• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Observation of corneal cell in diabetic patients using in vivo confocal microscopy

    2024-04-28 04:15:46
    國(guó)際眼科雜志 2024年5期

    Abstract

    ?In vivo confocal microscopy of the cornea is a non-invasive, rapid, and comprehensive technique for real-time, dynamic observation of all layers of the cornea. Confocal microscopy allows the examination of the morphology and cell density in the different layers of the cornea through direct visualization. With the increasing prevalence of diabetes, ocular complications have become common and have garnered more interest and in-depth research from clinical and scientific communities. This paper provides a comprehensive review of research progress made using in vivo confocal microscopy to observe various layers of cornea tissue in diabetic patients.

    ?KEYWORDS:confocal microscopy; diabetes; corneal epithelium; stromal cells; endothelial cells

    INTRODUCTION

    Diabetes is one of the most prevalent systemic diseases worldwide, and its global prevalence has been increasing continuously in recent decades[1-2]. It was reported that approximately 382 million people had type 2 diabetes mellitus (T2DM) in 2013[3], and it is estimated that by 2035 diabetes will affect approximately 592 million[4]rising to 640 million by 2040[5]. In 2022, the “Clinical Guidelines for the Prevention and Treatment of Elderly Type 2 Diabetes in China” introduced a new diagnostic criterion of glycated hemoglobin (HbA1c) ≥6.5% for diabetes, resulting in an increased T2DM detection rate of 0.5% to 1.9%[6]. Diabetic ocular complications extend beyond diabetic retinopathy (DR), with conditions such as dry eye syndrome, delayed wound healing, and neurotrophic keratopathy becoming increasingly common[7-9].Invivoconfocal microscopy has been steadily advancing since its inception in the 1980s, with the development of devices like the Heidelberg Retina Tomograph-III (HRT-III) that utilises internally reflected light to collect data and produce high-resolution images of corneal cell layers at 600 to 800-fold magnification over an area up to 400 μm×400 μm, with a lateral image resolution of 1-2 μm and axial image resolution of 5-10 μm[10-11]. Due to its advantages of high resolution, magnification, and real-time capabilities,invivoconfocal microscopy plays a major role in the examination of corneal tissue and disease diagnosis in ophthalmology patients[12]. This paper provides a comprehensive review and summary of observation of the corneal cell layers in diabetic patients usinginvivoconfocal microscopy.

    SUBJECTSANDMETHODS

    A detailed search was conducted on PubMed using a combination of search terms including “cornea confocal”, “diabetes”, “cornea”, “epithelial”, “stromal cell”, “endothelial”, “keratocyte”, “subbasal nerve” and “Langerhans”. The search was not limited to any specific type of article and was restricted to English-language publications. The most relevant results were manually screened and categorized by Meng LR.

    EthicalApprovalThe study was approved by the Ethics Committee of the First Medical Center of the General Hospital of the PLA (No.S2023-199-01).

    RESULTS

    CornealEpithelialCellsThe epithelial cell layer is the outermost layer of the cornea, with a thickness of about 55 μm. It is composed of 4-5 layers of non-keratinised squamous epithelial cells. By confocal microscopy, three types of epithelial cells can be discerned from the outermost to the innermost layer[13]. Superficial epithelial cells are loosely arranged, with a flat shape, and a diameter of 40-50 μm. They have highly reflective cytoplasm and a bright nucleus of 10 μm[14]. Wing cells have a polygonal shape with a diameter of 20-30 μm. They have a thin and highly reflective plasma membrane and low reflectivity in the cytoplasm. Basal epithelial cells have small, roughly round cell bodies, with a diameter of 8-10 μm. These are densely arranged, intermediate in brightness, with high reflectivity at thecell membrane, and have pale grey or minimally reflective cytoplasm[15-16]. Superficial epithelial cells have microvilli and microfolds, which maximise nutrient metabolism, prevent the intrusion of microbes and ocular fluids into the stromal layer, and help retain tears, keeping the cornea relatively dehydrated. Physical, chemical, and biological stimuli can lead to changes in cell morphology and decreased density and function, and systemic metabolic diseases can also damage these epithelial cells[17].

    Studies have shown that diabetes, a multi-system disorder, affects the morphology and metabolism of the cornea to some extent. Confocal microscopy can reveal ocular surface abnormalities that may not be detected in the early stages by other ophthalmic examination devices such as the slit lamp[18-19].Invivoconfocal microscopy of the cornea can detect early thinning of the epithelial cell layer that occurs in diabetic patients[14]. Moreover, there is an increase in thickness and irregularity of the epithelial basement membrane, often accompanied by a significant reduction in the number of basal cells with less dense and irregular arrangements[18, 20](as shown in Figure 1). The reduced adhesion of epithelial cells in diabetic patients is widely thought to be associated with the generation and accumulation of advanced glycation end products (AGEs) in the late stage of diabetes[21-22]. Epithelial cell damage associated with diabetes is commonly observed in dry eye syndrome, superficial punctuate keratopathy, persistent epithelial defects, delayed wound healing, and even in recurrent epithelial erosion. A study by Shihetal[21]suggests that this damage worsens progressively with the duration of diabetes. Akhtaretal[23]reported that the number of basal cells in the epithelial basement membrane increases with age in the normal population, but this age-related correlation is weakened in patients with diabetes. In rodent models, researchers have detected a decrease in the expression of pro-epithelial healing factors related to the cornea in diabetic animals compared to controls[24-26],e.g., TGFβ3, epithelial growth factor, and ciliary neurotrophic factor, while the expression of NFκB, which promotes inflammation and affects cell development is increased.

    SubepithelialNervesandLangerhansCellsDry eye syndrome is the most common ocular manifestation of diabetic eye disease. It is characterized by reduced tear secretion and associated eye discomfort, leading to decreased corneal sensitivity. In the early stages, corneal nerve degeneration can be detected by confocal microscopy examination[7, 25]. The cornea is the most densely innervated tissue in the human body, with approximately 7 000 nociceptive receptors per square millimeter. The corneal nerves originate from the ophthalmic branch of the trigeminal nerve, which is the fifth cranial nerve[27-28]. The corneal nerves originate in the deep stroma, penetrate the peripheral cornea, and radiate towards the central cornea, before terminating beneath the basal epithelial and Bowman’s layers[29]. The morphology and trajectory of the sub-basal nerve fibers in the cornea can be visualized by confocal microscopy. They appear as highly reflective linear structures, forming Y-shaped bifurcations or H-shaped nerve fiber bundles arranged radially in the cornea[25]. Their diameter fluctuates between 0.52 μm and 4.60 μm and converges towards the central cornea[14], forming a spiral or vortex pattern at the densest area. Manual, semi-automated (Image J with Neuron J plugin), or fully automated (ACC metrics) software tools are available for quantitative measurements of sub-basal nerves in the cornea epithelium[30]. Several studies have shown that diabetic patients have lower sub-basal nerve density, fewer branches, and increased tortuosity (as shown in Figure 1)[31-34]. In a study by Chaoetal[35], patients with type 2 diabetes had significantly decreased central corneal nerve fiber density compared to healthy controls and pre-diabetic individuals. The study also found a significant correlation between HbA1c levels, corneal nerve fiber density, and body mass index. Furthermore, it is expected that 47%-64% of diabetic patients will develop corneal nerve damage prior to peripheral neuropathy[36]. Confocal microscopy detects changes in corneal nerve plexus density earlier than electrophysiological tests can detect peripheral neuropathy, and the severity of both types of nerve damage is correlated. A cross-sectional study conducted from June 2019 to August 2020[37], involving 129 patients with type 2 diabetes, found similar results. The study revealed that corneal nerve fiber damage occurs earlier than DR in diabetic patients.

    Additionally, significant numbers of white, high-reflective, and irregularly shaped dendritic cells can be observed accompanying the sub-basal nerves. These are Langerhans cells, the only antigen-presenting immune cells derived from the myeloid lineage in the corneal epithelium, and their density decreases from the cornea periphery towards the center[32, 38]. In the peripheral region of the cornea, the lower area has the highest density of Langerhans cells, followed by the upper and nasal areas, while the temporal area has the lowest density[39]. Cell protrusions are often absent or are short and sparse in the central region, indicating the presence of immature dendritic cells[38]. For differentiation purposes, Langerhans are classified into 3 categories[40-41]: Level 1 indicates no dendrites, Level 2 indicates the presence of small dendrites with a length not exceeding the maximum diameter of the cell body, and Level 3 indicates the presence of dendrites with a length exceeding the maximum diameter of the cell body. Healthy corneas depend on the normal function and interaction between epithelial cells, sensory neurons, and innate immune cells[17]. Diabetes disrupts the interaction and interdependence of these three cell types. The structural basis of the ocular surface neuroimmune functional unit is the interaction between the subepithelial basal nerve and Langerhans cells within the epithelium, which is sensitive to interference from microbial infections, hyperglycemia, and lack of reactive oxygen species.

    Stimuli such as hypoxia, inflammation, or high blood sugar can induce the migration, aggregation, and activation of Langerhans cells[42].In diabetic patients, corneal Langerhans cells demonstrate increased maturation and proliferation[43](as shown by the arrow in Figure 1D). Research by D’Onofrioetal[8, 44-45]has shown that reductions in subepithelial basal nerves are associated with DR and renal impairment in different types of diabetes, including type 1 diabetes, type 2 diabetes, and latent autoimmune diabetes in adults. As DR progresses, the damage to the subepithelial basal nerve worsens, accompanied by significant reductions in subepithelial basal nerve fiber density in parallel with the progression of renal dysfunction, and an increase in the activation and total number of Langerhans cells. Age, weight, height, body mass index, HbA1c, total cholesterol, low-density lipoprotein cholesterol, and triglycerides have all been identified as risk factors for corneal nerve loss[46]. Corneal nerve parameters are negatively correlated with HbA1c levels and duration of diabetes[47-48].Furthermore, a significant finding was the positive correlation between corneal nerve fiber length, tear film height, and tear film break-up time[37]. This conclusion was further validated through quantitative analysis, demonstrating the close association between corneal nerve fibers and ocular conditions. These findings provide valuable guidance for predicting DR and ocular surface diseases through the assessment of cornea sub-basal nerve fiber damage[49].

    StromalCellsThe corneal stromal layer comprises approximately 90% of the corneal volume. It is approximately 500 μm thick and contains keratocytes and collagen fibrils in an amorphous matrix composed of proteoglycans, ions, and extracellular substances[1]. Collagen fibre bundles, known as stromal fibril lamellae, have a regular arrangement that ensures high transparency of the stroma. These corneal collagen fibrils and the amorphous matrix appear as a featureless dark reflective background by confocal microscopy. Keratocyte nuclei are 5-30 μm in diameter, and these cells are weakly reflective and form an interconnected network. The anterior stromal cells are bean-shaped, while the posterior stromal cells are elliptical. The cell density is the highest in the anterior stroma, located 50 100 um behind the Bowman’s membrane[14], and gradually decreases from the middle to the posterior stroma. Large stromal fibers are present in the matrix. When cornea stromal inflammation is induced by external factors, stromal cells become activated. Confocal microscopy reveals irregular and intertwined cell contours, appearing polygonal or crab claw-shaped, with highly reflective cell bodies and indistinct cell nuclei. Effects on stromal cells are not only age-related[50-51], but persistent hyperglycemic stimulation also affects their morphology and metabolism. Increased cornea stromal thickness with decreased density can be observed in diabetic patients by confocal microscopy (as shown in Figure 2). Additionally, keratocyte density is significantly correlated with the duration of diabetes and HbA1c levels[51-52]. Kaltenieceetal[51], in their evaluation of stromal cells in 86 type 1 and type 2 diabetic patients and 21 age-matched controls by confocal microscopy,found reduced keratocyte density in the anterior, middle, and posterior stroma of diabetic patients, and a correlation between the number of stromal cells and damage to the subbasal nerve. Furthermore, a study conducted by Iqbaletal[53]examined the alterations in corneal tissue in diabetic patients following weight loss surgery. The study revealed that diabetic patients who had previously suffered damage to their stromal cells and nerves experienced a certain level of restoration in both the stroma and nerves after undergoing the weight loss procedure. This implies that there is a potential for ameliorating corneal damage in diabetic patients by effectively managing their body mass index.

    Figure 1 Confocal microscopy images of epithelial basal cells and subepithelial nerve fibres in normal cornea and diabetic corneas.

    EndothelialCellsEndothelial cells are located in the innermost layer of the cornea. This 4-6 μm layer is composed of hexagonal or polygonal cells of 20 μm diameter. Under the confocal microscope, these cells appear as bright cell bodies with dark cell boundaries, making it difficult to discern the nuclei. Endothelial cells play an active role in transporting fluid against an osmotic gradient to the anterior chamber using specialized Na+-K+-ATPase pumps[54], maintaining corneal transparency and stromal hydration balance[55]. The density of endothelial cells is approximately 3 000-4 000 cells/mm2at birth and gradually decreases to around 2 500 cells/mm2in adulthood. As individuals age, this density declines at an average rate of about 0.6% per year[56-57]. Furthermore, factors such as race, trauma, inflammation, intraocular surgery, and certain systemic diseases like diabetes can also influence the structure and function of the endothelial layer[58-59].

    Diabetic patients are prone to corneal endothelial cell damage as a result of prolonged exposure to hyperglycaemia. Extensive literature[18, 60-63]has explored this phenomenon and revealed that diabetic patients exhibit thickening of the cornea, reduced density of endothelial cells, and increased cell area. Furthermore, there is a decrease in the number of hexagonal cells (as shown in Figure 3). Research aimed at elucidating the pathophysiological mechanisms underlying the detrimental effects of hyperglycaemia on corneal endothelium has shown that this condition results in a notable decline in the expression and functionality of the Na+/K+-ATPase[64], damage to F-actin filaments[65-66], osmotic injury resulting from excessive accumulation of sorbitol, and oxidative DNA damage caused by the accumulation of AGE[67]. In murine models, Chenetal[68]have explored the effects of high blood sugar on the induction of endoplasmic reticulum stress. This stress leads to corneal edema and dysfunction of endothelial cells. The authors proposed that targeting mitochondrial inhibition of endoplasmic reticulum stress could be of therapeutic benefit for these conditions.

    Furthermore, higher levels of HbA1c are correlated with more pronounced endothelial injury[69-70]. In a cross-sectional study involving 100 diabetic patients and 92 non-diabetic individuals, patients with HbA1c levels >7% exhibited a significantly lower proportion of hexagonal endothelial cells compared to those with HbA1c levels ≤ 7%[69]. Additionally, as the severity of DR progresses, there is a worsening of endothelial cell damage[71-72].In patients with cataracts who have undergone phacoemulsification surgery, a longer duration of diabetes is correlated with more severe endothelial damage, as visualized by confocal microscopy. Furthermore, a prolonged recovery period may be necessary for these patients[73-76].

    Figure 3 Confocal microscopy images of endothelial cells in normal and diabetic corneas showing larger and unevenly distributed cell areas with a lower proportion of hexagonal cells in the latter. A: The endothelial cells in the normal cornea are hexagonal and evenly distributed; B: The endothelial cells in diabetic cornea shows a significant and uneven increase in area compared to that in normal cornea, with a decrease in the proportion of hexagonal cells.

    DISCUSSION

    In conclusion, the incidence of ocular diseases caused by diabetes is on the rise. These conditions present significant challenges to the ocular health and overall comfort of individuals living with diabetes. Therefore, it is crucial to prioritize the eye health of diabetes patients and implement appropriate preventive and treatment measures to reduce the occurrence and progression of eye diseases. Since its introduction in the 1980s,invivoconfocal microscopy of the cornea, particularly the HRT-III, has revolutionized the early detection of corneal nerve and cell damage[10]. Confocal microscopy plays a crucial role in assisting ophthalmologists in the early detection and prevention of cornea diseases as well as in the improvement of clinical treatment, especially in individuals with diabetes. Overall, confocal microscopy is a valuable tool to better understand and manage ocular disease caused by diabetes by providing detailed visual information and precise measurements.

    免费观看的影片在线观看| 12—13女人毛片做爰片一| 两性午夜刺激爽爽歪歪视频在线观看| 亚洲国产日韩欧美精品在线观看| 伦精品一区二区三区| 亚洲,欧美,日韩| 欧美三级亚洲精品| 日韩,欧美,国产一区二区三区 | 精品一区二区三区视频在线| 精品一区二区三区视频在线| 午夜福利成人在线免费观看| 天堂网av新在线| 欧美日本视频| 日韩中文字幕欧美一区二区| 熟女电影av网| 嫩草影视91久久| 国产亚洲精品久久久com| 舔av片在线| 亚洲av一区综合| 成人国产麻豆网| 亚洲国产精品sss在线观看| 人人妻人人澡欧美一区二区| 99久久精品热视频| 国产私拍福利视频在线观看| 男人舔女人下体高潮全视频| 国产 一区精品| 精品人妻偷拍中文字幕| 身体一侧抽搐| 精品福利观看| 国产精品亚洲一级av第二区| 国产熟女欧美一区二区| 18+在线观看网站| 直男gayav资源| 精品99又大又爽又粗少妇毛片 | 国产亚洲精品综合一区在线观看| 亚洲人成网站高清观看| 欧美高清性xxxxhd video| 免费在线观看成人毛片| 亚洲成人久久爱视频| 日本 欧美在线| 搡老岳熟女国产| 婷婷色综合大香蕉| 亚洲一级一片aⅴ在线观看| 丰满的人妻完整版| 搡老岳熟女国产| 免费看a级黄色片| 日本免费一区二区三区高清不卡| 1000部很黄的大片| 成人高潮视频无遮挡免费网站| 欧美最新免费一区二区三区| 亚洲专区国产一区二区| 国产精品1区2区在线观看.| 国产伦在线观看视频一区| 九色国产91popny在线| 日本-黄色视频高清免费观看| 成人鲁丝片一二三区免费| 精品午夜福利视频在线观看一区| 精品一区二区三区av网在线观看| 欧美人与善性xxx| 久久精品国产亚洲av涩爱 | 国产高清有码在线观看视频| 国产精品一区www在线观看 | 中文字幕av成人在线电影| 亚洲精品一区av在线观看| 日日撸夜夜添| 我要看日韩黄色一级片| 国产一区二区三区在线臀色熟女| 中亚洲国语对白在线视频| 一进一出抽搐动态| 九九爱精品视频在线观看| 国产伦精品一区二区三区四那| 黄色一级大片看看| 免费无遮挡裸体视频| 日本黄大片高清| 此物有八面人人有两片| 草草在线视频免费看| 成年女人永久免费观看视频| 午夜亚洲福利在线播放| 欧美日韩乱码在线| 嫩草影院入口| 中文字幕精品亚洲无线码一区| 两人在一起打扑克的视频| 别揉我奶头 嗯啊视频| 亚洲av不卡在线观看| 亚洲国产日韩欧美精品在线观看| 黄色一级大片看看| 精品人妻1区二区| 波多野结衣高清作品| 色播亚洲综合网| 午夜激情欧美在线| 午夜精品一区二区三区免费看| 久久精品国产亚洲av涩爱 | 亚洲美女视频黄频| 国产高潮美女av| 少妇丰满av| 久久精品综合一区二区三区| 最近中文字幕高清免费大全6 | 在线免费观看不下载黄p国产 | 少妇丰满av| 哪里可以看免费的av片| 日本免费a在线| 九九热线精品视视频播放| 国产男人的电影天堂91| 欧美日韩综合久久久久久 | 久久精品国产亚洲av涩爱 | 亚洲黑人精品在线| 别揉我奶头~嗯~啊~动态视频| 美女 人体艺术 gogo| 国产视频内射| 高清毛片免费观看视频网站| 中国美女看黄片| xxxwww97欧美| 亚洲精品456在线播放app | 亚洲人成网站在线播放欧美日韩| 午夜福利高清视频| 少妇丰满av| 国产av不卡久久| 九色成人免费人妻av| 偷拍熟女少妇极品色| 噜噜噜噜噜久久久久久91| 欧美性猛交╳xxx乱大交人| а√天堂www在线а√下载| 午夜精品在线福利| 亚洲一区高清亚洲精品| 国产一区二区三区在线臀色熟女| 在线观看免费视频日本深夜| 1000部很黄的大片| 国产午夜精品久久久久久一区二区三区 | 精品久久久久久久久亚洲 | 久久精品久久久久久噜噜老黄 | 香蕉av资源在线| 少妇的逼好多水| 欧美成人一区二区免费高清观看| 成人二区视频| 国产精品永久免费网站| 亚洲欧美日韩东京热| 国产精品综合久久久久久久免费| 少妇丰满av| 美女xxoo啪啪120秒动态图| 51国产日韩欧美| 天堂av国产一区二区熟女人妻| 女同久久另类99精品国产91| 亚洲欧美日韩无卡精品| 91久久精品国产一区二区三区| 麻豆国产av国片精品| 日本精品一区二区三区蜜桃| 天堂动漫精品| 观看美女的网站| 1024手机看黄色片| 亚洲三级黄色毛片| av天堂中文字幕网| 国产不卡一卡二| а√天堂www在线а√下载| 亚洲内射少妇av| 成人高潮视频无遮挡免费网站| 亚洲av五月六月丁香网| 午夜激情福利司机影院| 真人一进一出gif抽搐免费| 午夜激情欧美在线| 久久久久久久久中文| 神马国产精品三级电影在线观看| 听说在线观看完整版免费高清| 最后的刺客免费高清国语| 又爽又黄a免费视频| 欧美日韩瑟瑟在线播放| 波多野结衣巨乳人妻| 不卡视频在线观看欧美| 午夜免费成人在线视频| 99在线人妻在线中文字幕| 国产精华一区二区三区| 无人区码免费观看不卡| 亚洲在线观看片| 国产精品一区二区性色av| www.色视频.com| 一区二区三区四区激情视频 | 搡老熟女国产l中国老女人| 嫩草影视91久久| 国产高清视频在线观看网站| www.www免费av| 老师上课跳d突然被开到最大视频| 一个人看视频在线观看www免费| 亚洲成人久久性| 日韩欧美三级三区| 亚洲aⅴ乱码一区二区在线播放| 无人区码免费观看不卡| 午夜精品一区二区三区免费看| 三级男女做爰猛烈吃奶摸视频| av天堂在线播放| 变态另类丝袜制服| 99久久无色码亚洲精品果冻| 久久久国产成人精品二区| 久久草成人影院| 久久精品国产鲁丝片午夜精品 | 大型黄色视频在线免费观看| 亚洲真实伦在线观看| 久久精品久久久久久噜噜老黄 | 亚洲欧美日韩东京热| 色综合婷婷激情| 免费无遮挡裸体视频| 欧美三级亚洲精品| 久久热精品热| 日韩,欧美,国产一区二区三区 | 干丝袜人妻中文字幕| 99在线视频只有这里精品首页| 很黄的视频免费| 国产又黄又爽又无遮挡在线| 国产伦在线观看视频一区| 欧美日韩瑟瑟在线播放| 成人毛片a级毛片在线播放| 午夜影院日韩av| 久久国产乱子免费精品| 91麻豆精品激情在线观看国产| 俄罗斯特黄特色一大片| 成熟少妇高潮喷水视频| 亚洲专区国产一区二区| 久久精品国产自在天天线| 最近中文字幕高清免费大全6 | 亚洲欧美激情综合另类| a级一级毛片免费在线观看| 国产精品国产高清国产av| 国产精品福利在线免费观看| 欧美成人性av电影在线观看| 亚洲人与动物交配视频| 国产伦精品一区二区三区四那| 中文亚洲av片在线观看爽| 男女做爰动态图高潮gif福利片| 天堂√8在线中文| 色综合站精品国产| 国产精品av视频在线免费观看| 日韩欧美精品v在线| 欧美+亚洲+日韩+国产| 亚洲av免费在线观看| 桃红色精品国产亚洲av| 精品人妻一区二区三区麻豆 | 色噜噜av男人的天堂激情| 欧美黑人巨大hd| 国产精品伦人一区二区| 欧美不卡视频在线免费观看| 国产免费av片在线观看野外av| 成人无遮挡网站| 在线播放国产精品三级| 三级男女做爰猛烈吃奶摸视频| 亚洲精品日韩av片在线观看| 久99久视频精品免费| 精品99又大又爽又粗少妇毛片 | 国产成人一区二区在线| 国产一区二区三区视频了| 国产一区二区在线av高清观看| 亚洲七黄色美女视频| 直男gayav资源| 日本熟妇午夜| 亚洲精品成人久久久久久| 国产淫片久久久久久久久| 亚洲经典国产精华液单| 一夜夜www| 99热精品在线国产| 久久久久久久久大av| 性欧美人与动物交配| 亚洲中文字幕日韩| 亚洲国产欧洲综合997久久,| 精品人妻熟女av久视频| 99久久久亚洲精品蜜臀av| 日韩中文字幕欧美一区二区| 国产三级中文精品| 国产91精品成人一区二区三区| 国产乱人视频| 亚洲av一区综合| 午夜久久久久精精品| 小说图片视频综合网站| 五月玫瑰六月丁香| 国产精品嫩草影院av在线观看 | 国产成人影院久久av| 韩国av在线不卡| 国产午夜精品论理片| 91午夜精品亚洲一区二区三区 | netflix在线观看网站| 久久国产乱子免费精品| 色精品久久人妻99蜜桃| 国产成人a区在线观看| 午夜免费成人在线视频| 欧美日韩乱码在线| 在线国产一区二区在线| 有码 亚洲区| 久久精品国产鲁丝片午夜精品 | 男女那种视频在线观看| 国产精品av视频在线免费观看| 国产69精品久久久久777片| 国产精品综合久久久久久久免费| 亚洲欧美日韩高清专用| 日本黄大片高清| 久久亚洲真实| 久久久久国产精品人妻aⅴ院| 国产一区二区三区在线臀色熟女| 亚洲中文日韩欧美视频| 亚洲自偷自拍三级| 老师上课跳d突然被开到最大视频| 黄片wwwwww| 麻豆精品久久久久久蜜桃| 国产一区二区三区视频了| 久久午夜福利片| 一个人看视频在线观看www免费| 国产精品三级大全| 大又大粗又爽又黄少妇毛片口| 久久婷婷人人爽人人干人人爱| 美女高潮的动态| 国产三级中文精品| 中文字幕精品亚洲无线码一区| 身体一侧抽搐| 亚洲欧美日韩高清专用| 国产精品一区二区性色av| 亚洲五月天丁香| 特级一级黄色大片| 欧美日韩乱码在线| 搞女人的毛片| 日韩欧美免费精品| 91狼人影院| 久久精品综合一区二区三区| 成人欧美大片| 日韩欧美三级三区| 精品久久久久久久久久免费视频| 我的女老师完整版在线观看| 观看免费一级毛片| 我的女老师完整版在线观看| 国内久久婷婷六月综合欲色啪| 搡老岳熟女国产| 麻豆av噜噜一区二区三区| 22中文网久久字幕| 狂野欧美白嫩少妇大欣赏| 亚洲成人免费电影在线观看| 午夜老司机福利剧场| 日韩国内少妇激情av| 乱人视频在线观看| 欧美日韩国产亚洲二区| 噜噜噜噜噜久久久久久91| 欧美潮喷喷水| 久久精品综合一区二区三区| 人人妻人人看人人澡| 有码 亚洲区| 国内精品久久久久精免费| 亚洲一级一片aⅴ在线观看| 亚洲第一电影网av| 色综合亚洲欧美另类图片| 女的被弄到高潮叫床怎么办 | 成人亚洲精品av一区二区| 国产精品福利在线免费观看| 久久久久性生活片| 22中文网久久字幕| 国产美女午夜福利| 亚洲av中文av极速乱 | av天堂在线播放| 热99re8久久精品国产| 悠悠久久av| 亚洲aⅴ乱码一区二区在线播放| 免费看光身美女| 国产一区二区三区在线臀色熟女| 午夜日韩欧美国产| 淫秽高清视频在线观看| av专区在线播放| 波多野结衣高清作品| 亚洲在线自拍视频| 精品久久久久久久久av| 中文字幕av在线有码专区| 日本精品一区二区三区蜜桃| 联通29元200g的流量卡| 亚洲av日韩精品久久久久久密| 真人做人爱边吃奶动态| 黄色视频,在线免费观看| 国产亚洲精品综合一区在线观看| 亚洲最大成人av| 成人精品一区二区免费| 露出奶头的视频| 成人精品一区二区免费| 欧美一区二区亚洲| 搞女人的毛片| 少妇猛男粗大的猛烈进出视频 | 国产亚洲精品av在线| 亚洲最大成人av| netflix在线观看网站| 最近视频中文字幕2019在线8| 波多野结衣巨乳人妻| 成人特级av手机在线观看| 看黄色毛片网站| 国产一区二区三区在线臀色熟女| 国产精品亚洲美女久久久| 日韩欧美免费精品| 亚洲中文日韩欧美视频| 久久99热这里只有精品18| 三级毛片av免费| 国产精品人妻久久久久久| 久久婷婷人人爽人人干人人爱| xxxwww97欧美| 动漫黄色视频在线观看| 亚洲自偷自拍三级| 51国产日韩欧美| 日韩在线高清观看一区二区三区 | 国产成人福利小说| 精品午夜福利视频在线观看一区| 我的老师免费观看完整版| 亚洲av一区综合| 免费在线观看日本一区| 少妇丰满av| 很黄的视频免费| 国产午夜福利久久久久久| 欧美激情在线99| 中国美白少妇内射xxxbb| www日本黄色视频网| aaaaa片日本免费| 久久热精品热| 成人鲁丝片一二三区免费| 精华霜和精华液先用哪个| 99久国产av精品| 少妇丰满av| 亚洲第一电影网av| 久久精品影院6| 精品久久久久久久人妻蜜臀av| 久久精品综合一区二区三区| 成人永久免费在线观看视频| 一个人观看的视频www高清免费观看| 亚洲专区国产一区二区| 亚洲av免费高清在线观看| 成人av一区二区三区在线看| 美女 人体艺术 gogo| 午夜影院日韩av| 人妻久久中文字幕网| 国产蜜桃级精品一区二区三区| 国产又黄又爽又无遮挡在线| 天堂√8在线中文| 成人美女网站在线观看视频| 久久久久久伊人网av| 成人二区视频| 1000部很黄的大片| 日韩高清综合在线| 人人妻人人看人人澡| 美女大奶头视频| 真人一进一出gif抽搐免费| 国产精品一区二区三区四区免费观看 | 婷婷色综合大香蕉| 国内久久婷婷六月综合欲色啪| 亚州av有码| 麻豆一二三区av精品| 偷拍熟女少妇极品色| 日韩精品中文字幕看吧| 国产精华一区二区三区| 亚洲av中文av极速乱 | 99热只有精品国产| 国产激情偷乱视频一区二区| 亚洲性夜色夜夜综合| 国产免费男女视频| 日韩欧美精品免费久久| 精品人妻偷拍中文字幕| 中出人妻视频一区二区| 色吧在线观看| 中文字幕av在线有码专区| 国产伦精品一区二区三区四那| 国产av不卡久久| 国产亚洲精品av在线| 成人午夜高清在线视频| 成年女人看的毛片在线观看| 亚洲人与动物交配视频| 亚洲精品成人久久久久久| 尤物成人国产欧美一区二区三区| 国产欧美日韩精品亚洲av| netflix在线观看网站| 欧美激情在线99| 国产精品久久久久久久电影| 午夜精品久久久久久毛片777| 人妻夜夜爽99麻豆av| 国产精品一区www在线观看 | 国产aⅴ精品一区二区三区波| 亚洲内射少妇av| 伦精品一区二区三区| 免费搜索国产男女视频| 永久网站在线| 成年免费大片在线观看| 亚洲成人中文字幕在线播放| 欧美国产日韩亚洲一区| 国产黄a三级三级三级人| 91在线观看av| 国产精品久久视频播放| 精品人妻偷拍中文字幕| 亚洲av不卡在线观看| 精品乱码久久久久久99久播| 天堂av国产一区二区熟女人妻| 一夜夜www| 熟女电影av网| 久久久久性生活片| www.色视频.com| 啦啦啦韩国在线观看视频| 乱人视频在线观看| 麻豆成人av在线观看| 精品人妻熟女av久视频| 国产不卡一卡二| 亚洲欧美日韩高清在线视频| 我要看日韩黄色一级片| 国产高清不卡午夜福利| 美女 人体艺术 gogo| 在线观看一区二区三区| 亚洲三级黄色毛片| 在线观看美女被高潮喷水网站| 亚洲经典国产精华液单| 国产美女午夜福利| 成人国产麻豆网| 久久久精品大字幕| 深爱激情五月婷婷| 国产精品久久久久久久电影| 很黄的视频免费| 男女做爰动态图高潮gif福利片| 日本三级黄在线观看| 国产 一区精品| 老司机午夜福利在线观看视频| 2021天堂中文幕一二区在线观| 欧美xxxx性猛交bbbb| 精品人妻偷拍中文字幕| 琪琪午夜伦伦电影理论片6080| 免费看美女性在线毛片视频| 亚洲人成网站在线播| 国产高清激情床上av| 蜜桃久久精品国产亚洲av| 美女大奶头视频| 国产v大片淫在线免费观看| av天堂在线播放| 中出人妻视频一区二区| 九九久久精品国产亚洲av麻豆| 久久精品国产鲁丝片午夜精品 | aaaaa片日本免费| 97人妻精品一区二区三区麻豆| 又爽又黄无遮挡网站| 一级a爱片免费观看的视频| 免费看日本二区| 国产三级在线视频| 精品午夜福利视频在线观看一区| 精品国产三级普通话版| 99久久成人亚洲精品观看| 在线免费观看的www视频| 日韩大尺度精品在线看网址| 久久精品影院6| 麻豆一二三区av精品| 国产精品日韩av在线免费观看| 免费人成在线观看视频色| 国产蜜桃级精品一区二区三区| 九色国产91popny在线| 精品午夜福利在线看| 亚洲欧美日韩高清在线视频| 久久久久久国产a免费观看| 18+在线观看网站| 日本a在线网址| 婷婷亚洲欧美| 男插女下体视频免费在线播放| 色哟哟哟哟哟哟| 亚洲av熟女| .国产精品久久| 精品久久久久久久末码| av天堂中文字幕网| 欧美成人一区二区免费高清观看| 在线观看66精品国产| 亚洲精华国产精华精| 日本黄色视频三级网站网址| 午夜精品在线福利| 国产乱人视频| 亚洲精品456在线播放app | 高清在线国产一区| 欧美黑人欧美精品刺激| 人人妻人人看人人澡| 日日干狠狠操夜夜爽| 精品福利观看| 亚洲精品影视一区二区三区av| 日本黄大片高清| 很黄的视频免费| 最新中文字幕久久久久| 国产又黄又爽又无遮挡在线| 变态另类丝袜制服| 国产精品亚洲美女久久久| 欧美成人a在线观看| 身体一侧抽搐| 成人鲁丝片一二三区免费| 久久精品夜夜夜夜夜久久蜜豆| 精品一区二区三区av网在线观看| 男女边吃奶边做爰视频| 国产伦在线观看视频一区| 中亚洲国语对白在线视频| 91久久精品电影网| 免费看av在线观看网站| 亚洲精品成人久久久久久| 久久人妻av系列| 亚洲内射少妇av| 欧美人与善性xxx| 日韩欧美精品免费久久| 欧美一区二区精品小视频在线| x7x7x7水蜜桃| 91av网一区二区| 久久精品国产鲁丝片午夜精品 | 蜜桃久久精品国产亚洲av| 男女做爰动态图高潮gif福利片| 淫妇啪啪啪对白视频| 亚洲无线在线观看| 欧美不卡视频在线免费观看| 日本欧美国产在线视频| 男女啪啪激烈高潮av片| 久久午夜福利片| 国产爱豆传媒在线观看| aaaaa片日本免费| 亚洲精品日韩av片在线观看| 国产精品永久免费网站| 99热网站在线观看| 成人综合一区亚洲| 99九九线精品视频在线观看视频| 国产乱人伦免费视频| 99久久精品国产国产毛片| 99久久久亚洲精品蜜臀av| 少妇人妻精品综合一区二区 | 午夜亚洲福利在线播放| 亚洲va日本ⅴa欧美va伊人久久| 夜夜爽天天搞| 精品一区二区三区视频在线观看免费| 给我免费播放毛片高清在线观看|