• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    一例多釩酸鹽雜化材料的制備及高效催化烯烴環(huán)氧化

    2024-04-17 00:57:18杜思宇王雪怡關(guān)致敏馬宏芳
    無機化學學報 2024年4期
    關(guān)鍵詞:山西大同大學化學化工學院

    李 寧 杜思宇 王雪怡 楊 輝 周 濤 關(guān)致敏 費 鵬 馬宏芳 蔣 尚

    (山西大同大學化學與化工學院,大同 037009)

    0 Introduction

    The inorganic - organic hybrid materials, which combine inorganic and organic constituents, have been studied and have a broad scope of applications in catalysis, magnetism, photochemistry, and biomedicine[1-3].Thus, the preparation of functionalized inorganicorganic hybrid materials is of great significance. The key procedure in the preparation of such combined materials is the selection of eligible organic and inorganic constituents. Polyoxometalates (POMs) are a fascinating class of inorganic cluster materials possessing enormous structures and multifaceted applications.Because of their excellent performances, POMs have been researched extensively as precursors for the construction of hybrid materials[4-7]. Polyoxovanadates(POVs), as a special subclass of POMs, have aroused great interest owing to their electromagnetism, redox activity, and medical chemistry[8-10]. Additionally, the V—O fragments possess the potency to bind transition metals to form functional hybrids using their terminal oxygen atoms. These hybrid materials have been considered as oxidation catalysts to catalyze a variety of organic substrates. The materials not merely overcome the troubles of the easy aggregation and hard recovery of POMs but also enhance the stabilization and recyclability of catalysts[11-13].

    Olefins epoxidation is a kind of important industrial catalytic reaction, and its epoxidation products are a kind of important organic intermediates, that have important applications in the fine chemical industry,petrochemical industry, polymer materials, and pharmaceutical synthesis[14-16]. In recent years, green chemistry has attracted great attention from researchers,hydrogen peroxide has high reactive oxygen content and its product is water, therefore, the reaction system using hydrogen peroxide as an oxidant has been widely studied. For the past few decades, varieties of POMs have been generally used as effective catalysts for the epoxidation of olefins. Up to now, many inorganicorganic hybrid POV materials have been applied to the selective oxidation of sulfides and alcohols and have shown efficient catalytic performance[17-20]. However,the investigation of hybrid POVs for olefin epoxidation catalysis is still rare[21-23].In addition,based on previous literature reports, cobalt-containing compounds show excellent catalytic effect and high selectivity of epoxidation products in various olefin epoxidation reactions and are potential epoxidation catalysts[24-26]. The combination of POVs and Co-complex may cooperatively interact giving rise to synergistic effects to enhance the catalytic activity.

    On considerations of the above content, to investigate the oxidation catalytic performance of POVs, we successfully synthesized an inorganic-organic hybrid cobalt vanadate, [Co(pIM)V2O6] (1) (pIM=2-(2-Pyridyl)imidazole), by reacting CoCl2·6H2O with NaVO3and pIM under hydrothermal conditions. The compound exhibited the 2D network composed of VO4tetrahedra and CoO3N2square pyramid via both edge- and cornersharing. As a catalyst for epoxidation, the conditions of epoxidation of olefin were optimized,and the reusability of the catalyst was also studied.

    1 Experimental

    1.1 Materials and methods

    The chemicals for the experiments were commercially sourced and no additional purifying was performed. Elemental analyses of Co and V were confirmed by PLASMASPEC (I)ICP atomic emission spectrometer, and the contents of C, H, and N were analyzed by a PerkinElmer 2400 CHN elemental analyzer.Powder X-ray diffraction (PXRD) was implemented on a Rigaku D/MAX-3 instrument and the radiation of CuKα(λ=0.154 2 nm) at 298 K and X-ray 40 kV/30 mA over a 2θrange of 5°-50°. The Fourier transform infrared (IR) spectra were collected using KBr pellets on an Alpha Centaurt FTIR system, implementing from 4 000 cm-1to 400 cm-1. Thermogravimetric (TG) analysis was determined with the Perkin-Elmer TGA7 apparatus with a heating speed of 10 ℃·min-1in an atmosphere of N2. The catalytic reaction process was monitored and evaluated by the GC-2014 (Shimadzu) system with biphenyl as an internal standard substrate.The collection of magnetic susceptibility data was used a SQUID magnetometer (Quantum Design, MPMS-5)with an external magnetic field of 1 000 Oe and a temperature region of 2 to 300 K.

    1.2 Synthesis of compound 1

    CoCl2·6H2O (0.24 g, 1.0 mmol), NaVO3(0.12 g,1.0 mmol) and pIM (0.15 g, 1.0 mmol) were added to 10 mL distilled water, and the reaction solution was adjusted to pH 4.2 with 1 mol·L-1HCl in the stirring process. The reaction solution was stirred for 15 min and then transferred to a 23 mL stainless reactor. The stainless reactor was placed in the oven at 170 ℃for three days and then decreased to ambient temperature at a rate of 10 ℃·h-1.Blocky crystals were collected by filtration, washing, and dried at ambient temperatures.Yield: 22.2% (V-based). Anal. Calcd.(%) for C8H7N3O6CoV2:C 24.3;H 1.7;N 10.6;Co 14.9;V 25.8;Found(%):C 23.9;H 1.8;N 10.9;Co 15.4;V 25.2.

    1.3 X-ray crystallography

    A regular block single crystal was selected to be wrapped with vaseline and encapsulated in a fine glass tube of appropriate size. Crystal data were obtained using a Bruker Smart-CCD diffractometer with monochromated MoKαradiation (λ=0.071 07 nm) at room temperature. Structure determination was fulfilled by direct methods using the SHELXS-2014 crystallographic program via the Olex 2 platform[27], and succedent atom refinement was accomplished using full-matrix least-squares procedures. In the process of refinement,all the non-hydrogen atoms in the structure were refined anisotropically. The H atoms on the C and N atoms were arranged geometrically.Table 1 summarizes the crystallology information of 1 and its refinement results.

    Table 1 Crystallographic data of 1 and corresponding structural refinements

    CCDC:2285966.

    2 Results and discussion

    2.1 Synthesis and structure

    X-ray single-crystal diffraction reveals the crystallization of 1 in the triclinicPspace group. The structure contains a crystallographically independent Co2+,a[V2O6]2-unit, and a pIM ligand. In this structure, Co2+coordinates with three O atoms and two N atoms from the ligand to form a twisted CoO3N2square pyramid configuration. There are two crystallographically different vanadium atoms:V1 and V2,both vanadiums adopt a distorted tetrahedral coordination pattern. Where, V1 coordinates with two bridging O atoms from two VO4,one bridging O from CoO3N2and the end O atoms of its own VO4, V2 coordinates with two bridged O atoms from CoO3N2and two bridged O atoms from VO4(Fig.1a). The average bond length of V—O is 0.172 9 nm, and those of Co—O and Co—N is 0.199 2 and 0.213 2 nm. The valence states of V and Co are determined to be +5 and +2 respectively through bondvalence sum calculations. An interesting feature of the structure is that the VO4tetrahedra and the CoO3N2tetragonal cone are connected by sharing O atoms to form a ternary ring system containing two fivemembered rings and one six-membered ring (Fig.1b).The five-membered ring includes four VO4tetrahedra and one CoO3N2tetragonal cone, while the sixmembered ring includes four VO4tetrahedra and two CoO3N2tetragonal cones. These ternary rings are further pointed and coplanar to form a 2D layer network(Fig.1c).

    Fig.1 (a)Coordination for the Co and V in 1;(b)Ternary ring system containing two five-membered rings and one six-membered ring;(c)2D layer formed by ternary rings

    2.2 IR spectra,PXRD and TG analysis

    The IR spectra of 1 were studied in a range of 4 000-400 cm-1using a KBr disc (Fig.2a). The absorption peaks at 978 and 928 cm-1are attributed to the vibrations ofνas(V—O—V) and the absorption peaks at 841 and 646 cm-1are assigned to the vibrations ofνas(V—O—Co). The absorption peaks at 963, 882, and 835 cm-1belong to V=Ot(Oterminal) vibration, the region from 1 621 to 1 308 cm-1corresponds to the ligand C—C and C—N stretching vibration[28-30]. To further check the repeatability and purity of the crystal, the recovered crystalline samples were crushed as a fine powder for PXRD analysis. Compared with the crystal structure, the experimental PXRD patterns of the samples were in good agreement with the crystal simulation results, indicating that the bulk powders were pure phase (Fig.2b). The TG test of 1 was conducted in N2atmosphere at a heating of 10 ℃·min-1. The TG curve exhibited a sustained weight loss of 34.2% (calculated value 33.8%) between 335 ℃and 775 ℃, corresponding to the loss of pIM(Fig.3).

    Fig.2 (a)IR spectra of 1 after each catalytic cycle;(b)PXRD patterns of recovered 1

    Fig.3 TG curve of 1 measured from 30 to 800 ℃under N2 atmosphere

    2.3 Epoxidation of olefins

    The catalytic epoxidation of olefin is affected by many factors, such as the dosage of the catalyst, temperature, reaction time, and the amount of oxidant.Therefore, we need to find the best reaction conditions to improve the conversion and selectivity of the product. Under gentle conditions, the olefins were oxidized in acetonitrile (CH3CN) with 1 as a heterogeneous catalyst and H2O2as an oxidant. An initiatory study on the oxidation of the cyclooctene to cyclooctane epoxide was selected to explore the catalytic activity of 1 in CH3CN at 60 ℃.Under the above conditions,the dosage of oxidant and catalyst was determined through controlled experiments. As shown in Fig.4a, the conversion of the epoxidation increased from the beginning 84.8% (0.01 mmol catalyst) to 98.6% (0.04 mmol catalyst). When the dosage of the catalyst added up to 0.07 mmol, the conversion remained nearly constant, suggesting that the appropriate dosage of the catalyst was only 0.04 mmol. Then, we examined the conversion for different dosages of oxidant. The conversion increased from 77.2% to 98.6% with the increase in the amount of oxidant from 0.5 mmol to 1.5 mmol (Fig.4b), however, the conversion did not improve significantly with further increase of H2O2dosage. According to the above test results,the most reasonable conditions for catalytic oxidation of cyclooctene are available 0.04 mmol catalyst and 1.5 mmol oxidant. So, we got optimum reaction conditions using 1 as the catalyst(0.04 mmol)and 30%H2O2as the oxidant (1.5 mmol) in CH3CN at 60 ℃(Scheme 1). As reflected in Table 2, 1 could availably catalyze cyclooctene to cyclooctane epoxide with the conversion of 98.6% and selectivity of 99.2% after 8 h of reaction, which was comparable to the previously reported POVs-based hybrids,such as[Zn(pIM)3]2V4O12·H2O,[Zn(ipIM)3]2V4O12,and[Co(eIM)3]2V4O12·H2O[23].

    Scheme 1 Epoxidation of cyclooctene catalyzed by 1

    Fig.4 Effect of(a)catalyst and(b)oxidant factors for cyclooctene oxidation;(c)Thermal filtration experiment;(d)Recycling of catalyst for oxidation of cyclooctene

    Table 2 Epoxidation of cyclooctene with different catalystsa

    To further explore the role of the Co-complex and vanadium-oxygen anion in the catalytic reaction, contrast experiments were carried out, and the CoCl2·6H2O, (n-Bu4N)4[V4O12] were also used as a catalyst to explore catalytic activity. When CoCl2·6H2O was used as a catalyst, the cyclooctene conversion was very low,while(n-Bu4N)4[V4O12] produced a different result: the cyclooctene conversion achieved 65.5% (Table 2).From the above results, we could conclude that the combination of Co2+and V—O cluster by the complexation may cause a positive synergistic catalysis and significantly increase catalytic activity, this was similar to the previous report[31]. Besides, the catalytic activity might be also related to the unsaturated coordination sites of the Co2+, which could interact with the substrate to facilitate chemical reactions. Again, when the reaction was carried out without catalyst, only 6.9%conversion was observed,which indicated that the catalyst was vital for the reaction. According to the above catalytic results and literature reports[32-33], a possible epoxidation mechanism was suggested using 1 as a catalyst(Scheme 2).Primary,the coordinatively unsaturated Co2+in the structure as Lewis acidic centers available activated the olefin substrate, which not only pi-electron delocalization to the metal center but also shortened the distance between substrate and the peroxovanadium groups, the four-coordinated V5+simultaneously reacted with H2O2to generate active peroxovanadium groups, then, the O atom in peroxovanadium nucleophilic attacked the olefin double bond forming the epoxidation products and the catalytic cycle completed.

    Scheme 2 Proposed mechanism of catalytic epoxidation procedure

    To support the heterogeneous nature of the catalyst, a hot filtering test was conducted during the cyclooctene epoxidation. The solid catalyst 1 was separated from the reaction system after 2 h of reaction,and the filter was kept reacting for another 6 h with this understanding. The obtained filter was monitored by gas chromatography (GC) analysis, and the conversion was almost immobile (38.2%), which was significantly lower than the value in the presence of 1 (Fig.4c). The result confirmed the heterogeneous nature of the reaction system. Due to the excellent catalytic properties, 1 was chosen to test the cycling stability in heterogeneous systems. After the reaction was completed, the catalyst could be recovered easily from the reaction system through filtering and further reused in the subsequent epoxidation reaction. 1 could be recirculated at least four times without significant reduction in activity(Fig.4d). The combination of IR and PXRD patterns(Fig.2)before and after catalysis certified that the structure and crystallization remained unaltered after the circular reactions, which indicated excellent cycling stability of the catalysts.

    Subsequently, various olefins were selected to estimate the catalytic universality of the catalyst. As shown in Table 3, the catalytic action of cyclohexene was examined under the same conditions, the slightly lower conversion achieved 94.2% within 6 h (entry 2),and the epoxidation yield was also slightly lower than that of cyclooctene (entry 1). So, the catalyst exerted excellent activity on cycloolefins.

    Table 3 Oxidation of various olefins catalyzed by 1 using H2O2 oxidant

    However,for aromatic olefins,the effect of the catalyst was lower than that for cycloolefins. Under optimal contexts, the conversion of styrene was 89.8% with a narrowly satisfying selectivity of 92.4% for 8 h (entry 3). Middling catalytic activities for the oxidation ofp-methylstyrene (conversion 91.1%, selectivity 89.6%)ando-methylstyrene (conversion 72.3%, selectivity 79.9%) (entries 4-5) were given after 10 h of catalytic reactions. Compared with styrene andp-methylstyrene,a relatively lower catalytic was observed for the electrondeficientp-chlorostyrene(conversion 86.1%,selectivity 78.6%)(entry 6)for 9 h.The catalytic activity of multi-substituted and large steric hindrance substances was also studied,trans-stilbene afforded obvious reduced activity with 69.6% conversion for 9 h, probably due to a larger steric resistance containing diphenyl groups(entry 7).The reaction of 2,5-dimethylstyrene exhibited 89.5% conversion and 90.3% selectivity for 6 h (entry 8),compared with 2,5-dimethylstyrene,3,4-dichlorostyrene resulted in a relatively lower reduced activity with 82.6% conversion and 77.5% selectivity at the same time (entry 9). As for aliphatic linear olefins, the 1-hexene was transformed into the corresponding epoxide with 67.8% conversion and 71.6% selectivity for 7 h, and the reaction of 1-octene afforded 65.4% conversion and 81.8% selectivity for 7 h (entries 10-11). The above results show that the nature of the substrates is an important element affecting the epoxidation, and the catalytic oxidation of the circular substrates is more effective than that of the aromatic and linear substrates during the epoxidation process[34].

    2.4 Magnetic measurements

    The variable temperature magnetic susceptibility(χM) of 1 was conducted with a field intensity of 1 kOe.Fig.5a showed theχMTplot againstTat temperatures variable between 2-300 K.WhenTwas 300 K,theχMTvalue was 2.27 emu·K·mol-1, which was slightly higher than the theoretical spin-only value of 1.875 emu·K·mol-1for the high-spind7Co2+ions (S=3/2,g=2.0),implying the existence of an orbital angular momentum contribution[35-37]. Gradually lowered the temperature,theχMTvalue decreased gently to 2.12 emu·K·mol-1at 45 K, the curvilinear relationship betweenχMTandTimplied the intramolecular antiferromagnetic coupling among the Co2+centers.Then theχMTvalue dramatically descended to a minimum of 0.66 emu·K·mol-1at 2 K,this might be attributed to the integrated action of the magnetic anisotropy and spin-orbit coupling of Co2+as well as the antiferromagnetic interactions[38-40]. As displayed in Fig.5b, the linear fitting of theχM-1vsTkept to the Curie-Weiss law between 300-10 K, with the Curie constantCof 2.26 emu·K·mol-1and the Weiss constantθof -2.22 K, farther notarizing that the antiferromagnetic effect present in 1.

    Fig.5 (a)Temperature reliance of χM and χMT for 1;(b)Temperature reliance of χM-1 for 1

    3 Conclusions

    A cobalt-vanadates architecture was hydrothermally prepared, containing cobalt nodes and V—O sheets. The compound was used as the catalyst for the olefins epoxidation and hydrogen peroxide was used as the oxidant. The catalytic results show that the compound has excellent epoxidation catalytic performance under optimized conditions, and can be recycled many times. The studies of other potential catalytic reactions using the compound were ongoing. Besides, magnetic measurements reveal the antiferromagnetical interactions between the Co2+ions.

    Acknowledgments:This work was supported by the Basic Research Project Fund of Shanxi Province (Grant No.202203021222296),the Scientific and Technological Innovation Programs of Higher Education Institutions in Shanxi (Grants No. 2023L254, 2022L425), the Foundation of Shanxi Datong University (Grants No.2017-B-04, 2019-B-11, 2022Q24), the Key Research and Development Project of Datong (Grant No.2023003).

    猜你喜歡
    山西大同大學化學化工學院
    使固態(tài)化學反應100%完成的方法
    山西大同 黃花菜豐收在望
    國家開放大學石油和化工學院學習中心列表
    《山西大同大學學報(自然科學版)》征稿簡則
    【鏈接】國家開放大學石油和化工學院學習中心(第四批)名單
    山西大同大學采礦研究所簡介
    山西大同邀客共賞“小黃花大產(chǎn)業(yè)”
    《化工學報》贊助單位
    化工學報(2016年3期)2016-03-14 08:37:00
    基于SCIE的大學化學學科文獻計量學研究——以河南大學為例
    信息技術(shù)在大學化學專業(yè)英語教學中的應用
    亞太教育(2015年18期)2015-02-28 20:54:31
    亚洲专区国产一区二区| 色综合婷婷激情| 亚洲午夜理论影院| 久久香蕉精品热| 午夜精品国产一区二区电影| 国产三级黄色录像| 男女下面插进去视频免费观看| 97超级碰碰碰精品色视频在线观看| 欧美最黄视频在线播放免费 | 一二三四在线观看免费中文在| 亚洲精品成人av观看孕妇| 久久久国产欧美日韩av| 国产三级黄色录像| 日本vs欧美在线观看视频| av国产精品久久久久影院| 亚洲成人免费电影在线观看| 深夜精品福利| 亚洲人成电影观看| 人妻丰满熟妇av一区二区三区| 一二三四在线观看免费中文在| 国产精品香港三级国产av潘金莲| 亚洲五月天丁香| 一级片'在线观看视频| 一本综合久久免费| 天天躁狠狠躁夜夜躁狠狠躁| 欧美激情高清一区二区三区| av网站在线播放免费| 日韩免费高清中文字幕av| 乱人伦中国视频| 美女高潮到喷水免费观看| 十八禁人妻一区二区| 高清在线国产一区| 色老头精品视频在线观看| 国产男靠女视频免费网站| 久久久水蜜桃国产精品网| 久久久久九九精品影院| 淫妇啪啪啪对白视频| 麻豆成人av在线观看| 午夜福利欧美成人| 精品免费久久久久久久清纯| av片东京热男人的天堂| 一区二区三区国产精品乱码| 99久久人妻综合| 亚洲精品国产精品久久久不卡| 大香蕉久久成人网| 天堂影院成人在线观看| 动漫黄色视频在线观看| 亚洲精品粉嫩美女一区| 美女 人体艺术 gogo| av国产精品久久久久影院| 国产无遮挡羞羞视频在线观看| 日韩欧美一区二区三区在线观看| 最近最新免费中文字幕在线| 国产高清videossex| 手机成人av网站| 天天影视国产精品| 在线看a的网站| 狂野欧美激情性xxxx| 久久国产亚洲av麻豆专区| 亚洲色图av天堂| 91成人精品电影| 亚洲成人国产一区在线观看| 国产精品爽爽va在线观看网站 | 成年女人毛片免费观看观看9| 欧美中文综合在线视频| 淫妇啪啪啪对白视频| 久久国产亚洲av麻豆专区| 不卡av一区二区三区| 精品福利观看| 黄网站色视频无遮挡免费观看| 国产深夜福利视频在线观看| 午夜a级毛片| 成人免费观看视频高清| 交换朋友夫妻互换小说| 97超级碰碰碰精品色视频在线观看| 精品一区二区三区av网在线观看| www.自偷自拍.com| 亚洲熟妇中文字幕五十中出 | 国产深夜福利视频在线观看| 午夜亚洲福利在线播放| 首页视频小说图片口味搜索| 国产乱人伦免费视频| 久久狼人影院| 国产成人影院久久av| 男女高潮啪啪啪动态图| 夜夜看夜夜爽夜夜摸 | 国产熟女午夜一区二区三区| 两性夫妻黄色片| 国产三级在线视频| 亚洲精品一区av在线观看| 每晚都被弄得嗷嗷叫到高潮| 一进一出抽搐gif免费好疼 | 免费看十八禁软件| 日韩一卡2卡3卡4卡2021年| 久久草成人影院| 50天的宝宝边吃奶边哭怎么回事| 搡老乐熟女国产| 一级毛片高清免费大全| 无限看片的www在线观看| av免费在线观看网站| 搡老岳熟女国产| 国产精品免费一区二区三区在线| 成人黄色视频免费在线看| 啦啦啦在线免费观看视频4| 日韩免费av在线播放| 露出奶头的视频| 操美女的视频在线观看| 久久国产精品影院| 免费在线观看完整版高清| 成人手机av| 真人做人爱边吃奶动态| 久久国产精品男人的天堂亚洲| 啪啪无遮挡十八禁网站| 国产精品一区二区免费欧美| 男人舔女人的私密视频| 日韩av在线大香蕉| 欧美久久黑人一区二区| 少妇粗大呻吟视频| 中文字幕另类日韩欧美亚洲嫩草| 精品久久久久久成人av| 丝袜在线中文字幕| 欧美激情高清一区二区三区| 精品第一国产精品| 日本五十路高清| 51午夜福利影视在线观看| 成熟少妇高潮喷水视频| 色哟哟哟哟哟哟| 国产欧美日韩精品亚洲av| 中文欧美无线码| 精品国产乱子伦一区二区三区| 国产高清视频在线播放一区| 国产成人精品在线电影| 日本三级黄在线观看| 不卡一级毛片| 99精国产麻豆久久婷婷| 高清在线国产一区| 人人妻,人人澡人人爽秒播| 男女之事视频高清在线观看| 日本三级黄在线观看| 又紧又爽又黄一区二区| 女生性感内裤真人,穿戴方法视频| 精品一区二区三区四区五区乱码| 好看av亚洲va欧美ⅴa在| 亚洲国产看品久久| 国产熟女午夜一区二区三区| 不卡av一区二区三区| 精品国产美女av久久久久小说| 国产精华一区二区三区| 亚洲自偷自拍图片 自拍| 日韩欧美一区视频在线观看| 热99re8久久精品国产| 一本大道久久a久久精品| av在线播放免费不卡| 两性夫妻黄色片| 在线国产一区二区在线| 国产欧美日韩一区二区三| 亚洲一卡2卡3卡4卡5卡精品中文| 亚洲午夜精品一区,二区,三区| 99精品欧美一区二区三区四区| 精品熟女少妇八av免费久了| 亚洲精品一卡2卡三卡4卡5卡| 欧美激情 高清一区二区三区| 亚洲一卡2卡3卡4卡5卡精品中文| 老司机在亚洲福利影院| 一二三四社区在线视频社区8| 国产精品秋霞免费鲁丝片| 欧美国产精品va在线观看不卡| 国产精品国产av在线观看| 亚洲色图 男人天堂 中文字幕| 色播在线永久视频| 亚洲第一青青草原| 久久久久国产一级毛片高清牌| 麻豆成人av在线观看| 黄色视频不卡| 日本三级黄在线观看| 欧美日韩亚洲高清精品| 亚洲国产精品一区二区三区在线| 免费一级毛片在线播放高清视频 | 性色av乱码一区二区三区2| 伦理电影免费视频| 黑人巨大精品欧美一区二区蜜桃| 精品福利永久在线观看| 成人精品一区二区免费| 另类亚洲欧美激情| 夜夜夜夜夜久久久久| 国产精品1区2区在线观看.| 亚洲精品粉嫩美女一区| 亚洲精品国产色婷婷电影| 自线自在国产av| 男女下面插进去视频免费观看| 亚洲欧美日韩高清在线视频| 巨乳人妻的诱惑在线观看| 久久精品亚洲av国产电影网| 在线观看免费高清a一片| 亚洲国产看品久久| 日本vs欧美在线观看视频| 一级a爱视频在线免费观看| 黄色视频不卡| 最新美女视频免费是黄的| www.自偷自拍.com| 欧美精品一区二区免费开放| 欧美激情久久久久久爽电影 | 真人一进一出gif抽搐免费| 日日爽夜夜爽网站| 婷婷六月久久综合丁香| 国产成人欧美在线观看| 97碰自拍视频| 黄片大片在线免费观看| 美国免费a级毛片| 欧美午夜高清在线| 老司机福利观看| 国产成人欧美| 国产精品久久视频播放| 在线十欧美十亚洲十日本专区| 宅男免费午夜| 中出人妻视频一区二区| 婷婷精品国产亚洲av在线| 99riav亚洲国产免费| 好看av亚洲va欧美ⅴa在| a级片在线免费高清观看视频| 免费不卡黄色视频| 女人被躁到高潮嗷嗷叫费观| 免费看十八禁软件| 国产精品国产高清国产av| 长腿黑丝高跟| 少妇的丰满在线观看| 亚洲av片天天在线观看| 一二三四社区在线视频社区8| 真人一进一出gif抽搐免费| 少妇的丰满在线观看| 亚洲精品一卡2卡三卡4卡5卡| 亚洲精品美女久久久久99蜜臀| 在线观看免费午夜福利视频| 国产亚洲精品一区二区www| 国产精品香港三级国产av潘金莲| 国产精品 国内视频| 国产片内射在线| 久久精品91蜜桃| 亚洲av美国av| tocl精华| 丁香六月欧美| 好男人电影高清在线观看| 琪琪午夜伦伦电影理论片6080| 人人妻人人澡人人看| 9色porny在线观看| 变态另类成人亚洲欧美熟女 | 国产精品自产拍在线观看55亚洲| av片东京热男人的天堂| 欧美性长视频在线观看| 美女午夜性视频免费| 狠狠狠狠99中文字幕| 国产精品久久电影中文字幕| 国产精品1区2区在线观看.| videosex国产| 啦啦啦在线免费观看视频4| 一区二区日韩欧美中文字幕| 欧美黄色淫秽网站| 悠悠久久av| 一个人观看的视频www高清免费观看 | 亚洲男人天堂网一区| 自拍欧美九色日韩亚洲蝌蚪91| 大型黄色视频在线免费观看| 亚洲色图 男人天堂 中文字幕| 亚洲国产精品合色在线| 国内毛片毛片毛片毛片毛片| 日日爽夜夜爽网站| 一进一出好大好爽视频| 可以免费在线观看a视频的电影网站| 久久久久久人人人人人| 久久精品成人免费网站| 在线十欧美十亚洲十日本专区| 黄色视频不卡| 国产在线精品亚洲第一网站| 国产av一区二区精品久久| 性欧美人与动物交配| 99久久久亚洲精品蜜臀av| 一级片免费观看大全| 久久久久久久久中文| 1024香蕉在线观看| 欧美中文综合在线视频| 亚洲国产看品久久| 性欧美人与动物交配| 午夜视频精品福利| 嫁个100分男人电影在线观看| 韩国av一区二区三区四区| 久久精品影院6| 国产高清国产精品国产三级| 国产精品国产av在线观看| 亚洲第一欧美日韩一区二区三区| 国产男靠女视频免费网站| 99香蕉大伊视频| 夜夜看夜夜爽夜夜摸 | 久久精品国产综合久久久| 老汉色av国产亚洲站长工具| 人人妻人人添人人爽欧美一区卜| 欧美黑人欧美精品刺激| 国产精品一区二区在线不卡| 国产免费av片在线观看野外av| 性欧美人与动物交配| 97碰自拍视频| 免费在线观看黄色视频的| 精品一区二区三区视频在线观看免费 | 成年女人毛片免费观看观看9| 黑人巨大精品欧美一区二区蜜桃| 三级毛片av免费| 悠悠久久av| 91国产中文字幕| 777久久人妻少妇嫩草av网站| 国产伦人伦偷精品视频| 9191精品国产免费久久| 久久精品人人爽人人爽视色| 国产成人免费无遮挡视频| 欧美黄色片欧美黄色片| 91大片在线观看| 亚洲国产看品久久| 欧美另类亚洲清纯唯美| 精品一区二区三卡| 成人国语在线视频| 99国产极品粉嫩在线观看| 久久久国产成人免费| 亚洲 欧美 日韩 在线 免费| 高清毛片免费观看视频网站 | 狠狠狠狠99中文字幕| 亚洲欧美一区二区三区久久| 极品教师在线免费播放| 欧美日韩国产mv在线观看视频| 五月开心婷婷网| 国产99久久九九免费精品| 88av欧美| 精品久久久久久久久久免费视频 | 欧美成人免费av一区二区三区| 国产亚洲精品第一综合不卡| 成人国语在线视频| 国产在线观看jvid| 欧美成人免费av一区二区三区| 精品久久久久久,| 操美女的视频在线观看| 无遮挡黄片免费观看| 精品一区二区三区四区五区乱码| 女人高潮潮喷娇喘18禁视频| 亚洲成国产人片在线观看| 男女午夜视频在线观看| 最新在线观看一区二区三区| 在线观看一区二区三区激情| 久久久久国产一级毛片高清牌| 亚洲美女黄片视频| 久久久久国产一级毛片高清牌| 天天躁狠狠躁夜夜躁狠狠躁| 欧美成人免费av一区二区三区| 亚洲国产精品999在线| 99久久精品国产亚洲精品| 日韩欧美国产一区二区入口| 三级毛片av免费| 大型黄色视频在线免费观看| 美女 人体艺术 gogo| 久久人人97超碰香蕉20202| 久9热在线精品视频| 亚洲精品国产区一区二| 亚洲人成电影免费在线| 久久欧美精品欧美久久欧美| 两人在一起打扑克的视频| 纯流量卡能插随身wifi吗| 99在线视频只有这里精品首页| 久久精品91蜜桃| 成人手机av| 国产一区二区三区视频了| 国产精华一区二区三区| 亚洲国产欧美日韩在线播放| 亚洲人成电影免费在线| 久久欧美精品欧美久久欧美| 国产精品亚洲av一区麻豆| 最好的美女福利视频网| 少妇的丰满在线观看| 丁香欧美五月| 亚洲国产中文字幕在线视频| 国产免费av片在线观看野外av| 黄色丝袜av网址大全| 午夜免费观看网址| 久久久久久久久免费视频了| 久久久水蜜桃国产精品网| 可以在线观看毛片的网站| 天堂√8在线中文| 日韩大尺度精品在线看网址 | 亚洲人成电影免费在线| 99国产极品粉嫩在线观看| av片东京热男人的天堂| 99re在线观看精品视频| 国产av一区在线观看免费| 91麻豆精品激情在线观看国产 | 午夜福利免费观看在线| 一本大道久久a久久精品| 亚洲av第一区精品v没综合| 欧美 亚洲 国产 日韩一| 国产伦人伦偷精品视频| 777久久人妻少妇嫩草av网站| 18美女黄网站色大片免费观看| 一级黄色大片毛片| tocl精华| 亚洲伊人色综图| aaaaa片日本免费| av中文乱码字幕在线| 成人国语在线视频| 精品一品国产午夜福利视频| 最新美女视频免费是黄的| 欧美黑人欧美精品刺激| 精品高清国产在线一区| 国产有黄有色有爽视频| 亚洲午夜精品一区,二区,三区| 最近最新免费中文字幕在线| 999久久久精品免费观看国产| 国产熟女午夜一区二区三区| 人人妻,人人澡人人爽秒播| 亚洲免费av在线视频| 美女大奶头视频| 午夜久久久在线观看| 他把我摸到了高潮在线观看| 午夜免费鲁丝| 免费高清在线观看日韩| 女性被躁到高潮视频| 亚洲七黄色美女视频| a级毛片黄视频| 1024视频免费在线观看| 欧美日韩黄片免| 1024香蕉在线观看| 啦啦啦在线免费观看视频4| 亚洲人成77777在线视频| 精品国产亚洲在线| 91成年电影在线观看| 国产亚洲精品一区二区www| 在线看a的网站| 亚洲专区国产一区二区| 99在线视频只有这里精品首页| 成人国产一区最新在线观看| 性欧美人与动物交配| avwww免费| 91大片在线观看| 啦啦啦 在线观看视频| 午夜91福利影院| 天堂中文最新版在线下载| 97人妻天天添夜夜摸| 日韩大码丰满熟妇| 精品电影一区二区在线| 国产亚洲欧美98| 男女下面进入的视频免费午夜 | 国产精品成人在线| 嫩草影视91久久| 国产97色在线日韩免费| 午夜福利一区二区在线看| 欧美久久黑人一区二区| 精品久久久久久久毛片微露脸| 日韩国内少妇激情av| 一个人观看的视频www高清免费观看 | 成年版毛片免费区| 久久性视频一级片| 嫩草影视91久久| 国产单亲对白刺激| 久久精品国产清高在天天线| 窝窝影院91人妻| 香蕉丝袜av| 777久久人妻少妇嫩草av网站| 国产精华一区二区三区| 99国产极品粉嫩在线观看| 精品日产1卡2卡| 久久中文看片网| 麻豆一二三区av精品| 一夜夜www| 精品少妇一区二区三区视频日本电影| 麻豆国产av国片精品| 新久久久久国产一级毛片| 亚洲精品国产一区二区精华液| a级片在线免费高清观看视频| 免费一级毛片在线播放高清视频 | 成人三级做爰电影| 宅男免费午夜| 一区二区三区国产精品乱码| 亚洲aⅴ乱码一区二区在线播放 | 黄色片一级片一级黄色片| 亚洲少妇的诱惑av| 精品日产1卡2卡| 国产av一区二区精品久久| 亚洲情色 制服丝袜| 久久久国产精品麻豆| 女性被躁到高潮视频| 国产精华一区二区三区| 亚洲精品一区av在线观看| 夫妻午夜视频| 亚洲精品美女久久久久99蜜臀| 亚洲午夜理论影院| 高清黄色对白视频在线免费看| 一边摸一边做爽爽视频免费| 亚洲人成电影免费在线| 国产av在哪里看| 丰满人妻熟妇乱又伦精品不卡| 19禁男女啪啪无遮挡网站| 欧美人与性动交α欧美软件| 亚洲五月婷婷丁香| 欧美日本亚洲视频在线播放| 国产高清国产精品国产三级| 久久久精品欧美日韩精品| 水蜜桃什么品种好| bbb黄色大片| 国产不卡一卡二| 精品久久久久久久久久免费视频 | 国产99久久九九免费精品| 久久人妻熟女aⅴ| 亚洲成人免费电影在线观看| e午夜精品久久久久久久| 精品人妻在线不人妻| 国产99久久九九免费精品| 男女之事视频高清在线观看| 国产无遮挡羞羞视频在线观看| 最新在线观看一区二区三区| 黄片小视频在线播放| 欧美日韩国产mv在线观看视频| 久久天躁狠狠躁夜夜2o2o| 一进一出抽搐gif免费好疼 | 在线天堂中文资源库| 99国产精品一区二区三区| 中文欧美无线码| 亚洲成人精品中文字幕电影 | 欧美黑人精品巨大| 久久国产亚洲av麻豆专区| 人成视频在线观看免费观看| 纯流量卡能插随身wifi吗| 久久久国产成人精品二区 | 看黄色毛片网站| 日韩av在线大香蕉| 午夜精品国产一区二区电影| 欧洲精品卡2卡3卡4卡5卡区| 国产免费现黄频在线看| 久久国产精品影院| 日本撒尿小便嘘嘘汇集6| 日韩欧美一区二区三区在线观看| 亚洲国产欧美网| 中亚洲国语对白在线视频| 97碰自拍视频| 国产高清国产精品国产三级| 黄色视频,在线免费观看| 亚洲欧美激情在线| e午夜精品久久久久久久| 亚洲第一青青草原| 中文字幕精品免费在线观看视频| 国产精华一区二区三区| 在线观看一区二区三区激情| 脱女人内裤的视频| 啪啪无遮挡十八禁网站| 波多野结衣高清无吗| 黄色丝袜av网址大全| 亚洲性夜色夜夜综合| 亚洲五月色婷婷综合| 精品无人区乱码1区二区| 一进一出好大好爽视频| av电影中文网址| 成年人黄色毛片网站| 搡老岳熟女国产| 亚洲色图综合在线观看| 夜夜爽天天搞| 人人妻,人人澡人人爽秒播| 91大片在线观看| 中文字幕人妻丝袜制服| 欧美日韩黄片免| 一级片'在线观看视频| 五月开心婷婷网| 少妇 在线观看| 日韩一卡2卡3卡4卡2021年| 欧美激情 高清一区二区三区| 一本大道久久a久久精品| 欧美色视频一区免费| 亚洲国产看品久久| 亚洲中文日韩欧美视频| 亚洲一区二区三区欧美精品| 国产亚洲精品第一综合不卡| 午夜免费鲁丝| 夜夜爽天天搞| 女人高潮潮喷娇喘18禁视频| 国产成人av激情在线播放| 91av网站免费观看| 99久久久亚洲精品蜜臀av| 成熟少妇高潮喷水视频| 国产免费现黄频在线看| 一区二区三区激情视频| 亚洲成a人片在线一区二区| 亚洲视频免费观看视频| 午夜福利影视在线免费观看| 欧美人与性动交α欧美精品济南到| 国产主播在线观看一区二区| 咕卡用的链子| 国产av又大| 在线观看一区二区三区| 中文字幕高清在线视频| 日韩大码丰满熟妇| 色在线成人网| 怎么达到女性高潮| 99国产综合亚洲精品| 妹子高潮喷水视频| 久久久久久亚洲精品国产蜜桃av| 老汉色av国产亚洲站长工具| 亚洲精品一卡2卡三卡4卡5卡| 久久久久久亚洲精品国产蜜桃av| 99在线人妻在线中文字幕| 一级a爱视频在线免费观看| 国产精品亚洲av一区麻豆| 亚洲精品国产精品久久久不卡| 女同久久另类99精品国产91| 亚洲成国产人片在线观看| 国产一区二区激情短视频| 亚洲成人免费电影在线观看| 成人三级做爰电影| 免费高清在线观看日韩| 老汉色∧v一级毛片| 国内久久婷婷六月综合欲色啪| 国产av精品麻豆| 午夜视频精品福利| 国产精品一区二区在线不卡| 国产亚洲欧美在线一区二区|