王芳 陳瑩 張惠豐 郭樹忠 溫偉紅 劉蓓
[摘 要]目的 研究信號素蛋白Semaphorin 4D(Sema 4D)在小鼠皮膚創(chuàng)面愈合過程中發(fā)揮的作用和機制。方法 采用隨機分組方式將24只Sema 4D基因敲除小鼠分成實驗組(Sema 4D給藥組)和對照組(PBS組),同時將12只同窩雜合子小鼠作為正常對照組。所有小鼠制備全層皮膚缺損創(chuàng)面,實驗組每個創(chuàng)面局部皮下隔天注射250 ng(50 μl)Sema 4D蛋白/PBS溶液,對照組和正常對照組的小鼠創(chuàng)面以相同體積的PBS溶液進行注射,直至創(chuàng)面完全愈合為止。拍照記錄創(chuàng)面愈合情況,術(shù)后第3、7、13天取創(chuàng)面組織行HE、MASSON染色及CD34、VEGF免疫組化染色。結(jié)果 實驗組第5、7、9、11天創(chuàng)面面積小于對照組和正常對照組(P<0.05);對照組第7、9、11天創(chuàng)面面積大于正常對照組(P<0.05);實驗組創(chuàng)面完全愈合時間短于對照組和正常對照組(P<0.05);實驗組第7天表皮和真皮新生評分、肉芽組織厚度均優(yōu)于對照組及正常對照組(P<0.05);實驗組第13天膠原染色較其他兩組排列緊密有序;在血管生成評價方面,實驗組第7、13天CD34表達均高于對照組及正常對照組(P<0.05)。結(jié)論 Sema 4D基因敲除小鼠創(chuàng)面愈合速度滯后,外源性給予Sema 4D補充后,可通過促進皮膚創(chuàng)面血管化,發(fā)揮促創(chuàng)面愈合的作用。
[關(guān)鍵詞] Sema 4D;血管化;創(chuàng)面愈合
[中圖分類號] R-33 [文獻標識碼] A [文章編號] 1004-4949(2024)06-0032-05
基金項目:1.陜西省2021年自然科學基礎(chǔ)研究計劃(編號:2021JQ-784);2.陜西省西安市科技計劃項目(編號:21YXYJ0129);3.陜西省自然科學基礎(chǔ)研究計劃(編號:2022JM-528);4.2021年醫(yī)學院校級科研創(chuàng)新團隊(編號:2021TD14)
Effect and Mechanism of Semaphorin 4D in Promoting Skin Wound Healing in Mice
WANG Fang1,2, CHEN Ying2, ZHANG Hui-feng2, GUO Shu-zhong3, WEN Wei-hong1, LIU Bei4
(1.Institute of Medical Research, Northwestern Polytechnical University, Xian 710072, Shaanxi, China; 2.Department of Plastic Surgery and Burn Surgery, the First Affiliated Hospital of Xian Medical College, Xian 710077, Shaanxi, China; 3.Xian International Medical Center Plastic Surgery Hospital, Xian 710100, Shaanxi, China; 4.Department of Medical Technology, Xian Medical University, Xian 710021, Shaanxi, China)
[Abstract]Objective To investigate the role and mechanism of Semaphorin 4D, a signaling protein, in the healing process of mouse skin wounds. Methods A total of 24 Sema 4D gene knockout mice were randomly divided into an experimental group (Sema 4D treatment group) and a control group (PBS group), with 12 heterozygous mice from the same litter as the normal control group. All mice were prepared with full-thickness skin defect wounds, and each wound in the treatment group was subcutaneously injected with 250 ng (50 μl) Sema 4D protein/PBS solution every other day. The wounds of mice in the PBS group and normal control group were injected with the same volume of PBS solution until the wounds were completely healed. The wound healing was recorded by photographing. On the 3rd, 7th and 13th day after operation, the wound tissue was taken for HE, MASSON staining and CD34, VEGF immunohistochemical staining. Results The wound area of the experimental group was smaller than that of the control group and the normal control group on the 5th, 7th, 9th and 11th day (P<0.05). The wound area of the control group was larger than that of the normal control group on the 7th, 9th and 11th day (P<0.05). The wound healing time of the experimental group was shorter than that of the control group and the normal control group (P<0.05). On the 7th day, the epidermal and dermal regeneration scores and granulation tissue thickness scores of the experimental group were better than those of the control group and the normal control group (P<0.05). The collagen staining of the experimental group was more closely and orderly than that of the other two groups on the 13th day. In terms of angiogenesis evaluation, the expression of CD34 in the experimental group was higher than that in the control group and the normal control group on the 7th and 13th days (P<0.05). Conclusion The wound healing rate of Sema 4D knockout mice is delayed. Exogenous supplementation of Sema 4D can promote skin wound vascularization and promote wound healing.
[Key words] Sema 4D; Vascularization; Wound healing
創(chuàng)面愈合(wound healing)是一種復雜而精細的動態(tài)生理過程,需要多細胞、多分子的共同作用。正常創(chuàng)面的愈合過程包括止血期、炎癥期、組織增生期、塑型期4個階段。血管生成在創(chuàng)面愈合中發(fā)揮關(guān)鍵作用,VEGF等多種因子的表達在其中發(fā)揮重要的作用[1]。Semaphorin 4D(Sema 4D),又稱CD100,是Ⅳ類信號素家族成員,Sema 4D受體Plexin-B1表達于內(nèi)皮細胞表面,Sema 4D能夠發(fā)揮抑制內(nèi)皮細胞凋亡、促進內(nèi)皮細胞遷移及微血管形成的作用[2]。本研究將Sema 4D基因敲除小鼠制備創(chuàng)傷愈合動物模型,利用重組表達的Sema 4D創(chuàng)面局部給藥,驗證Sema 4D對創(chuàng)面愈合發(fā)揮的作用,并從血管生成的角度探討其機制。
1.1 實驗材料 重組表達的小鼠Sema 4D分子(Vaccinex,美國);Masson染色試劑(珠海貝索生物技術(shù)有限公司,生產(chǎn)批號:C220701,規(guī)格:5×20 ml);CD34抗體試劑(武漢博士德生物工程有限公司,規(guī)格:500 μg/ml);VEGF抗體試劑(美國Abcam公司,規(guī)格:40 μl);磷酸鹽緩沖液PBS片(美國Thermo Fisher Scientific公司,規(guī)格:100片)。
1.2 實驗動物 C57BL/6J背景的Sema 4D基因敲除鼠(24只)及雜合子對照(12只)由空軍大學免疫教研室惠贈,飼養(yǎng)于西京整形醫(yī)院實驗動物中心,動物實驗嚴格按照西京醫(yī)院整形外科實驗動物管理規(guī)范執(zhí)行,本研究得到西安醫(yī)學院醫(yī)學倫理審查委員會批準,倫理審批號:XYLS2021187。
1.3 方法
1.3.1動物分組及模型構(gòu)建 選取24只Sema 4D基因敲除小鼠(Sema 4D-/-)隨機分為實驗組(Sema 4D給藥組)和對照組(PBS組),同時將12只同窩雜合子(Sema 4D+/-)小鼠作為正常對照組。各組小鼠均制備全層皮膚缺損模型。異氟烷吸入麻醉小鼠,除毛消毒小鼠的背部,再以脊椎為中線,在靠近頸側(cè)的背部用打孔器給每只小鼠制備4個直徑5 mm的圓形全層創(chuàng)面。
1.3.2創(chuàng)面處理 Sema 4D-/-小鼠創(chuàng)面制備后,實驗組每個創(chuàng)面局部皮下隔天注射Sema 4D蛋白/PBS溶液(50 μl)250 ng。對照組(Sema 4D-/-)和正常對照組(Sema 4D+/-)給予同體積的無菌PBS。每組小鼠在創(chuàng)面完全愈合前,均隔天注射給藥。
1.3.3創(chuàng)面愈合評價 術(shù)后每天觀察并拍照記錄各組小鼠創(chuàng)面愈合情況,計算創(chuàng)面愈合率,計算公式:創(chuàng)面愈合率=(1-觀察日創(chuàng)面面積/初始創(chuàng)面面積)×100%,并記錄創(chuàng)面完全閉合時間。
1.3.4取材 術(shù)后第3、7、13天每組處死3只小鼠并取材,其余小鼠觀察至創(chuàng)面最終愈合。小心剝離包括肉芽組織在內(nèi)的全層創(chuàng)面及周圍正常皮膚組織。取材以多聚甲醛固定,常規(guī)程序脫水、包埋、切片。
1.3.5 HE染色和Masson染色 蠟塊標本切4 μm薄片,行常規(guī)HE染色和Masson染色。由病理醫(yī)生對切片進行表皮和真皮再生情況的評估,具體標準參照Niwano Y等[3]和Altavilla D等[4]四分量表。
1.3.6免疫組化染色 常規(guī)免疫組化染色標記CD34和VEGF。每一高倍鏡視野下計數(shù)新生血管的數(shù)目或陽性細胞染色數(shù)目,每張切片隨機選取5個最大范圍的覆蓋創(chuàng)面組織的視野進行拍照并統(tǒng)計。
2.1 創(chuàng)面愈合情況 三組術(shù)后前3天創(chuàng)面面積比較,差異無統(tǒng)計學意義(P>0.05);實驗組第5、7、9、11天創(chuàng)面面積小于對照組和正常對照組(P<0.05);對照組第7、9、11天創(chuàng)面面積大于正常對照組(P<0.05),見圖1。實驗組創(chuàng)面完全愈合時間為(13.00±1.23)d,短于對照組的(17.25±1.14)d及正常對照組的(14.75±0.97)d(P<0.05)。
2.2 HE染色和Masson染色結(jié)果 術(shù)后第3天,新生表皮和真皮在各組創(chuàng)面組織均未見到,炎性細胞浸潤較多。相比于對照組,實驗組第7天創(chuàng)面上皮化程度較高,肉芽組織層較厚,血管數(shù)量較多,炎性細胞浸潤減少,正常對照組也可見新生表皮覆蓋,肉芽組織較厚,血管豐富,炎性細胞數(shù)目較少。實驗組第7天表皮和真皮新生評分、肉芽組織厚度均高于對照組和正常對照組(P<0.05);實驗組第13天創(chuàng)面已經(jīng)被新生表皮組織完全覆蓋,表皮較薄,真皮層內(nèi)有與表皮平行分布的膠原蛋白纖維,新生血管數(shù)目及炎性細胞數(shù)目減少;而對照組表皮反應(yīng)性增厚,炎性細胞數(shù)目較多,位于上皮化區(qū)域,新生血管可見;正常對照組創(chuàng)面上皮化尚未完全,真皮層增厚,與第7天相比,血管和炎性細胞浸潤的數(shù)量都有所下降。實驗組第13天表皮細胞厚度、表皮和真皮再生評分及肉芽組織厚度均低于對照組和正常對照組(P<0.05)。三組不同時間點的表皮厚度、表皮和真皮再生評分及肉芽組織厚度統(tǒng)計見圖2A~圖2C。Masson染色顯示,創(chuàng)面組織在造模術(shù)后的第3天呈現(xiàn)出稀疏、排列紊亂的膠原結(jié)構(gòu)。第7天,各組膠原密度均有所提高,特別是實驗組可見大量成纖維細胞增殖,膠原纖維束變粗,排列也更加規(guī)整。相比之下對照組稀疏而雜亂。正常對照組織中,成纖維細胞數(shù)量增加,膠原纖維束增粗,但排列缺乏規(guī)則。第13天,實驗組膠原纖維排列較為有序,密度增加;而對照組排列紊亂,纖維成熟度較低;正常對照組膠原蛋白纖維排列較之前更加緊密均勻,見圖2D。
2.3 血管生成評價 在創(chuàng)面模型建立后的第3天,免疫組化標記CD34顯示各組創(chuàng)面僅有少量新生血管。各組第7天新生血管數(shù)量均增多,該時間點實驗組較其它兩組微血管數(shù)目增多(P<0.05)。第13天,各組微血管數(shù)目均下降,實驗組微血管數(shù)目仍高于其他兩組(P<0.05),見圖3A。各組VEGF表達呈現(xiàn)第3天較低、第7天升高、13天略降低趨勢,但與CD34染色不同的是,正常對照組各個時間點創(chuàng)面VEGF表達均高于其它兩組(P<0.05),見圖3B。
傷口愈合困難是臨床工作中的一大難題,隨著社會老齡化問題日益突出,其發(fā)病率也呈逐年上升趨勢,傷口長期不愈合會嚴重影響患者的身心健康,也造成了醫(yī)療費用支出的日益增長,給患者及其家庭和社會帶來了巨大負擔[5]。局部組織缺血是慢性創(chuàng)面難以愈合的原因之一,可通過改善局部組織缺血狀況來進行治療[6]。
Sema 4D分子是信號素家族的成員,已有研究表明[7],其在體外和外均能誘導血管生成。本研究擬探討Sema 4D分子的缺失、及外源補充是否對創(chuàng)面愈合進程造成影響,并初步探討其機制。本研究觀察到Sema 4D敲除小鼠創(chuàng)面愈合進程明顯延遲,而給敲除小鼠外源補充Sema 4D分子能加速創(chuàng)面愈合速度,證明了該分子在創(chuàng)面愈合中的重要作用。通過對血管化指標的評價,表明Sema 4D的外源補充能夠促進創(chuàng)面新生血管的形成。其中CD34毛細血管內(nèi)皮細胞祖細胞標志,可代表微血管數(shù)目[8]。本研究發(fā)現(xiàn)在各個時間點,Sema 4D給藥后創(chuàng)面微血管數(shù)目較對照組和正常對照組均增高。VEGF作為促血管生成的最強生長因子[9],Sema 4D給藥后相較PBS對照組,VEGF的表達也增高,證實了Sema 4D可能通過促血管生成作用促進創(chuàng)面愈合。前期研究發(fā)現(xiàn)[10],在Ⅱ型糖尿病小鼠慢性創(chuàng)面模型中,局部給與Sema 4D藥物,能夠通過促血管生成作用促進創(chuàng)面愈合,與本研究結(jié)論一致。
關(guān)于Sema 4D發(fā)揮促血管生成及促進創(chuàng)面愈合的機制,已知高親和力受體PlexinB1主要在非免疫細胞如內(nèi)皮細胞和上皮細胞表達[11]。PlexinB1的細胞內(nèi)段有多個酪氨酸磷酸化的位點,及GAP和PDZ結(jié)合結(jié)合域[12],能夠通過調(diào)節(jié)PI3KAKT、MAPK 等信號通路發(fā)揮生物血作用[13-16]。因此,推測Sema 4D可能通過與血管內(nèi)皮細胞上的受體PlexinB1結(jié)合后,通過調(diào)節(jié)PlexinB1下游信號通路促進創(chuàng)面新生血管的形成,從而加快創(chuàng)面愈合速度。
綜上所述,敲除Sema 4D的小鼠創(chuàng)面愈合較雜合子正常小鼠創(chuàng)面愈合延遲;外源性給予Sema 4D補充后,創(chuàng)面的愈合過程可以通過促進創(chuàng)面新血管的生成而加速。Sema 4D可能能夠作為臨床慢性難愈創(chuàng)面治療的一項潛在的藥物。
[1]Sharifiaghdam M,Shaabani E,F(xiàn)aridi-Majidi R,et al.Macrophages as a therapeutic target to promote diabetic wound healing[J].Mol Ther,2022,30(9):2891-2908.
[2]張超,常文輝.可溶型CD100分子生物學及相關(guān)疾病研究進展[J].細胞與分子免疫學雜志,2017,33(4):559-563.
[3]Niwano Y,Koga H,Sakai A,et al.Wound healing effect of malotilate in rats[J].Arzneimittelforschu ng,1996,46(4):450-455.
[4]Altavilla D,Saitta A,Cucinotta D,et al.Inhibition of lipid peroxidation restores impaired vascular endothelial growth factor expression and stimulates wound healing and angiogenesis in the genetically diabetic mouse[J]. Diabetes,2001,50(3):667-674.
[5]Grada A,Phillips TJ.Nutrition and cutaneous wound healing[J].Clin Dermatol,2022,40(2):103-113.
[6]Bosanquet DC,Harding KG.Wound healing:potential therapeutic options[J].Br J Dermatol,2022,187(2):149-158.
[7]Zhou H,Yang YH,Basile JR.Characterization of the Effects of Semaphorin 4D Signaling on Angiogenesis[J].Methods Mol Biol,2017,1493:429-441.
[8]Marcianò A,Ieni A,Mauceri R,et al.CD34 and CD105 Microvessels in Resected Bone Specimen May Implicate Wound Healing in MRONJ[J].Int J Environ Res Public Health,2021,18(21):11362.
[9]Yen JH,Chio WT,Chuang CJ,et al.Improved Wound Healing by Naringin Associated with MMP and the VEGF Pathway[J].Molecules,2022,27(5):1695.
[10]Wang F,Liu B,Yu Z,et al.Effects of CD100 promote wound healing in diabetic mice[J].J Mol Histol,2018,49(3):277-287.
[11]Basile JR,Afkhami T,Gutkind JS.Semaphorin 4D/ plexin-B1 induces endothelial cell migration through the activation of PYK2,Src,and the phosphatidylinositol 3-kinase-Akt pathway[J].Mol Cell Biol,2005,25(16):6889-6898.
[12]Cao J,Zhang C,Chen T,et al.Plexin-B1 and semaphorin 4D cooperate to promote cutaneous squamous cell carcinoma cell proliferation,migration and invasion[J].J Dermatol Sci,2015,79(2):127-136.
[13]Basile JR,Barac A,Zhu T,et al.Class IV semaphorins promote angiogenesis by stimulating Rhoinitiated pathways through plexin-B[J].Cancer Res,2004,64(15):5212-5224.
[14]Binmadi NO,Yang YH,Zhou H,et al Plexin-B1 and semaphorin 4D cooperate to promote perineural invasion in a RhoA/ROK-dependent manner[J].Am J Pathol,2012,180(3):1232-1242.
[15]Basile JR,Gavard J,Gutkind JS.Plexin-B1 utilizes RhoA and Rho kinase to promote the integrin-dependent activation of Akt and ERK and endothelial cell motility[J]. J Biol Chem,2007,282(48):34888-34895.
[16]Li C,Wan L,Wang P,et al.Sema4D/Plexin-B1 promotes the progression of osteosarcoma cells by activating Pyk2-PI3K-AKT pathway[J].J Musculoskelet Neuronal Interact,2021,21(4):577-583.
收稿日期:2023-12-25 編輯:扶田