對(duì)梨小食心蟲防控作用也多集中于研究其毒力和田間防效等,對(duì)其抗性發(fā)展規(guī)律、抗性現(xiàn)實(shí)遺傳力及交互抗性等研究較少。筆者在本研究中以室內(nèi)敏感種群為參照,以田間種群為基礎(chǔ),測(cè)定阿維菌素致死中濃度處理的梨小食心蟲抗性發(fā)展和無藥劑處理的敏感性變化趨勢(shì),獲得其抗性變化趨勢(shì)、發(fā)展速度、抗性遺傳力及其與梨園常用藥劑交互抗性,從抗性發(fā)展角度為該藥劑合理使用、延緩抗性發(fā)展等提供理論依據(jù)。
1 材料和方法
1.1 供試蟲源
供試?yán)嫘∈承南x敏感種群(SS)為室內(nèi)繼代飼養(yǎng)100代以上;田間種群(F)為山西省運(yùn)城市鹽湖區(qū)酥梨園采集的種群。飼養(yǎng)條件為:溫度(25±1)℃、相對(duì)濕度70%~80%,光照度3000~4000 lx,光周期為L(zhǎng)/D=15 h/9 h,下同。
1.2 供試藥劑
阿維菌素(avermectin)原藥,純度92.0%,山東齊發(fā)藥業(yè)有限公司;高效氯氟氰菊酯(lambda-cyhalothrin)原藥,純度96.0%,山東濰坊潤(rùn)豐化工股份有限公司;吡蟲啉(imidacloprid)原藥,純度96.0%,遼寧宏峰科技有限公司;氯蟲苯甲酰胺(chlorantraniliprole)原藥,純度96.0%,遼寧省沈陽豐收農(nóng)藥有限公司。
1.3 毒力測(cè)定
采用浸果法。具體參考庾琴等[13-14]的方法,略有改動(dòng)。挑選同一品種、大小一致、性狀良好的蘋果幼果,洗凈晾干后,放入藥液中浸泡10 s,取出后用濾紙吸掉多余藥液,平穩(wěn)放于底部鋪有濕濾紙、具蓋的塑料容器(直徑為10 cm、高4 cm)中,將附有50粒待孵化卵的卵紙輕放于幼果上,有卵面接觸果面,蓋上蓋,器皿中保持相對(duì)濕度90%以上;以0.02%的吐溫-80水溶液為對(duì)照。每個(gè)處理設(shè)置3次重復(fù)。接卵后78 h調(diào)查蛀果數(shù),依據(jù)蛀果孔洞處有無新鮮蟲糞判定為幼蟲是否死亡[14],記錄死亡蟲數(shù)。
抗性倍數(shù)(resistance ratio,RR)=待測(cè)梨小食心蟲種群LC50/相對(duì)敏感種群LC50。
參考黃彥娜[15]抗性倍數(shù)劃分標(biāo)準(zhǔn):RR≤3為敏感、3<RR≤5為敏感性降低、5<RR≤10為低水平抗性、10<RR≤40為中等水平抗性、40<RR≤160為高水平抗性、RR>160為極高水平抗性。
1.4 梨小食心蟲田間抗性品系汰選和敏感性恢復(fù)
在室內(nèi)條件下,根據(jù)1.3獲得的LC50濃度阿維菌素對(duì)梨小食心蟲田間種群(F)進(jìn)行汰選,每代處理一次,處理時(shí)以藥液完全濕潤(rùn)幼果且不流失為度。此后每代均使用上一代LC50濃度進(jìn)行汰選,連續(xù)施藥6次后種群為田間抗性品系(FR);連續(xù)6代未施藥種群為田間對(duì)照品系(FS),以實(shí)驗(yàn)室飼養(yǎng)的敏感品系(SS)為試驗(yàn)參考品系。
1.5 抗性風(fēng)險(xiǎn)評(píng)估
1.5.1 抗性現(xiàn)實(shí)遺傳力估算 抗性現(xiàn)實(shí)遺傳力(h2)采用Tabashnik等[16]的閾性狀分析法計(jì)算,其中,R為選擇反應(yīng),S為選擇差異,i為選擇強(qiáng)度,δΡ為表性標(biāo)準(zhǔn)差。計(jì)算公式分別為:
h2=R/S。
R=[log(終LC50)-log(始LC50)]/n,其中,n為選擇代數(shù),終LC50為選擇n代后的LC50,始LC50為選擇前親代的LC50。
S=i×δΡ。
i=1.583-0.019 333 6P+0.000 042 8P2+3.651 941/P(10<P<80),P=100-平均校正死亡率,平均校正死亡率為抗性選育過程中各代死亡率用Abbott公式校正后的平均值。
δΡ=[1/2(初斜率+終斜率)]-1,初斜率為選擇前親本毒力回歸方程的斜率,終斜率為選擇n代后的毒力回歸方程斜率。
1.5.2 抗性發(fā)展速率預(yù)測(cè) 根據(jù)現(xiàn)實(shí)遺傳力h2,可預(yù)測(cè)抗性上升x倍所需代數(shù)[Gx=lgx/(h2S)],以及不同選擇壓力(50%~90%)下抗性上升10倍所需代數(shù):G=R-1=(h2 S)-1 [17]。
1.6 交互抗性測(cè)定
測(cè)定梨小食心蟲3個(gè)品系對(duì)梨園中常用的3種藥劑高效氯氟氰菊酯、吡蟲啉和氯蟲苯甲酰胺的毒力,毒力測(cè)定方法同1.3。參照SS品系LC50,計(jì)算3個(gè)品系抗性倍數(shù),評(píng)估其是否存在交互抗性。
1.7 數(shù)據(jù)處理
利用Excel軟件整理數(shù)據(jù),利用SPSS 24.0進(jìn)行單因素方差分析,求出斜率值、LC50、卡方值、自由度和標(biāo)準(zhǔn)偏差等。
RR<1表示負(fù)交互抗性,1≤RR<5表示無交互抗性,RR>5表示有交互抗性[18]。
2 結(jié)果與分析
2.1 阿維菌素對(duì)梨小食心蟲不同品系毒力和抗性變化趨勢(shì)
如表1所示,阿維菌素對(duì)梨小食心蟲田間種群LC50為1.092 mg·L-1,抗性倍數(shù)4.608倍,為敏感性降低。該種群經(jīng)LC50阿維菌素汰選,隨著汰選代數(shù)增加,其LC50不斷增加,汰選至第2代時(shí)由低敏感升至低抗性水平;汰選至第4代和6代時(shí),其抗性倍數(shù)分別為11.966倍和20.304倍,增至中等抗性水平。未接觸阿維菌素的田間種群敏感性逐漸上升,未施藥4代后,田間種群抗性倍數(shù)降至2.802倍,為敏感;未接觸農(nóng)藥6代時(shí),梨小食心蟲對(duì)阿維菌素的抗性為2.001倍,敏感性進(jìn)一步提高。結(jié)果說明,已對(duì)阿維菌素敏感性降低的田間種群連續(xù)使用阿維菌素處理使其對(duì)阿維菌素抗性水平快速升高;而連續(xù)未接觸阿維菌素的品系其敏感性逐漸提高。
2.2 梨小食心蟲對(duì)阿維菌素抗性現(xiàn)實(shí)遺傳力及抗性發(fā)展速率
結(jié)果(表2)表明,用阿維菌素汰選田間種群梨小食心蟲6代,抗性現(xiàn)實(shí)遺傳力h2=0.186,其中F0~F2汰選階段的現(xiàn)實(shí)遺傳力為0.242,F(xiàn)4~F6汰選階段的現(xiàn)實(shí)遺傳力為0.196。結(jié)果說明,梨小食心蟲對(duì)阿維菌素存在快速產(chǎn)生抗性的風(fēng)險(xiǎn)。
通過阿維菌素汰選田間抗性種群所得到的抗性現(xiàn)實(shí)遺傳力h2和選擇差異S,分別計(jì)算在選擇壓力為50%~90%的情況下,梨小食心蟲田間種群對(duì)阿維菌素抗性增加10倍所需要的代數(shù)。結(jié)果(圖1)表明,在抗性遺傳力為0.186的情況下,阿維菌素對(duì)梨小食心蟲抗性上升10倍需代數(shù)4~9代。結(jié)果說明,梨小食心蟲抗性增加較快,較高濃度阿維菌素處理時(shí),其產(chǎn)生中等抗性風(fēng)險(xiǎn)較大。
2.3 梨小食心蟲不同品系對(duì)3種藥劑的交互抗性
結(jié)果(表3)表明,田間種群阿維菌素汰選6代的FR品系對(duì)高效氯氟氰菊酯的抗性倍數(shù)為8.487,存在交互抗性;對(duì)氯蟲苯甲酰胺抗性倍數(shù)為3.940,抗性倍數(shù)增加;對(duì)吡蟲啉抗性倍數(shù)為1.487,無交互抗性。田間種群連續(xù)6代未接觸阿維菌素的FS品系對(duì)高效氯氟氰菊酯、吡蟲啉和氯蟲苯甲酰胺的抗性倍數(shù)分別為1.688、0.962和1.243,均無交互抗性。結(jié)果說明,對(duì)阿維菌素敏感品系與試驗(yàn)選擇的3種藥劑均無交互抗性;隨著其抗性增至中等抗性水平,其與高效氯氟氰菊酯有交互抗性。
3 討 論
阿維菌素可有效防控多種害蟲[7-9],如使用不規(guī)范,害蟲易對(duì)其產(chǎn)生抗藥性或敏感性下降[19]。筆者在本研究中發(fā)現(xiàn),梨園現(xiàn)有使用技術(shù)條件下(阿維菌素用藥5~7次),試驗(yàn)采集的梨小食心蟲田間種群已對(duì)阿維菌素敏感性降低;對(duì)該種群連續(xù)使用阿維菌素半致死劑量處理2代后,梨小食心蟲由低敏感性升至低等抗性水平,當(dāng)進(jìn)一步用藥至第4代時(shí),其抗性水平升至中等抗性水平;而未接觸阿維菌素4代后其抗性從4.608倍降至2.802倍,由低敏感性提高至敏感性。因而,在田間使用時(shí),阿維菌素不僅從農(nóng)藥殘留和食品安全間隔期來考慮其使用次數(shù),也要從抗性變化角度來考慮其間隔使用技術(shù),保證其處于敏感性或低敏感性水平,來保障其較好防治效果。
藥劑抗性現(xiàn)實(shí)遺傳力是其抗性風(fēng)險(xiǎn)評(píng)估的重要參數(shù)。阿維菌素對(duì)不同害蟲抗性現(xiàn)實(shí)遺傳力不同,對(duì)易產(chǎn)生抗性的小菜蛾和不易產(chǎn)生抗性的橘全爪螨,其抗性現(xiàn)實(shí)遺傳力分別為0.130和0.047 5,在50%~99%選擇壓力下兩種害蟲對(duì)其抗性上升10倍分別需要3~16代[20]和12~26代[21];筆者在本研究中發(fā)現(xiàn),阿維菌素對(duì)梨小食心蟲抗性現(xiàn)實(shí)遺傳力h2=0.186,在50%~90%選擇壓力下,梨小食心蟲對(duì)阿維菌素抗性上升10倍需4~9代。說明阿維菌素對(duì)梨小食心蟲抗性上升快,風(fēng)險(xiǎn)較大。這可能與梨小食心蟲化學(xué)防控技術(shù)要求有關(guān),梨小食心蟲化學(xué)防治時(shí),要求在成蟲盛發(fā)期后3~5 d時(shí)施藥,此時(shí)初孵幼蟲接觸農(nóng)藥的濃度較高,這可能是其抗性增加快速原因之一。同時(shí),阿維菌素汰選6代,F(xiàn)0~F2汰選階段的h2為0.242,F(xiàn)4~F6汰選階段h2為0.196,表現(xiàn)出汰選前期現(xiàn)實(shí)遺傳力大于汰選后期的現(xiàn)實(shí)遺傳力,這與甲氨基阿維菌素苯甲酸鹽、虱滿脲對(duì)草地貪夜蛾[22]、Bt[17]和溴氰蟲酰胺[23]對(duì)小菜蛾抗性的篩選結(jié)果相似,說明梨小食心蟲初始種群中可能存在抗性基因,子代表現(xiàn)型可能由遺傳變異來實(shí)現(xiàn),抗性發(fā)展較快;隨著抗性篩選持續(xù),敏感基因可能被淘汰,抗性發(fā)展減慢。
現(xiàn)有研究結(jié)果表明,高等抗性水平鱗翅目害蟲易對(duì)其他殺蟲劑產(chǎn)生交互抗性,在小菜蛾[24-25]、二化螟[26]、黏蟲[27]、草地貪夜蛾[28]、斜紋夜蛾[29]等害蟲中均有發(fā)現(xiàn)。筆者在本研究中發(fā)現(xiàn),田間種群未接觸阿維菌素的對(duì)照品系對(duì)高效氯氟氰菊酯、吡蟲啉和氯蟲苯甲酰胺均無交互抗性;而汰選6代的抗性品系對(duì)氯蟲苯甲酰胺的抗性倍數(shù)明顯增加,對(duì)高效氯氟氰菊酯存在交互抗性;隨著梨小食心蟲對(duì)阿維菌素抗性增加,其對(duì)梨園常用藥劑可能存在交互抗性風(fēng)險(xiǎn)。因而,在田間梨小食心蟲化學(xué)防治中,在使用阿維菌素時(shí)不僅要考慮使用次數(shù),也要科學(xué)安排使用間隔時(shí)間,減少或限制高效氯氟氰菊酯和氯蟲苯甲酰胺使用次數(shù),避免或延緩其抗藥性產(chǎn)生和發(fā)展,保證藥劑防治效果。
4 結(jié) 論
連續(xù)使用阿維菌素半致死劑量處理2代后,梨小食心蟲由低敏感性升至低等抗性水平,進(jìn)一步用藥至第4代時(shí),其抗性水平升至中等抗性水平;而未接觸阿維菌素的4代后其由低敏感性提高至敏感性。阿維菌素對(duì)梨小食心蟲抗性現(xiàn)實(shí)遺傳力h2=0.186,在50%~90%選擇壓力下,梨小食心蟲對(duì)阿維菌素抗性上升10倍需4~9代。田間種群未接觸阿維菌素的對(duì)照品系對(duì)高效氯氟氰菊酯、吡蟲啉和氯蟲苯甲酰胺均無交互抗性;而汰選6代的抗性品系對(duì)氯蟲苯甲酰胺的抗性倍數(shù)增加,對(duì)高效氯氟氰菊酯存在交互抗性。田間使用阿維菌素時(shí)可通過間隔用藥或與無交互抗性藥劑輪換使用來減緩抗性發(fā)展。
參考文獻(xiàn) References:
[1] 王雪婷. 陜西幾個(gè)地區(qū)梨小食心蟲及李小食心蟲種群動(dòng)態(tài)監(jiān)測(cè)[D]. 楊凌:西北農(nóng)林科技大學(xué),2019.
WANG Xueting. Population dynamics monitoring of Grapholita molesta and Grapholita funebrana in several areas of Shaanxi[D]. Yangling:Northwest A & F University,2019.
[2] 柴曉晗. 桃園環(huán)境和品種差異對(duì)梨小食心蟲兩性引誘劑防控效果的影響[D]. 太谷:山西農(nóng)業(yè)大學(xué),2021.
CHAI Xiaohan. Effects of cultivation characteristics and varieties of peach orchards on the control efficiency of the dual-sex attractant for Grapholita molesta[D]. Taigu:Shanxi Agricultural University,2021.
[3] 韓慧,毛瑞卿,趙志國(guó),張利軍,高玲玲,郭艷瓊. 3種不同類型殺蟲劑對(duì)梨小食心蟲的室內(nèi)毒力測(cè)定[J]. 山西農(nóng)業(yè)科學(xué),2019,47(8):1470-1473.
HAN Hui,MAO Ruiqing,ZHAO Zhiguo,ZHANG Lijun,GAO Lingling,GUO Yanqiong. Indoor toxicity of three types of insecticides against Grapholita molesta Busck[J]. Journal of Shanxi Agricultural Sciences,2019,47(8):1470-1473.
[4] 劉月英,周昭旭,張美嬌,曹利軍. 浸卵法測(cè)定甘肅省梨小食心蟲田間種群對(duì)8種殺蟲劑的敏感性[J]. 農(nóng)藥學(xué)學(xué)報(bào),2022,24(4):819-824.
LIU Yueying,ZHOU Zhaoxu,ZHANG Meijiao,CAO Lijun. Sensitivity of field populations of Grapholita molesta in Gansu Province to eight insecticides using the egg dipping method[J]. Chinese Journal of Pesticide Science,2022,24(4):819-824.
[5] GUO Y Q,CHAI Y P,ZHANG L J,ZHAO Z G,GAO L L,MA R Y. Transcriptome analysis and identification of major detoxification gene families and insecticide targets in Grapholita molesta (Busck) (Lepidoptera:Tortricidae)[J]. Journal of Insect Science,2017,17(2):43.
[6] MONTEIRO L B,WITT L G,GUILOSKI I C,DOS SANTOS R S S,SILVA DE ASSIS H C. Evaluation of resistance management for the oriental fruit moth (Lepidoptera:Tortricidae) to insecticides in Brazilian apple orchards[J]. Journal of Economic Entomology,2020,113(3):1411-1418.
[7] 蔡明飛,沈健,仵均祥. 不同殺蟲劑對(duì)梨小食心蟲卵和成蟲的室內(nèi)防效[J]. 果樹學(xué)報(bào),2010,27(4):636-640.
CAI Mingfei,SHEN Jian,WU Junxiang. Indoor control efficiency of six pesticides on eggs and adults of oriental fruit moth,(Grapholitha molesta)[J]. Journal of Fruit Science,2010,27(4):636-640.
[8] 王芳. 不同藥劑對(duì)梨小食心蟲不同蟲態(tài)的藥效及亞致死效應(yīng)的研究[D]. 太谷:山西農(nóng)業(yè)大學(xué),2019.
WANG Fang. Control effciency of different pesticides on different stages of G. molesta and research of sublethal effects[D]. Taigu:Shanxi Agricultural University,2019.
[9] 張治科,尚小霞,馬榮. 棉蚜及異色瓢蟲對(duì)不同藥劑的敏感性測(cè)定[J]. 中國(guó)瓜菜,2022,35(9):91-94.
ZHANG Zhike,SHANG Xiaoxia,MA Rong. Sensitivity of different insecticides against Aphis gossypii and Harmonia axyridis[J]. China Cucurbits and Vegetables,2022,35(9):91-94.
[10] 朱紅艷,伍濤,李先明,涂俊凡,楊夫臣,劉政,秦仲麒. 棚架梨園主要蟲害危害特點(diǎn)及綠色防治技術(shù)應(yīng)用[J]. 現(xiàn)代園藝,2018(6):43-44.
ZHU Hongyan,WU Tao,LI Xianming,TU Junfan,YANG Fuchen,LIU Zheng,QIN Zhongqi. Characteristics of main pests in shed pear orchard and application of green control technology[J]. Contemporary Horticulture,2018(6):43-44.
[11] 金煒. 安徽省幾種特色水果主要蟲害發(fā)生調(diào)查及防治研究[D]. 合肥:安徽農(nóng)業(yè)大學(xué),2016.
JIN Wei. Research of the occurrence characteristic and control effect on main fruit pest in Anhui province[D]. Hefei:Anhui Agricultural University,2016.
[12] 潘升水. 南方采摘梨園主要病蟲害綜合防治技術(shù)[J]. 林業(yè)與生態(tài),2020(12):36-37.
PAN Shengshui. Integrated control technology of main diseases and insect pests in picking pear orchards in southern China[J]. Forestry and Ecology,2020(12):36-37.
[13] 庾琴,杜恩強(qiáng),郭曉君,封云濤,張潤(rùn)祥. 不同殺蟲劑及其組合對(duì)梨小食心蟲初孵幼蟲的毒力及田間防效[J]. 植物保護(hù),2020,46(5):265-269.
YU Qin,DU Enqiang,GUO Xiaojun,F(xiàn)ENG Yuntao,ZHANG Runxiang. Toxicity of six insecticides and their mixtures to the neonate larvae of Grapholita molesta (Busck) and their field control effects[J]. Plant Protection,2020,46(5):265-269.
[14] 庾琴,封云濤,郭曉君,杜恩強(qiáng),郭貴明,張潤(rùn)祥. 梨小食心蟲初孵幼蟲藥效測(cè)定方法研究[J]. 果樹學(xué)報(bào),2017,34(11):1483-1489.
YU Qin,F(xiàn)ENG Yuntao,GUO Xiaojun,DU Enqiang,GUO Guiming,ZHANG Runxiang. Testing method of pesticide on Grapholitha molesta (Busck) neonate larvae[J]. Journal of Fruit Science,2017,34(11):1483-1489.
[15] 黃彥娜. 陜西關(guān)中地區(qū)禾谷縊管蚜抗藥性監(jiān)測(cè)及共生菌檢測(cè)[D]. 楊凌:西北農(nóng)林科技大學(xué),2018.
HUANG Yanna. Insecticide resistance monitoring and symbionts detection in Rhopalosiphum padi field populations from Guanzhong area of Shaanxi Province[D]. Yangling:Northwest A & F University,2018.
[16] TABASHNIK B E,MCGAUGHEY W H. Resistance risk assessment for single and multiple insecticides:responses of indianmeal moth (Lepidoptera:Pyralidae) to Bacillus thuringiensis[J]. Journal of Economic Entomology,1994,87(4):834-841.
[17] TABASHNIK B E. Resistance risk assessment:Realized heritability of resistance to Bacillus thuringiensis in diamondback moth (Lepidoptera:Plutellidae),tobacco budworm (Lepidoptera:Noctuidae),and Colorado potato beetle (Coleoptera:Chrysomelidae)[J]. Journal of Economic Entomology,1992,85(5):1551-1559.
[18] 沈晉良,譚建國(guó),肖斌,譚福杰,尤子平. 我國(guó)棉鈴蟲對(duì)擬除蟲菊酯類農(nóng)藥的抗性監(jiān)測(cè)及預(yù)報(bào)[J]. 昆蟲知識(shí),1991,28(6):337-341.
SHEN Jinliang,TAN Jianguo,XIAO Bin,TAN Fujie,YOU Ziping. Monitoring and forecasting of resistance of cotton bollworm to pyrethroid pesticides in China[J]. Entomological Knowledge,1991,28(6):337-341.
[19] 周宇航,李鳳良,金劍雪,李文紅,程英. 貴州菜區(qū)南美斑潛蠅對(duì)殺蟲劑的敏感性監(jiān)測(cè)[J]. 中國(guó)瓜菜,2022,35(5):42-50.
ZHOU Yuhang,LI Fengliang,JIN Jianxue,LI Wenhong,CHENG Ying. Susceptibility monitoring of Liriomyza huidobrensis to insecticides in vegetable production area in Guizhou[J]. China Cucurbits and Vegetables,2022,35(5):42-50.
[20] 梁延坡,吳青君,張友軍,徐寶云,謝圣華,吉訓(xùn)聰. 小菜蛾對(duì)阿維菌素的抗性風(fēng)險(xiǎn)評(píng)估及交互抗性的室內(nèi)測(cè)定[J]. 熱帶生物學(xué)報(bào),2010,1(3):228-232.
LIANG Yanpo,WU Qingjun,ZHANG Youjun,XU Baoyun,XIE Shenghua,JI Xuncong. Resistance risk assessment and cross-resistance of Plutella xylostella to abamectin[J]. Journal of Tropical Biology,2010,1(3):228-232.
[21] 何恒果,趙志模,閆香慧,王進(jìn)軍. 橘全爪螨對(duì)阿維菌素和甲氰菊酯的抗性現(xiàn)實(shí)遺傳力及風(fēng)險(xiǎn)評(píng)估[J]. 應(yīng)用生態(tài)學(xué)報(bào),2011,22(8):2147-2152.
HE Hengguo,ZHAO Zhimo,YAN Xianghui,WANG Jinjun. Resistance Realized heritability and risk assessment of Panonychus citri to avermectin and fenpropathrin[J]. Chinese Journal of Applied Ecology,2011,22(8):2147-2152.
[22] 趙金鳳,邱良妙,丁雪玲,姚鳳鑾,盧學(xué)松,鄭宇,翁啟勇. 草地貪夜蛾對(duì)甲氨基阿維菌素苯甲酸鹽和虱螨脲的抗性風(fēng)險(xiǎn)評(píng)估[J]. 植物保護(hù),2022,48(4):88-93.
ZHAO Jinfeng,QIU Liangmiao,DING Xueling,YAO Fengluan,LU Xuesong,ZHENG Yu,WENG Qiyong. Risk assessment of the resistance to emamectin benzoate and lufenuron in Spodoptera frugiperda[J]. Plant Protection,2022,48(4):88-93.
[23] 徐巨龍. 小菜蛾對(duì)十種殺蟲劑的抗性檢測(cè)及對(duì)溴氰蟲酰胺的抗性風(fēng)險(xiǎn)評(píng)估[D]. 泰安:山東農(nóng)業(yè)大學(xué),2020.
XU Julong. Resistance detection of diamondback moth to ten insecticides and resistant risk assessment of cyantraniliprole[D]. Taian:Shandong Agricultural University,2020.
[24] 李騰武,高希武,鄭炳宗. 小菜蛾對(duì)阿維菌素的抗性遺傳分析及交互抗性研究[J]. 植物保護(hù),1999,25(6):12-14.
LI Tengwu,GAO Xiwu,ZHENG Bingzong. Genetic analysis and cross resistance of Plutella xylostella to avermectins[J]. Plant Protection,1999,25(6):12-14.
[25] 梁沛,高希武,鄭炳宗,戴洪波. 小菜蛾對(duì)阿維菌素的抗性機(jī)制及交互抗性研究[J]. 農(nóng)藥學(xué)學(xué)報(bào),2001,3(1):41-45.
LIANG Pei,GAO Xiwu,ZHENG Bingzong,DAI Hongbo. Study on resistance machanisms and cross-resistance of abamectin in diamondback moth Plutella oxylostella (L.)[J]. Chinese Journal of Pesticide Science,2001,3(1):41-45.
[26] 許小龍,顧中言,韓麗娟,周建高,婁金貴. 阿維菌素系列化合物對(duì)4種重要鱗翅目害蟲的毒力研究[J]. 華東昆蟲學(xué)報(bào),2005,14(2):184-187.
XU Xiaolong,GU Zhongyan,HAN Lijuan,ZHOU Jiangao,LOU Jingui. Toxicity of abamectin series compounds to four important lepidopteral pests[J]. Entomological Journal of East China,2005,14(2):184-187.
[27] 宋月芹,王海濤,陳玉國(guó),王圣印,孫會(huì)忠. 黏蟲抗甲氨基阿維菌素苯甲酸鹽種群的交互抗性與生化抗性機(jī)制[J]. 農(nóng)藥學(xué)學(xué)報(bào),2017,19(1):18-24.
SONG Yueqin,WANG Haitao,CHEN Yuguo,WANG Shengyin,SUN Huizhong. Cross-resistance and biochemical resistance mechanisms of emamectin benzoate resistant population of Mythimna separata[J]. Chinese Journal of Pesticide Science,2017,19(1):18-24.
[28] 蔣興川,沈懌丹,孫勁超,李秀霞,黃勇,董永成,操海群. 氯蟲苯甲酰胺和甲維鹽對(duì)草地貪夜蛾幼蟲的毒力及解毒酶活性的影響[J]. 環(huán)境昆蟲學(xué)報(bào),2019,41(5):961-967.
JIANG Xingchuan,SHEN Yidan,SUN Jinchao,LI Xiuxia,HUANG Yong,DONG Yongcheng,CAO Haiqun. Effect of chlorantraniliprole and emamectin benzoate on toxicity and detoxification enzymes activity in Spodoptera frugiperda larva[J]. Journal of Environmental Entomology,2019,41(5):961-967.
[29] 賀金. 斜紋夜蛾對(duì)阿維菌素抗性風(fēng)險(xiǎn)分析及其抗性生化機(jī)理[D]. 泰安:山東農(nóng)業(yè)大學(xué),2009.
HE Jin. Resistance risk analysis and biochemical mechanism of Spodoptera litura to avermectin[D]. Taian:Shandong Agricultural University,2009.