趙紫君 趙晨 楊可 池明 張衛(wèi)華
摘? ? 要: 【目的】探究西瓜黃化斑點葉片的生理特性與遺傳傾向,為該材料在實際應用及后續(xù)基因定位與克隆提供參考依據?!痉椒ā恳渣S化斑點葉西瓜TNY1201和普通西瓜1182為材料,對其葉片表型、解剖結構以及光合生理特性進行對比分析,同時建立六世代群體進行遺傳傾向研究?!窘Y果】TNY1201從第一片真葉開始就具有黃化斑點性狀,與普通西瓜葉片相比,具有面積大、密度小的氣孔,葉片上下表皮細胞形狀不規(guī)則,柵欄組織和海綿組織排列松散,葉片緊密度小,海綿組織所占體積較大;TNY1201凈光合速率與葉綠素含量均顯著低于1182,氣孔導度、胞間CO2濃度顯著高于1182;將TNY1201與1182進行正反交與回交,遺傳傾向表現(xiàn)為F2中葉片有斑與無斑的分離比為3:1,回交BC1P1葉片有斑與無斑分離比為1∶1?!窘Y論】TNY1201葉片葉綠素含量、凈光合速率均顯著低于普通西瓜葉片。TNY1201葉片的黃化斑點由一對顯性核基因控制。
關鍵詞:西瓜;葉片斑點;生理特性;遺傳傾向
中圖分類號:S651 文獻標志碼:A 文章編號:1009-9980(2024)03-0517-08
Study on physiology and genetic tendency of watermelon spotted leaf
ZHAO Zijun, ZHAO Chen, YANG Ke, CHI Ming, ZHANG Weihua*
(College of Horticulture and Landscape, Tianjin Agricultural University, Tianjin 300392, China)
Abstract: 【Objective】 Leaf color variation represents a common plant alteration. It is notably caused by genetic mutations that result in an abnormal chlorophyll metabolism leading to changes in leaf color. Hence, these mutations are popularly identified as chlorophyll mutations. The leaf color variance can serve as a phenotypic marker in plant breeding and as a germplasm resource for ornamental plants. In the realm of plant physiology, leaf color variants are recognized as ideal materials to investigate a spectrum of physiological processes like photosynthesis and hormone metabolism. In the context of genetics, variant analysis can aid in recognizing the function of corresponding genes. TNY1201, a watermelon germplasm, displays speckled attributes on each leaf. Thus, the exploration of its leaf structure, photosynthesis, and genetic features can provide a benchmark for its practical usage and subsequent gene mapping and cloning. The present investigation undertook a comparative analysis on the leaf phenotype, anatomical structure, and photosynthetic physiological characteristics between the spotted leaf watermelon TNY1201 and ordinary watermelon 1182. 【Methods】 The healthy and unblemished leaves were harvested from different individuals of spotted leaf watermelon TNY1201 and typical watermelon 1182 to ascertain the pertinent parameters of the leaves. The leaf length and width were measured. The praffin sections were crafted to observe and assess the anatomical structure of the leaves. The average area and density of single stomata were measured using a micrometer and nail polish imprinting technique. The photosynthetic parameters including net photosynthetic rate, stomatal conductance, transpiration rate, and intercellular CO2 concentration were quantified via GFS-3000 photosynthetic apparatus at 09:00—10:00 on a clear day. The chlorophyll content of the leaves was estimated by alcohol extraction method. The content of dissolved sugar was measured by Anthrone colorimetry, and the content of soluble protein was assayed by the Coomassie brilliant blue method. The seeds of F1, F1, F2, BC1P1 and BC1P2 progeny were obtained via conventional field management and artificial pollination. The P1 (1182), P2 (TNY1201), orthogonal F1, reciprocal F1, BC1P1, BC1P2 progeny were sowed in module trays. As the seedlings matured to three leaves, the count of individual plants of spotless leaves and spotted leaves was surveyed and the data were analysed by Chi square test to determine the genetic tendency. 【Results】 From the first real leaf, all leaves of the TNY1201 have yellow spots. The average single stomatal area of the TNY1201 leaves equated to 467.97 μm2, substantially larger than that of the 1182 leaves. Conversely, the stomatal density of the 1182 leaves was notably higher than those of the TNY1201. The anatomical parameters demonstrated notable disparities between the TNY1201 and 1182 leaves. Referencing the leaves of 1182, the morphology of the epidermal cells of the TNY1201 leaves was irregular, the palisade tissue and spongy tissue were loosely aligned within the mesophyll tissue, and the spongy tissue occupied a smaller proportion of volume. The leaf width, leaf area and leaf thickness of the TNY1201 are 18.38 cm, 206.59 cm2 and 124.13 μm, respectively, markedly greater than those of the 1182. Contrarily, there was no significant difference in the leaf length between the two materials. The content of chlorophyll in the TNY1201 leaves was significantly lower than 1182. The content of chlorophyll a, chlorophyll b and total chlorophyll in the TNY1201 leaves amounted to 82.51%, 70.97% and 75.38% of the 1182. There was no significant disparity in carotenoid content between the TNY1201 and 1182 leaves. The net photosynthetic rate of the 1182 leaves was 7.90 μmol·m-2·s-1. The net photosynthetic rate of the TNY1201 leaves was 6.98 μmol·m-2·s-1. The net photosynthetic rate of the 1182 was significantly higher than that of the TNY1201, which accounted for a 1.13 times increase over the TNY1201. The stomatal conductance and intercellular CO2 concentration of the TNY1201 leaves exhibited significantly higher values than those of the 1182. The transpiration rates demonstrated no significant variance between the TNY1201 and 1182 leaves. The content of soluble protein in the TNY1201 leaves was 22.70 μg·g-1, noticeably higher than that of the 1182 leaves. The total soluble sugar content of the TNY1201 leaves was 0.77 mg·g-1, which was markedly lower than that of the 1182 leaves. The F2 segregation population comprised 188 plants, including 146 individuals with spotted leaves and 42 individuals without spotted leaves. In contrast, the BC1P1 population of the 142 plants included 74 individuals with spotted leaves and 68 without spotted leaves. There were 145 strains present in the BC1P2 population, and all displayed spots on their leaves. Furthermore, the proportion of leaves exhibiting spots in the F2 plant population followed an approximate 3∶1 segregation ratio, while the proportion in the BC1P1 population followed a 1∶1 separation ratio. 【Conclusion】 The mesophyll tissue compactness in the TNY1201 leaves was lower than that of the 1182, and the proportion of palisade tissue was minimal. It could be postulated that there was fewer chloroplast in the TNY1201 leaves compared with 1182, leading to decreased chlorophyll content and photosynthetic rate, resulting in limited accumulation of photosynthetic products. The development of leaf spots was attributed to the reduction of chlorophyll content in the leaves. It would be noteworthy that the genetic control of these spots in the TNY1201 leaves was governed by a pair of dominant nuclear genes.
Key words: Watermelon; Spotted leaf mutant; Physiological characteristics; Genetic tendency
葉色變異是植物界一種正常的生命現(xiàn)象。在植物育種工作中,葉色變化既可以作為標記性狀,簡化選擇過程,也可以像花色、果色一樣作為觀賞元素,培育出多樣的彩葉植物[1]。葉色變化受多種遺傳與生理機制調控。王建玉等[2]對甜瓜芽黃材料進行遺傳分析,發(fā)現(xiàn)甜瓜芽黃突變性狀可穩(wěn)定遺傳,屬于隱性基因控制的細胞核遺傳。楊莎等[3]將辣椒野生型材料與葉色黃化突變體材料雜交,并將F1自交,通過觀察分離性狀計算分離比,發(fā)現(xiàn)辣椒葉色黃化性狀是由一對核基因控制的隱性性狀。王亞玲等[4]對番茄黃綠葉突變體進行了遺傳分析,結果表明,黃綠葉性狀受隱性單基因控制。葉色變化會影響植物的光合作用,并產生一系列生理生化反應。因此葉色突變體也成為研究植物光合作用、激素代謝等一系列生理過程的重要材料[5]。邵勤[6]在甜瓜中發(fā)現(xiàn)了黃化的葉色突變體,對黃化突變體和野生型材料的葉綠素含量進行對比研究,結果表明,突變體的葉色黃化與葉綠素含量有著直接的關系。曹穩(wěn)[7]對黃瓜的花斑葉突變體進行研究,測定突變體與野生型材料的光合參數和葉綠素含量,發(fā)現(xiàn)突變體的光合能力、葉綠素含量都低于野生型。李萬青等[8]對黃瓜黃化突變體和普通葉片在幼苗期的光合參數進行測定,結果表明,葉色黃化突變體的凈光合速率與胞間CO2濃度均顯著低于普通的黃瓜葉片。Ma等[9]在山茶中發(fā)現(xiàn)了花斑葉突變體,通過對突變體與野生型材料的葉綠體解剖結構進行觀察,發(fā)現(xiàn)突變體的葉綠體數量有所減少。
西瓜是重要的園藝作物,研究西瓜葉色變化具有重要意義。任藝慈等[10]在對西瓜黃化突變體進行研究時發(fā)現(xiàn)黃化性狀伴隨整個生育期,植株黃化是由總葉綠素缺乏導致的。徐銘等[11]對西瓜后綠突變體的光合特性進行研究,得出Ⅰ期(第三節(jié)位)由于光合色素含量低導致幼葉黃化,Ⅱ期(第九節(jié)位)光合色素含量大幅提高,葉色也逐漸由黃轉綠。但是對西瓜帶有黃色斑點葉片與普通葉片生理特性、解剖結構差異及遺傳規(guī)律的研究未見報道。
西瓜自交系TNY1201葉片具有不規(guī)則黃色斑點,能正常開花結實,1182是普通的西瓜自交系。筆者將TNY1201與1182的葉片表型、生理特性、解剖結構進行比較,有助于闡明形成黃色斑點的生理機制及其對葉片生理、結構特性造成的影響。筆者以TNY1201和1182作為親本構建六世代群體(P1、P2、F1、F2、BC1P1、BC1P2),分析葉片斑點的遺傳傾向,可為后續(xù)進行基因定位與克隆提供參考依據,也為利用西瓜葉片斑點標記輔助育種奠定基礎。
1 材料和方法
1.1 材料
本試驗供試的西瓜材料TNY1201和1182由天津市桑田梓地農業(yè)科技有限公司提供。TNY1201為黃色斑點葉片西瓜,子葉無斑點,從第一片真葉開始,所有葉片均帶有黃色斑點(圖1-A);1182為普通西瓜,所有葉片均無斑點(圖1-B)。
1.2 方法
1.2.1 斑點葉片的生理特性測定 2022年3月5日將1182和TNY1201兩份材料播種育苗,4月1日定植于天津農學院西校區(qū)玻璃溫室,正常管理。定植40 d時,在兩個品種的10個不同個體上分別采集健康、陽生且無破損的材料,其中TNY1201選取黃綠混合部分,將兩種取樣材料編號密封于封口袋內,帶回實驗室進行葉片表型、解剖結構、光合色素含量等指標的測定。
利用直尺測定葉長、葉寬等葉片表型。利用指甲油印跡法[12]和測微尺測定氣孔密度、氣孔大小。利用石蠟切片法[13]和測微尺測定上表皮厚度、下表皮厚度、柵欄組織厚度、海綿組織厚度。柵海比=柵欄組織厚度/海綿組織厚度。組織疏密度=海綿組織厚度/葉片厚度。采用95%乙醇提取法測定光合色素含量[14]。采用蒽酮比色法測定可溶性糖含量[15],采用考馬斯亮藍G-250染色法測定可溶性蛋白含量[15]。
在盛花期,選擇晴朗無風的天氣,在上午10:00使用GFS-3000光合儀測定葉片的光合參數。
1.2.2 斑點葉片的斑點遺傳分析 2022年將1182、TNY1201進行正反交,得到正反交的F1代種子。2023年3月將兩個親本與正反交F1播種,進行人工授粉得到BC1P1、BC1P2和F2種子。2023年7月將六世代群體播種,調查群體苗期(三葉一心)的無斑葉片和有斑葉片的單株數量,對所得數據進行卡方檢驗,確定遺傳傾向。
1.3 數據分析
采用SPSS26.0 軟件進行試驗數據處理及差異顯著性分析,應用ImageJ軟件進行試驗圖片處理。
2 結果與分析
2.1 斑點葉片西瓜與普通西瓜葉片表型比較
從表1可以看出,兩種材料的葉長無顯著差異,TNY1201葉片寬度、葉片面積和葉片厚度分別為20.88 cm、247.08 cm2和176.12 μm,均顯著高于1182。
2.2 斑點葉片西瓜與普通西瓜葉片結構比較
由表2可知,TNY1201的葉片單個氣孔面積平均為467.97 μm2,顯著大于1182。1182葉片氣孔密度為137.36個·mm-2,顯著大于TNY1201。綜上所述,1182的葉片氣孔單個面積小但密度大,而TNY1201的葉片則相反,單個氣孔面積大但密度小。
從圖2可以看出,西瓜的葉片為典型的異面葉,葉片由上下表皮細胞、柵欄組織和海綿組織構成,海綿組織由3~5層排列疏松的細胞組成。TNY1201葉片與普通葉片的解剖結構存在很大差別。1182的葉片組織結構清晰,上下表皮細胞完整,有明顯的柵欄組織和海綿組織,柵欄組織排列緊密。TNY1201斑點葉的葉片上下表皮細胞形狀不規(guī)則,柵欄組織和海綿組織排列松散。
由表3可以看出,TNY1201葉片和1182的葉片解剖結構參數之間存在顯著差異。TNY1201的上下表皮厚度顯著大于1182,分別為1182的1.33倍和1.39倍,柵欄組織厚度和海綿組織厚度也都顯著大于1182,分別為66.24 μm和69.54 μm。1182葉肉組織緊密度和柵海比顯著大于TNY1201。TNY1201的葉肉組織疏密度為0.40%,顯著大于1182。
2.3 斑點葉片西瓜與普通西瓜葉片光合生理參數比較
從表4可以看出,TNY1201葉片的葉綠素a、葉綠素b和總葉綠素的含量都顯著低于1182葉片。1182的葉綠素a、葉綠素b和總葉綠素含量分別是TNY1201的1.21倍、1.39倍和1.33倍。TNY1201葉片類胡蘿卜素含量和葉綠素a/b值與1182葉片無顯著差異。
從表5可以看出,1182葉片的凈光合速率為7.90 μmol·m-2·s-1,顯著高于TNY1201,是TNY1201葉片凈光合速率的1.13倍。TNY1201葉片的氣孔導度、胞間CO2濃度都顯著高于1182,蒸騰速率之間無顯著差異。
從表6可以看出,1182葉片可溶性總糖含量顯著高于TNY1201,是TNY1201的1.75倍。TNY1201葉片可溶性蛋白含量為22.70 μg·g-1,顯著高于1182。
2.4 西瓜葉片斑點的遺傳傾向分析
從表7可以看出,親本1182葉片全部無斑,親本TNY1201、正反交F1都有黃色斑點,表明葉片斑點為細胞核遺傳。BC1P2植株葉片也全都有黃色斑點。F2群體共188株,其中146株葉片有斑,42株葉片無斑。BC1P1群體共142株,其中74株葉片有斑,68株葉片無斑。F2植株葉片有斑、無斑的比例符合3∶1的分離比,BC1P1植株葉片有斑、無斑的比例符合1∶1的分離比。以上結果表明TNY1201葉片的斑點性狀受一對顯性核基因控制。
3 討 論
葉片是植物與外界進行氣體交換和光合作用的重要器官,葉片的結構形態(tài)直接影響植物的光合作用、蒸騰作用等[16]。TNY1201的柵欄組織排列松散,葉肉組織緊密度顯著低于1182,而葉綠體大部分位于柵欄組織中[17],推斷TNY1201的葉綠體含量低于1182,這與葉綠素含量的測定結果相符合。本試驗中TNY1201的葉綠素含量顯著低于1182,葉色改變是光合色素含量變化的外在表現(xiàn)[5]。由此可以推斷葉片在進行光合作用時,在缺少葉綠素的情況下,葉綠素a和葉綠素b間的轉換受到阻礙。綜上所述,可能是葉綠素的合成陷入停滯狀態(tài),致使葉綠素含量降低,從而使葉片出現(xiàn)黃色斑點[1]。崔麗朋等[18]在研究番茄葉色黃化突變體時,測定了兩種材料的葉綠素含量,結果表明葉色黃化突變體的葉綠素含量顯著低于野生型,與本試驗研究結果相似。
氣孔是葉片進行光合作用所需的CO2進入植物體內的主要通道,因此氣孔的密度以及面積是植物正常生長的基礎[19]。張艷萍等[17]對觀賞桃葉片的氣孔參數與光合速率進行測定,發(fā)現(xiàn)氣孔小而密集的葉片光合速率較高。本試驗中,TNY1201氣孔面積大密度小,可能導致其葉片光合速率低于普通西瓜,這與葉片凈光合速率測定的結果相符合。光合色素含量直接或間接地影響植物的光合能力,具體表現(xiàn)在凈光合速率、蒸騰速率、胞間CO2濃度等指標發(fā)生變化方面[19]。胡亮亮等[20]在對黃瓜葉色突變體進行研究時發(fā)現(xiàn),突變體的凈光合速率顯著低于野生型,胞間CO2濃度顯著高于野生型,推測突變體光合能力較低并非僅受氣孔大小和密度的影響,而且也受CO2的利用率較低影響。本試驗中TNY1201的凈光合速率顯著低于1182,胞間CO2濃度和氣孔導度顯著高于1182,蒸騰速率之間差異不顯著,與上述推論相符合。
可溶性糖是主要的能量代謝中間產能物,在一定程度上可以反映植物體內能量代謝的快慢[5]??扇苄缘鞍资侵匾臐B透調節(jié)物質和營養(yǎng)物質,其大多數是參與各種代謝的酶類[5]。當葉片中葉綠素缺失時,會導致可溶性糖和可溶性蛋白含量產生變化。在本試驗中,TNY1201葉片的可溶性糖含量顯著低于1182,是1182的56.82%,可溶性蛋白含量顯著高于1182,是1182的1.22倍。推斷葉片的可溶性糖含量較低,是由光合能力下降導致的,而可溶性蛋白含量較高,可能是由大量的特異性蛋白表達所導致的,與陳星旭[21]對花燭葉色黃化突變體的研究結果類似。
西瓜葉色遺傳規(guī)律有不同的報道。Poole[22]對斑點葉西瓜‘Sun,Moon and Stars的遺傳規(guī)律進行研究,基于回交和F2群體的觀察數據(原文中未詳細列出),認為斑點葉是由一種細胞質基因控制的葉綠體缺陷造成的。本試驗對兩份材料進行正反交、回交并建立F2群體,對性狀結果的分離比進行卡方檢測,分離比均符合孟德爾遺傳定律,顯示TNY1201葉片斑點由核基因控制。兩種結果不同,可能是試驗材料不同造成的。Kidanemariam[23]對西瓜后綠突變體的遺傳規(guī)律進行研究,通過自交、回交試驗,推測該突變體受隱性基因控制。本試驗初步推斷影響葉片黃色斑點形成的是細胞核基因,但要闡明其機制,仍需要進一步深入研究。
4 結 論
斑點葉片西瓜TNY1201與1182相比,葉片上下表皮細胞形狀不規(guī)則,柵欄組織和海綿組織排列松散,葉片緊密度較小,具有面積大而密度小的氣孔。TNY1201葉片的葉綠素含量、凈光合速率、可溶性糖含量均顯著低于1182,可溶性蛋白含量顯著高于1182。遺傳特性分析表明,TNY1201葉片斑點屬于細胞核遺傳,葉片有斑對無斑為顯性。
綜上所述,筆者在本文中研究的TNY1201是一種重要的資源材料,可以作為西瓜常規(guī)育種中選擇的表型標記,也可以作為觀賞西瓜品種選育的種質資源。研究結論為西瓜葉片光合生理研究及斑點性狀在育種實踐中的應用提供了理論依據,豐富了葫蘆科植物葉色突變機制的理論基礎。
參考文獻 References:
[1] 李音音. 葉色黃化突變體甜瓜生物學特性研究[D]. 哈爾濱:東北農業(yè)大學,2014.
LI Yinyin. Study on biological characters of xantha mutant in melon[D]. Harbin:Northeast Agricultural University,2014.
[2] 王建玉,王志鵬,段祥坤. 甜瓜芽黃標記性狀的發(fā)現(xiàn)與遺傳分析[J]. 中國瓜菜,2019,32(2):15-17.
WANG Jianyu,WANG Zhipeng,DUAN Xiangkun. Discovery and genetic analysis of yellow markers in melon buds[J]. China Cucurbits and Vegetables,2019,32(2):15-17.
[3] 楊莎,張竹青,陳文超,劉周斌,周書棟,鄒學校,馬艷青. 辣椒葉色黃化突變體的遺傳及生理特性[J]. 湖南農業(yè)大學學報(自然科學版),2020,46(1):48-52.
YANG Sha,ZHANG Zhuqing,CHEN Wenchao,LIU Zhoubin,ZHOU Shudong,ZOU Xuexiao,MA Yanqing. Genetic analysis and physiological characteristics of yellow leaf mutant in pepper[J]. Journal of Hunan Agricultural University (Natural Sciences),2020,46(1):48-52.
[4] 王亞玲,李小寒,宮方林,梁佳佳,李金華. 一個新的番茄黃綠葉突變體表型鑒定與遺傳分析[J]. 植物遺傳資源學報,2019,20(1):215-220.
WANG Yaling,LI Xiaohan,GONG Fanglin,LIANG Jiajia,LI Jinhua. Phenotypic identification and genetic analysis of a novel tomato yellow green leaf mutant[J]. Journal of Plant Genetic Resources,2019,20(1):215-220.
[5] 李燕. 黃瓜葉色突變體的生理生化及遺傳特性研究[D]. 雅安:四川農業(yè)大學,2016.
LI Yan. Physiological characteristics and genetic analysis of leaf color mutant in cucumber[D]. Yaan:Sichuan Agricultural University,2016.
[6] 邵勤. 一個新的甜瓜葉色黃化突變體研究[D]. 哈爾濱:東北農業(yè)大學,2013.
SHAO Qin. Characterization and proteomics of a novel xantha mutant in muskmelon[D]. Harbin:Northeast Agricultural University,2013.
[7] 曹穩(wěn). 黃瓜花斑葉突變體及候選基因鑒定[D]. 哈爾濱:東北農業(yè)大學,2019.
CAO Wen. Identification of variegated leaf mutant and candidate gene in cucumber (Cucumis sativus L.)[D]. Harbin:Northeast Agricultural University,2019.
[8] 李萬青,高波,楊俊,陳鵬,李玉紅. 一個新的黃瓜葉色黃化突變體的生理特性分析[J]. 西北農業(yè)學報,2015,24(7):98-103.
LI Wanqing,GAO Bo,YANG Jun,CHEN Peng,LI Yuhong. Physiological characteristic analysis of a new leaf color yellow mutant in cucumber[J]. Acta Agriculturae Boreali-Occidentalis Sinica,2015,24(7):98-103.
[9] MA C Y,CAO J X,LI J K,ZHOU B,TANG J C,MIAO A Q. Phenotypic,histological and proteomic analyses reveal multiple differences associated with chloroplast development in yellow and variegated variants from Camellia sinensis[J]. Scientific Reports,2016,6:33369.
[10] 任藝慈,朱迎春,孫德璽,鄧云,安國林,李衛(wèi)華,劉君璞. 一個西瓜葉色黃化突變體的生理特性分析[J]. 果樹學報,2020,37(4):565-573.
REN Yici,ZHU Yingchun,SUN Dexi,DENG Yun,AN Guolin,LI Weihua,LIU Junpu. Physiological characteristic analysis of a leaf-yellowing mutant in watermelon[J]. Journal of Fruit Science,2020,37(4):565-573.
[11] 徐銘,高美玲,郭宇,包秀萍,劉秀杰,劉繼秀,高越. 西瓜后綠突變體光合特性分析[J]. 西北農林科技大學學報(自然科學版),2022,50(3):91-96.
XU Ming,GAO Meiling,GUO Yu,BAO Xiuping,LIU Xiujie,LIU Jixiu,GAO Yue. Photosynthetic characteristics of virescent mutant in watermelon[J]. Journal of Northwest A & F University (Natural Science Edition),2022,50(3):91-96.
[12] 張亞,楊石建,孫梅,曹坤芳. 基部被子植物氣孔性狀與葉脈密度的關聯(lián)進化[J]. 植物科學學報,2014,32(4):320-328.
ZHANG Ya,YANG Shijian,SUN Mei,CAO Kunfang. Stomatal traits are evolutionarily associated with vein density in basal angiosperms[J]. Plant Science Journal,2014,32(4):320-328.
[13] 李琪,賀曉,賀一鳴,吳敏,孟剛,郭剛. 豆科3屬6種植物葉片特征比較研究[J]. 干旱區(qū)資源與環(huán)境,2017,31(11):148-153.
LI Qi,HE Xiao,HE Yiming,WU Min,MENG Gang,GUO Gang. Comparative study of leaf characters in 6 species of Leguminosae[J]. Journal of Arid Land Resources and Environment,2017,31(11):148-153.
[14] 閆曉麗,王書柔,丁新宇,劉興菊,梁海永. 異源三倍體榆樹葉片形態(tài)及光合特性[J]. 林業(yè)科技,2023,48(4):1-5.
YAN Xiaoli,WANG Shurou,DING Xinyu,LIU Xingju,LIANG Haiyong. Leaf morphology and photosynthetic characteristics of allotriploid elm[J]. Forestry Science & Technology,2023,48(4):1-5.
[15] 劉萍,李明軍. 植物生理學實驗[M]. 2版. 北京:科學出版社,2016:80.
LIU Ping,LI Mingjun. Plant physiology experiments[M]. 2nd ed. Beijing:Science Press,2016:80.
[16] 徐艷芳,賀雅萍,王夢瑤,張琪,周杰,蘭琳英,艾葉. 16個建蘭品種葉片解剖結構研究[J]. 熱帶作物學報,2022,43(10):2099-2105.
XU Yanfang,HE Yaping,WANG Mengyao,ZHANG Qi,ZHOU Jie,LAN Linying,AI Ye. Leaf anatomical structure of 16 Cymbidium ensifolium varieties[J]. Chinese Journal of Tropical Crops,2022,43(10):2099-2105.
[17] 張艷萍,劉衛(wèi)東,龍達,張雕,曾廣輝. 5種觀賞桃F1代葉片解剖結構與光合性能研究[J]. 南方林業(yè)科學,2021,49(1):1-5.
ZHANG Yanping,LIU Weidong,LONG Da,ZHANG Diao,ZENG Guanghui. Study on leaf anatomical structure and photosynthetic performance of five ornamental peach F1 generations[J]. South China Forestry Science,2021,49(1):1-5.
[18] 崔麗朋,宋麗華,黃澤軍,高建昌,國艷梅,杜永臣,王孝宣. 番茄黃化基因Netted Viresce(NV)的遺傳定位及生理特性研究[J]. 中國蔬菜,2017(7):29-36.
CUI Lipeng,SONG Lihua,HUANG Zejun,GAO Jianchang,GUO Yanmei,DU Yongchen,WANG Xiaoxuan. Physiological characteristics and genetic mapping of tomato yellow leaf gene netted viresce (NV)[J]. China Vegetables,2017(7):29-36.
[19] 薛黎. 遮陰對5種珍貴樹種幼苗光合及葉片解剖特性的影響[D]. 長沙:中南林業(yè)科技大學,2020.
XUE Li. Photosynthetic characteristics and leaf anatomical structure of five precious tree species under shading condition[D]. Changsha:Central South University of Forestry & Technology,2020.
[20] 胡亮亮,趙子瑤,張海強,陳菲帆,張朝文,戎福喜,陳鵬,李玉紅. 一個新的黃瓜葉色突變體的光合特性分析[J]. 西北農業(yè)學報,2018,27(11):1622-1628.
HU Liangliang,ZHAO Ziyao,ZHANG Haiqiang,CHEN Feifan,ZHANG Chaowen,RONG Fuxi,CHEN Peng,LI Yuhong. Photosyntheic characteristics analysis of a new leaf color mutant in cucumber[J]. Acta Agriculturae Boreali-occidentalis Sinica,2018,27(11):1622-1628.
[21] 陳星旭. 花燭葉色嵌合體及突變體葉色形成機理及保持特征[D]. 南京:南京農業(yè)大學,2009.
CHEN Xingxu. Formative mechanism and maintenance characteristics of leaf color chimera and mutants of Anthurium andreaeanum ‘Sonate[D]. Nanjing:Nanjing Agricultural University,2009.
[22] POOLE C F. Genetics of cultivated cucurbits[J]. Journal of Heredity,1944,35(4):122-128.
[23] KIDANEMARIAM G H. 西瓜葉色后綠和植株短蔓性狀的遺傳與分子機制研究[D]. 北京:中國農業(yè)科學院,2020.
KIDANEMARIAM G H. Genetic and molecular mechanisms of delayed green leaf color and short internode length in watermelon (Citrullus lanatus)[D]. Beijing:Chinese Academy of Agricultural Sciences,2020.