• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    基于雙金屬高核鈦氧簇基電極的高性能超級電容器的制備

    2024-04-17 00:57:10PalanisamyKannan侯進樂姚金忠
    無機化學學報 2024年4期
    關鍵詞:化工學院周口雙金屬

    羅 穩(wěn) 靳 林*, Palanisamy Kannan 侯進樂 霍 鵬 姚金忠 王 鵬*,,5,6

    (1周口師范學院河南省稀土功能材料重點實驗室,周口 466001)

    (2嘉興學院生物與化學工程學院,嘉興 314001)

    (3聊城大學化學化工學院,聊城 252000)

    (4復旦大學航空航天系,上海 200433)

    (5嘉興學院G60研究院,嘉興 314001)

    (6西安理工大學儀器科學與技術博士后流動站,西安 710048)

    0 Introduction

    Titanium-oxo-clusters (TOCs) have attracted significant attention in research due to their potential as precursors for soluble molecular titanium-oxo materials and nano-TiO2, which possess uniform scale and precise structure[1-3]. Among the numerous reported TOCs modified by metal doping and organic ligands, it can be found that the calculated electronic states of small clusters (nuclei number<10) vary significantly with the number of clusters′ nuclearity[4-6]. This highlights the significant potential for the synthesis and application research of high-nuclearity TOCs. Ti12[Ti12O16(OR)16](R=ethyl or isopropyl) has been extensively studied and widely applied in photocatalysis,photoelectric conversion,etc., likely due to its band gap that can be effectively regulated by doping transition metal ions[7-9].In recent decades, research on Ti12-based transitionmetal doped TOCs has primarily focused on functional ligands used to stabilize the structure of TOCs, such as pyrocatechol, benzoic acid, and 1, 10 - phenanthroline[10-12]. Therefore, developing novel functional ligandstable Ti12-based transition-metal doped TOCs and exploring their applications in emerging fields remain significant challenges.

    Supercapacitors,with their ability to store and discharge energy quickly and efficiently,present a promising solution to the energy-storage crisis[13-14].At present,the main electrode materials that can be used as supercapacitors are carbon materials, MXenes, layered double hydroxides, black phosphorus, and perovskites[13-14].Recently,some metal-oxo-clusters (MOC)based energy storage devices have been reported,i.e.,AlO6and CuⅠ-MOFs containing[Mo8O26]4-clusters based supercapacitors[15-16]. However, their energy storage capacity and cycle performance are still lower than common energy storage materials in most studies, which were attributed to the introduction of low energy density metal elements and ligands with complex structures that are not resistant to high current environments[17-18]. Moreover,although the experimental and theoretical results of these MOC-based supercapacitors have revealed some details of energy storage, the diversity and systematisms of MOCs used in model studies are still incomplete, especially the TOC-based supercapacitor model has never been reported. This is mainly due to the low energy and easy breakage of Ti—O bonds, leading to the instability of the cluster structure and a sharp decline in electrical properties[4,19]. Therefore, it is necessary to search for a newly available ligand with a simple structure that can enhance the overall structural strength of the crystal cluster and keep the structure stable under an electrical environment. Meanwhile,another transition element needs to be introduced inside the lattice to further adjust the bond energy and increase the overall energy density of the system.

    In this work,as a proof-of-concept study,the novel TOCs with electrical energy storage capabilities were successfully synthesized. TOCs with different transition metals(Zn and Cd)were obtained by a simple onestep solvothermal method, using thiophenol (SPh) as the chromophore and transition metals (Zn and Cd) as the second metal.The experimental results showed that the synthesized TOCs (Ti11clusters) had good energy storage capacity. Among them, the supercapacitor based on Zn-Ti11showed an excellent discharge capacity(175 F·g-1at 1 A·g-1)and provided the maximum power density and energy density of 9.5 W·kg-1and 463 Wh·kg-1,respectively.This work provides a reliable method for producing titanium-oxide-based energy storage devices with high energy density.

    1 Experimental

    1.1 Materials and instruments

    All the analytical pure reagents were purchased from Adams and used without further purification.[Me4N]2[M4(SPh)10] (M=Cd, Zn) was prepared by the reported methods[20-21].UV-Vis absorbance spectra were obtained on a Shimadzu UV-2600 spectrometer. FTIR spectra were recorded on a Nicolet 6700 spectrophotometer (KBr pellet). X-ray diffraction (XRD) measurements were carried out using a Rigaku CCD X-ray diffractometer with Ni-filtered CuKαradiation (λ=0.156 nm, 2θ=5°-30°, 40 kV, 40 mA). Transmission electron microscopy (TEM) images were obtained on a Tecnai G220 TEM with carbon film-coated grids. The photocurrent experiments were performed on a CHI650 electrochemistry workstation in a three-electrode system.The microcrystal samples were mixed with Nafion -D521 (Alfa) and coated directly on a cleaned ITO electrode (50 Ω·cm2), which was used as the working electrode. A Pt plate and a saturated calomel electrode(SCE) were used as the auxiliary electrode and the reference electrode, respectively. The working electrodes were positioned 20 cm from the light source with an effective irradiation area of 0.5 cm2. An aqueous solution of Na2SO4(0.1 mmol·L-1, 100 mL) in a quartz cell was used as the supporting electrolyte.

    1.2 Syntheses of Zn-Ti11 and Cd-Ti11

    1.2.1 [ZnTi11O14(SPh)(OiPr)17](Zn-Ti11)

    Analytically pure titanium tetraisopropoxide(Ti(OiPr)4,0.15 mL,0.39 mmol)and[Me4N]2[Zn4(SPh)10](0.006 0 g,0.003 mmol)were mixed in 0.3 mL acetonitrile and anhydrous isopropanol (2∶1,V/V). The mixture was placed in a thick Pyrex tube (0.7 cm in diameter, 15 cm in length) and quickly degassed by argon.The sealed tube was heated under autogenous pressure at 60 ℃for 7 d and then cooled to room temperature to yield colorless block-shaped crystals (53% yield based on Ti). The crystals were rinsed with isopropanol and preserved in a sealed glass tube. The crystals were rinsed with isopropanol for crystal structure and XRD analysis. Selected FTIR data (KBr, cm-1): 3 060(b),2 966(b), 2 922(w), 2 866(w), 2 613(w), 1 462(s), 1 373(vs), 1 324(w), 1 137(w), 1 015(w), 856(m), 668(m),529(s), 464(w). [ZnTi11O14(SPh)(OiPr)17]: Calcd. for C57H124ZnO31STi11(%,Mw=1 929.88): C, 35.44; H, 6.43;S,1.66.Found(%):C,34.98;H,6.22;S,1.60.

    1.2.2 [CdTi11O14(SPh)(OiPr)17](Cd-Ti11)

    Analytically pure Ti(OiPr)4(0.15 mL, 0.39 mmol),[Me4N]2[Cd4(SPh)10] (0.006 7 g, 0.004 mmol) were mixed in 0.3 mLN,N-dimethyl formamide (DMF) and anhydrous isopropanol (2∶1,V/V). The mixture was placed in a thick Pyrex tube (0.7 cm in diameter, 15 cm in length) and quickly degassed by argon. The sealed tube was heated under autogenous pressure at 60 ℃for 5 d and then cooled to room temperature to yield colorless block-shaped crystals (55% yield based on Ti). The crystals were rinsed with isopropanol and preserved in a sealed glass tube. Selected FTIR data(KBr, cm-1): 3 065(b), 2 963(b), 2 925(w), 2 864(w),2 615(w),1 466(s),1 375(vs),1 328(w),1 139(w),1 013(w), 856(m), 666(m), 530(s), 465(w). [CdTi11O14(SPh)(OiPr)17]:Calcd.for C57H124CdO31STi11(%,Mw=1 976.91):C, 34.59; H, 6.27; S, 1.62. Found(%): C, 33.98; H,6.02;S,1.57.

    1.3 X-ray crystallographic analysis

    The single crystal measurements of Zn-Ti11and Cd-Ti11were carried out on a Bruker APEX-ⅡCCD diffractometer with graphite monochromated MoKα(λ=0.071 075 nm) radiation at room temperature. The structures were solved by direct methods using SHELXS-2016 and the refinements were performed againstF2using SHELXL-2016. All the non-hydrogen atoms were refined anisotropically. The hydrogen atoms were positioned with idealized geometry and refined with fixed isotropic displacement parameters.Relevant crystal data, collection parameters, and refinement results can be found in Table S1 (Supporting information).

    CCDC:2217954,Zn-Ti11;2219848,Cd-Ti11.

    1.4 Electrochemical measurements

    The electrochemical properties of the as-prepared materials were studied on a CHI 660E electrochemical workstation.The experiments were performed in a threeelectrode configuration comprising the 1 cm2samples,the activated carbon (AC),and the Hg/HgO in 3.0 mol·L-1KOH as a working electrode, a counter electrode,and a reference electrode, respectively. To prepare the working electrode, porous carbon, acetylene black,and polytetra fluoroethylene (mass ratio of 8∶1∶1)were ultrasonically mixed in a solution containing distilled water and ethanol and then dried. The obtained sticky mixture was roll-pressed into a thin sheet, cut into small pieces, and fi nally pressed onto the nickel (Ni)foam current collector. The loading mass of the active material was approximately 2.0 mg·cm-2. Cyclic voltammetry (CV) measurements were carried out in a three-electrode setup in 3 mol·L-1KOH. Galvanostatic charge-discharge (GCD) and cycling tests were conducted in a two-electrode configuration in 3 mol·L-1KOH using a LAND CT2001A battery measurement system. The energy density (E) and the power density(P)were calculated from the following equations[22]:

    whereI,t,m, and ΔVrepresent the discharge current(mA), the discharge time (s), the total mass of active materials (g), and the potential window of the electrode(V)in that order.

    The asymmetric supercapacitor was fabricated by combining M-Ti11(M=Cd,Zn)and AC as a cathode and an anode in a 3 mol·L-1KOH electrolyte. The mass loadings of the cathode and anode were calculated by using Eq.3:

    WhereC+,C-andm+,m-are the capacitance and mass of the positive and negative electrodes. In this study,the mass ratio of the cathode and the anode was set at 2.9∶1.

    2 Results and discussion

    2.1 Structural characterization

    Colorless crystals of clusters Zn-Ti11and Cd-Ti11were obtained directly by one step in situ solvothermal synthesis at 60 ℃. All samples were carefully isolated by handpicking under a microscope.The identity of the collected cluster samples with the crystals for structure analysis was confirmed by comparing the experimental XRD patterns with the calculated patterns from the crystal data of the Zn-Ti11and Cd-Ti11clusters (Fig.S1 in the ESI).

    The FTIR spectra of the clusters (Fig.S2) showed asymmetric and symmetric stretching vibrations of the SPh ligand. The isopropoxy groups were identified based on theνC—Hvibrations ranging from 2 860 to 2 975 cm-1and theνO—Cvibration around 1 010 cm-1.The bands around 760 cm-1are attributed to the Ti—O vibrations. The solid-state UV-Vis diffuse-reflection spectra of Zn-Ti11and Cd-Ti11are shown in Fig.S3a.The absorption data were calculated from the reflectance, which indicated no absorption above 400 nm(3.1 eV), consistent with their colorless nature (Fig.S3b).

    As revealed by single-crystal X-ray diffraction analysis, compounds Zn-Ti11and Cd-Ti11are isostructural in the formula [MTi11O14(SPh)(OiPr)17] (M=Zn,Cd).Two clusters crystallize in the space groupCcand two clusters are included in a unit cell (Table S1). Fig.1a,1b,and S4 show the structures of Zn-Ti11and Cd-Ti11in ball-stick presentation. The structure of Zn-Ti11is discussed here in detail. Fig.1c and 1d give polyhedron views of Zn-Ti11. The Ti11cluster core is constructed by two Ti3O13subunits and one Ti5O13subunit. Six Ti (Ⅳ)atoms in two Ti3O13subunits adopt distorted octahedral geometry (green in Fig.1d) while the other five Ti (Ⅳ)adopt a trigonal bipyramid geometry (yellow in Fig.1d).The Zn atom takes a five-coordinated geometry with an SPh and fourμ3-oxo groups together to be the[ZnTi11O14(SPh)] subunit and 17 OiPr groups further stabilize the structure of the cluster, which is similar to the reported isostructural of [(CoⅠ)Ti11O14(OiPr)17][14]and [LnTi11O14(NO3)2(OiPr)17]·3H2O (Ln=Sm (1), Eu (2), and Gd (3))[8]clusters, in which the Co+, two [Eu (NO3)2]+, are replaced by a Zn(SPh) moiety. A unique characteristic of Zn-Ti11and Cd-Ti11, different from the CoTi11and LnTi11clusters,was coordinated with SPh and with better photoelectric performance. Fig.1e shows the cluster packing along theb-axis.

    Fig.1 Ball-stick(a,b)and polyhedron(c,d)views of cluster Zn-Ti11 in one direction and the cluster packing viewed from the b direction(e)

    2.2 Electrochemical performance

    The electrochemical performance of Zn-Ti11and Cd-Ti11as supercapacitor working electrodes was tested in a three-electrode system with 3 mol·L-1KOH as the electrolyte. All samples in this paper were attached and measured on Ni foam substrates. According to the research of Xu et al.[23-24], only a very slight current was recorded on the bare Ni foam electrode, so it is reasonable to ignore the capacitive contribution of Ni foam.

    The CV curves of Zn-Ti11and Cd-Ti11are shown in Fig.2. The presence of multiple pairs of redox peaks at Zn-Ti11and Cd-Ti11electrodes indicates the nature of typical pseudocapacitive behavior[25], which can be attributed to the redox reactions of cations in the Ti11electrode,as shown in Eq.4 and 5[26].Moreover,the oxidation peak(Ox2,ca.0.54 V)and reduction peak(Re1,ca. 0.34 V) for Cd-Ti11,which is closely consistent with the values for Zn-Ti11can be attributed to the existing of thiophenol[27]. However, Cd-Ti11exhibited two redox peaks (Ox1/Re1,ca. 0.409 V and Ox2/Re2,ca. 0.479 V) slightly shift compared to that of Zn-Ti11(ca. 0.412 and 0.484 V) due to the coordination of different metal atoms (i. e.Zn and Cd) and thiophenol within the lattice, which indicates that there may be differences between the electrochemical properties of Cd-Ti11and Zn-Ti11electrodes.

    Fig.2 CV curves of Zn-Ti11 and Cd-Ti11 at the scan rate of 2 mV·s-1

    The Zn-Ti11and Cd-Ti11electrodes showed the same symmetrical redox peaks at different scan rates(ranging from 1 to 30 mV·s-1),indicating that these Ti11clusters had excellent rate capability and relatively low resistance (Fig. 3a and 3c). The linear relationship between the square root of the scan rate (v1/2) and the peak current density (ip) provides further evidence that a Faraday redox reaction occurs on the electrode surface(Fig.3c and 3d).Moreover,CV curves can also provide greater insight into the charge storage kinetics of Ti11electrodes. Generally, the following equation proposed by Lindstr?m et al.[28-29]can be used to depict the relationship between the scan rates (v) and peak current density(i):

    Fig.3 CV curves of(a)Cd-Ti11 and(b)Zn-Ti11 at various scan rates;Corresponding relationships between v1/2 and ip of(c)Cd-Ti11 and(d)Zn-Ti11 in voltage range of 0-0.6 V(vs Hg/HgO);Determination of the b-value of(e)Cd-Ti11 and(f)Zn-Ti11 using the relationship between lg ip and v

    whereaandbare adjustable parameters. Specifically,kinetic limitations can be estimated from the limiting cases of theb-value;b=0.5, which suggests a diffusioncontrolled (or battery-like) behavior, caused by slowly semi-infinite linear ion diffusion;b=1.0, which indicates a capacitive behavior related to a fast-Faraday redox reaction on the surface. Calculated from CV curves with scan rates ranging from 1 to 30 mV·s-1, all of theb-values of the anodic and cathodic peaks for both Zn-Ti11and Cd-Ti11electrodes were between 0.5 and 1, which suggests that this electrochemical reaction is both surface-controlled and diffusion-controlled(Fig.3e and 3f).

    The electrochemical properties of Cd-Ti11and Zn-Ti11electrodes were further investigated. Fig.4a and 4b shows GCD curves of Cd-Ti11electrodes at the range of 0.1 to 1 A·g-1. Although these electrodes had long discharge times at low current densities (452 F·g-1at 0.1 A·g-1for Cd-Ti11and 709 F·g-1at 0.1 A·g-1for Zn-Ti11)(Fig.4c),their Coulombic efficiencies appeared unsatisfactory (only 69% for Cd-Ti11and 59% for Zn-Ti11).With the increasing current density,the Coulombic efficiency increased significantly.When the current density was up to 1 A·g-1, the Coulombic efficiencies of Cd-Ti11and Zn-Ti11electrodes were 96% and 93%,respectively (Fig.4d). Although Cd-Ti11electrode had a larger voltage window (0-0.92 V) compared that of Zn-Ti11electrode (0-0.60 V) (Fig.S5), the discharge specific capacitance of Zn-Ti11electrode wasca. 175 F·g-1at 1 A·g-1, significantly better than that of the Cd-Ti11electrode (ca. 76 F·g-1at 1 A·g-1) and many related MOCbased electrodes (Table 1). Moreover, the specific capacitance of both Cd-Ti11and Zn-Ti11electrodes decreased almost linearly with increasing current density,which may be attributed to the electrode polarization.

    Table 1 Summary of MOC-based composite electrodes of three-electrode supercapacitors

    Fig.4 GCD curves of(a)Cd-Ti11 and(b)Zn-Ti11 scanned at various current densities;(c)Specific capacitances and(d)Coulombic efficiencies of Cd-Ti11 and Zn-Ti11 after IR-drop correction

    As shown in Fig.S6, the Zn-Ti11electrode exhibited a higher initial capacitance (114 F·g-1) at 1 A·g-1,compared to Cd-Ti11(74 F·g-1). Moreover, the Cd-Ti11-based cell failed inca.200 cycles,accompanied by violent fluctuations in specific capacity. However, the Zn-Ti11cell can be stably cycled for more than 500 cycles,with a capacitance retention rate of 84.7% and a decay rate of only 0.003% per cycle. The above results showed that the Zn-Ti11-based supercapacitor had a stronger structure and could operate stably for a long time at a higher current density.Furthermore,after calculation,Cd-Ti11and Zn-Ti11electrodes can provide the maximum power density and energy density of 9.5 W·kg-1and 463 Wh·kg-1, 8.7 W·kg-1and 324 Wh·kg-1,respectively, which are significantly better than many related reports in the literature[29-31], implying the great potential of Ti11clusters in the energy storage area.

    3 Conclusions

    In this study, two novel Ti11clusters (Zn-Ti11and Cd-Ti11)with fascinating structures were synthesized by introducing thiophenol and a second metal.Their applications in supercapacitors were investigated for the first time.The experimental results showed that Zn-Ti11-based supercapacitors showed higher specific capacitance than that of Cd-Ti11, and were better than most reported MOC-based electrode materials. Therefore,this work provides an effective strategy for designing and synthesizing novel TOC-based electrode materials with excellent specific capacitance and may open a new avenue for high-performance supercapacitors.

    Acknowledgments:We are grateful for the financial support from the National Natural Science Foundation of China (Grant No.62204272), the Natural Science Foundation of Shandong Province(Grant No.ZR2021QB077),youth fund of Zhoukou Normal University (Grant No. ZKNUC2020044), Baiqing project(Grant No.CD70621019), and Jiaxing University SRT project(Grant No.8517221253).

    Supporting information is available at http://www.wjhxxb.cn

    猜你喜歡
    化工學院周口雙金屬
    使固態(tài)化學反應100%完成的方法
    國家開放大學石油和化工學院學習中心列表
    【鏈接】國家開放大學石油和化工學院學習中心(第四批)名單
    雙金屬支承圈擴散焊替代技術研究
    雙金屬復合管液壓脹形機控制系統(tǒng)
    重型機械(2020年2期)2020-07-24 08:16:08
    “一站一臺”連民心 繪出周口新畫卷
    人大建設(2018年9期)2018-11-13 01:10:00
    雙金屬復合管焊接方法選用
    為周口人民的健康事業(yè)做出更大貢獻
    人大建設(2018年1期)2018-04-18 11:30:09
    《化工學報》贊助單位
    化工學報(2016年3期)2016-03-14 08:37:00
    二次多階段不確定系統(tǒng)的Bang-Bang最優(yōu)控制
    悠悠久久av| 国产激情久久老熟女| 18在线观看网站| 精品免费久久久久久久清纯 | 久久久久网色| 午夜激情av网站| 99久久人妻综合| 在线精品无人区一区二区三| 18在线观看网站| 熟女少妇亚洲综合色aaa.| av在线播放精品| 美国免费a级毛片| 亚洲国产欧美日韩在线播放| 日本黄色日本黄色录像| 这个男人来自地球电影免费观看| 中文精品一卡2卡3卡4更新| 中文字幕av电影在线播放| 水蜜桃什么品种好| 亚洲少妇的诱惑av| 亚洲,欧美精品.| 亚洲激情五月婷婷啪啪| 中文精品一卡2卡3卡4更新| 丰满少妇做爰视频| 欧美在线黄色| 五月开心婷婷网| 成人黄色视频免费在线看| 男女国产视频网站| 狂野欧美激情性bbbbbb| 国产淫语在线视频| 人成视频在线观看免费观看| 久久久精品94久久精品| 黄色视频在线播放观看不卡| 欧美午夜高清在线| 日韩大码丰满熟妇| 色视频在线一区二区三区| 国产精品国产三级国产专区5o| 午夜免费观看性视频| 欧美xxⅹ黑人| 久久久国产一区二区| 老司机亚洲免费影院| 日本91视频免费播放| 精品久久久久久久毛片微露脸 | 久热爱精品视频在线9| 欧美av亚洲av综合av国产av| 国产福利在线免费观看视频| 婷婷丁香在线五月| 亚洲精品一卡2卡三卡4卡5卡 | 热99re8久久精品国产| 我的亚洲天堂| 久久久久久久国产电影| 亚洲成av片中文字幕在线观看| 成人手机av| 精品久久蜜臀av无| 亚洲美女黄色视频免费看| 色婷婷av一区二区三区视频| 在线观看免费高清a一片| www.熟女人妻精品国产| 国产成人av激情在线播放| 黄色毛片三级朝国网站| 欧美 亚洲 国产 日韩一| 侵犯人妻中文字幕一二三四区| 黑人巨大精品欧美一区二区蜜桃| 巨乳人妻的诱惑在线观看| 午夜福利,免费看| 久久中文看片网| 成人免费观看视频高清| 亚洲av电影在线进入| 亚洲国产精品一区二区三区在线| 男女边摸边吃奶| 日韩大码丰满熟妇| 国产国语露脸激情在线看| 亚洲精品自拍成人| 香蕉国产在线看| 国产成人一区二区三区免费视频网站| 久久性视频一级片| 制服诱惑二区| 亚洲成国产人片在线观看| 午夜免费鲁丝| 黑人欧美特级aaaaaa片| 国产精品欧美亚洲77777| 亚洲 欧美一区二区三区| 99九九在线精品视频| 国产精品免费视频内射| 婷婷色av中文字幕| 久久久国产欧美日韩av| 日韩电影二区| 国产伦人伦偷精品视频| 亚洲欧洲日产国产| av免费在线观看网站| 在线观看人妻少妇| 精品免费久久久久久久清纯 | av超薄肉色丝袜交足视频| 色综合欧美亚洲国产小说| 一本大道久久a久久精品| 自线自在国产av| 国产男女内射视频| 建设人人有责人人尽责人人享有的| 亚洲,欧美精品.| 麻豆国产av国片精品| 精品一区在线观看国产| 午夜日韩欧美国产| 精品国产国语对白av| 欧美日韩福利视频一区二区| 免费在线观看黄色视频的| 亚洲精品乱久久久久久| 青春草亚洲视频在线观看| 热re99久久国产66热| 欧美性长视频在线观看| 丰满饥渴人妻一区二区三| 久久久久久人人人人人| 新久久久久国产一级毛片| 午夜免费观看性视频| 人人妻人人澡人人爽人人夜夜| 亚洲激情五月婷婷啪啪| 国产精品一区二区在线不卡| 999精品在线视频| 一二三四社区在线视频社区8| 国产熟女午夜一区二区三区| 国产成+人综合+亚洲专区| 亚洲伊人色综图| 91av网站免费观看| 亚洲精品国产色婷婷电影| 99热全是精品| 老司机影院毛片| 成年女人毛片免费观看观看9 | 久久香蕉激情| 91九色精品人成在线观看| 亚洲国产毛片av蜜桃av| 这个男人来自地球电影免费观看| 亚洲中文日韩欧美视频| 国产又爽黄色视频| 国产av又大| 亚洲国产欧美网| 国产精品久久久av美女十八| 免费观看av网站的网址| 国产精品成人在线| 国产三级黄色录像| 人成视频在线观看免费观看| 亚洲成国产人片在线观看| 丝袜美足系列| 久久久久久人人人人人| 亚洲av美国av| 69av精品久久久久久 | 自拍欧美九色日韩亚洲蝌蚪91| 两个人看的免费小视频| 少妇 在线观看| 精品国产一区二区三区四区第35| 老汉色av国产亚洲站长工具| 国产精品偷伦视频观看了| 爱豆传媒免费全集在线观看| 桃花免费在线播放| 黑人欧美特级aaaaaa片| 亚洲欧美日韩另类电影网站| 国产精品麻豆人妻色哟哟久久| 人人妻人人爽人人添夜夜欢视频| 黄色视频,在线免费观看| 高清黄色对白视频在线免费看| 免费人妻精品一区二区三区视频| 久久久久视频综合| 中文字幕av电影在线播放| 亚洲欧美精品综合一区二区三区| 狠狠精品人妻久久久久久综合| 日韩欧美一区视频在线观看| 别揉我奶头~嗯~啊~动态视频 | 美女大奶头黄色视频| 久久久精品94久久精品| 新久久久久国产一级毛片| cao死你这个sao货| av国产精品久久久久影院| 国产日韩欧美亚洲二区| 亚洲五月婷婷丁香| 亚洲精品国产av成人精品| 日韩精品免费视频一区二区三区| 亚洲人成电影免费在线| 国产精品99久久99久久久不卡| 人人妻人人爽人人添夜夜欢视频| 久久久久国产一级毛片高清牌| 丝袜脚勾引网站| 男女床上黄色一级片免费看| 日韩中文字幕视频在线看片| 婷婷色av中文字幕| 欧美精品人与动牲交sv欧美| 免费在线观看日本一区| 亚洲成人免费av在线播放| 老鸭窝网址在线观看| 久久影院123| 好男人电影高清在线观看| 精品免费久久久久久久清纯 | 少妇人妻久久综合中文| 色老头精品视频在线观看| 高清视频免费观看一区二区| 久久久久国产一级毛片高清牌| 丰满饥渴人妻一区二区三| 免费高清在线观看日韩| 国产精品 欧美亚洲| 国产无遮挡羞羞视频在线观看| 19禁男女啪啪无遮挡网站| 婷婷丁香在线五月| 乱人伦中国视频| 亚洲精品自拍成人| 亚洲va日本ⅴa欧美va伊人久久 | 午夜久久久在线观看| 欧美亚洲日本最大视频资源| 亚洲精华国产精华精| 一级毛片女人18水好多| 免费少妇av软件| 男人操女人黄网站| 国产精品一区二区精品视频观看| 黑丝袜美女国产一区| 国产精品一区二区在线不卡| 日韩 欧美 亚洲 中文字幕| 亚洲一卡2卡3卡4卡5卡精品中文| 97精品久久久久久久久久精品| 久久女婷五月综合色啪小说| 一本色道久久久久久精品综合| 动漫黄色视频在线观看| 久久人妻福利社区极品人妻图片| 精品国产一区二区久久| 国产免费一区二区三区四区乱码| 97精品久久久久久久久久精品| 国产在线一区二区三区精| 亚洲国产精品999| 啪啪无遮挡十八禁网站| 大码成人一级视频| 在线看a的网站| 欧美人与性动交α欧美精品济南到| 国产精品欧美亚洲77777| 丝袜脚勾引网站| 久久狼人影院| 亚洲av日韩在线播放| 一本—道久久a久久精品蜜桃钙片| 久久精品国产综合久久久| 悠悠久久av| 大香蕉久久网| 热99re8久久精品国产| 美国免费a级毛片| 欧美在线黄色| 久久精品成人免费网站| 欧美中文综合在线视频| 亚洲自偷自拍图片 自拍| 欧美日韩亚洲高清精品| 少妇被粗大的猛进出69影院| av超薄肉色丝袜交足视频| 国产亚洲欧美精品永久| 五月天丁香电影| 一个人免费看片子| 久久中文字幕一级| 国产欧美日韩综合在线一区二区| 久久人人爽av亚洲精品天堂| av免费在线观看网站| 国产欧美日韩一区二区三 | 男女国产视频网站| 九色亚洲精品在线播放| 精品国产一区二区三区四区第35| 永久免费av网站大全| 国产亚洲欧美精品永久| 久久久久网色| 国产av一区二区精品久久| 嫁个100分男人电影在线观看| 伦理电影免费视频| 午夜两性在线视频| 午夜福利视频在线观看免费| videosex国产| 国产欧美日韩一区二区精品| 国产精品欧美亚洲77777| 侵犯人妻中文字幕一二三四区| 两个人免费观看高清视频| 大香蕉久久成人网| 国产精品免费大片| 国产亚洲精品一区二区www | 国精品久久久久久国模美| 国产精品影院久久| 欧美日韩亚洲综合一区二区三区_| 女人精品久久久久毛片| 午夜激情av网站| 美女高潮喷水抽搐中文字幕| 亚洲人成电影免费在线| 国产免费一区二区三区四区乱码| 亚洲第一av免费看| 中国美女看黄片| 久久久久久久久免费视频了| 亚洲熟女毛片儿| 他把我摸到了高潮在线观看 | www.999成人在线观看| 中文欧美无线码| 亚洲精品国产色婷婷电影| 老熟妇仑乱视频hdxx| 亚洲人成77777在线视频| 日本wwww免费看| 一区二区三区乱码不卡18| 国产亚洲精品第一综合不卡| 91麻豆精品激情在线观看国产 | 可以免费在线观看a视频的电影网站| 色婷婷久久久亚洲欧美| 亚洲国产看品久久| 午夜福利在线观看吧| 国产一区二区 视频在线| 18禁观看日本| 91麻豆精品激情在线观看国产 | 久久久久久久久免费视频了| 一级黄色大片毛片| 日韩电影二区| 丝袜美腿诱惑在线| av又黄又爽大尺度在线免费看| 在线十欧美十亚洲十日本专区| 久久国产精品男人的天堂亚洲| 18在线观看网站| 中文字幕高清在线视频| 女人被躁到高潮嗷嗷叫费观| 久久国产精品大桥未久av| 一本—道久久a久久精品蜜桃钙片| 少妇 在线观看| 国产伦理片在线播放av一区| 如日韩欧美国产精品一区二区三区| 精品国产乱子伦一区二区三区 | 国产一区二区三区av在线| 婷婷丁香在线五月| 国产精品熟女久久久久浪| 在线观看一区二区三区激情| 日韩熟女老妇一区二区性免费视频| 久久久久视频综合| 手机成人av网站| 国产淫语在线视频| 在线观看免费日韩欧美大片| 免费在线观看视频国产中文字幕亚洲 | 性色av一级| 美女国产高潮福利片在线看| 秋霞在线观看毛片| 亚洲,欧美精品.| 99久久精品国产亚洲精品| 真人做人爱边吃奶动态| 伊人久久大香线蕉亚洲五| 人成视频在线观看免费观看| 午夜成年电影在线免费观看| 国产老妇伦熟女老妇高清| 国产日韩欧美亚洲二区| 亚洲七黄色美女视频| 午夜老司机福利片| 夜夜骑夜夜射夜夜干| 一本一本久久a久久精品综合妖精| 老司机福利观看| 狂野欧美激情性bbbbbb| 久久精品熟女亚洲av麻豆精品| 最黄视频免费看| 欧美性长视频在线观看| 黄片小视频在线播放| 亚洲精品久久久久久婷婷小说| 正在播放国产对白刺激| 国产亚洲av片在线观看秒播厂| 香蕉丝袜av| 91老司机精品| 久久久欧美国产精品| 免费观看a级毛片全部| 欧美乱码精品一区二区三区| 欧美黄色片欧美黄色片| 少妇的丰满在线观看| 老熟妇乱子伦视频在线观看 | 母亲3免费完整高清在线观看| 黄色a级毛片大全视频| 人人妻人人澡人人看| svipshipincom国产片| 精品人妻一区二区三区麻豆| 欧美成狂野欧美在线观看| 日韩 亚洲 欧美在线| 大陆偷拍与自拍| 高清在线国产一区| 成年动漫av网址| 久久久久国产一级毛片高清牌| 99国产精品免费福利视频| 亚洲精品日韩在线中文字幕| 大片免费播放器 马上看| 精品人妻在线不人妻| 三级毛片av免费| 久久人人爽人人片av| 欧美激情高清一区二区三区| 久久 成人 亚洲| 1024香蕉在线观看| 自拍欧美九色日韩亚洲蝌蚪91| 伊人久久大香线蕉亚洲五| 亚洲人成电影观看| 日韩免费高清中文字幕av| 久久av网站| 国产男人的电影天堂91| 国产在线一区二区三区精| 99香蕉大伊视频| 国产精品一二三区在线看| 日本a在线网址| 91精品伊人久久大香线蕉| 亚洲av美国av| 夫妻午夜视频| 在线观看人妻少妇| 在线观看免费午夜福利视频| 国产精品久久久久久精品电影小说| 亚洲av电影在线进入| 国精品久久久久久国模美| 国产欧美日韩一区二区三 | 日本av免费视频播放| 国产精品99久久99久久久不卡| 香蕉丝袜av| 高潮久久久久久久久久久不卡| 91成人精品电影| 欧美人与性动交α欧美精品济南到| 国产视频一区二区在线看| 免费观看av网站的网址| 国精品久久久久久国模美| 日韩 欧美 亚洲 中文字幕| 日本wwww免费看| 女人被躁到高潮嗷嗷叫费观| 成人手机av| 亚洲午夜精品一区,二区,三区| 捣出白浆h1v1| 男女国产视频网站| 天天影视国产精品| 亚洲国产av新网站| 91字幕亚洲| 青草久久国产| 黄色视频在线播放观看不卡| 中文字幕人妻丝袜制服| netflix在线观看网站| 欧美激情极品国产一区二区三区| 日本a在线网址| 中亚洲国语对白在线视频| 欧美日韩av久久| 欧美老熟妇乱子伦牲交| 免费久久久久久久精品成人欧美视频| 亚洲 国产 在线| 18禁黄网站禁片午夜丰满| 国产精品一区二区精品视频观看| 国内毛片毛片毛片毛片毛片| 伦理电影免费视频| 欧美97在线视频| 可以免费在线观看a视频的电影网站| 成人国产一区最新在线观看| 国产精品偷伦视频观看了| 午夜激情av网站| 大型av网站在线播放| 久久国产亚洲av麻豆专区| 一二三四社区在线视频社区8| av天堂久久9| kizo精华| 丰满人妻熟妇乱又伦精品不卡| 黄网站色视频无遮挡免费观看| av超薄肉色丝袜交足视频| 午夜日韩欧美国产| 亚洲成av片中文字幕在线观看| 国产精品一区二区免费欧美 | 91av网站免费观看| 91九色精品人成在线观看| 亚洲精品自拍成人| 99国产精品一区二区三区| 国产三级黄色录像| 美女福利国产在线| 视频区欧美日本亚洲| 丁香六月欧美| 热99久久久久精品小说推荐| 人妻久久中文字幕网| 天天躁狠狠躁夜夜躁狠狠躁| 18禁裸乳无遮挡动漫免费视频| 好男人电影高清在线观看| 国产黄频视频在线观看| 女性被躁到高潮视频| 深夜精品福利| 欧美国产精品一级二级三级| 欧美+亚洲+日韩+国产| 黄片大片在线免费观看| 九色亚洲精品在线播放| 高清黄色对白视频在线免费看| 亚洲欧美清纯卡通| 国产一区二区三区在线臀色熟女 | 中文字幕制服av| 一级,二级,三级黄色视频| 欧美亚洲日本最大视频资源| 十分钟在线观看高清视频www| 午夜免费观看性视频| 午夜免费鲁丝| 精品国产乱码久久久久久男人| 岛国在线观看网站| 大香蕉久久成人网| 亚洲少妇的诱惑av| 国产片内射在线| 日本黄色日本黄色录像| 精品久久久精品久久久| 久久精品成人免费网站| 伊人久久大香线蕉亚洲五| 91麻豆av在线| 亚洲久久久国产精品| 在线观看舔阴道视频| 69av精品久久久久久 | 亚洲国产日韩一区二区| 老司机深夜福利视频在线观看 | 国产精品影院久久| 欧美国产精品一级二级三级| 国产一区二区激情短视频 | 成年人黄色毛片网站| 十八禁高潮呻吟视频| 国产精品欧美亚洲77777| 在线天堂中文资源库| 亚洲自偷自拍图片 自拍| 十八禁人妻一区二区| 69精品国产乱码久久久| 丁香六月天网| 亚洲国产精品一区三区| 国产av精品麻豆| 一级黄色大片毛片| 国产精品秋霞免费鲁丝片| 午夜福利乱码中文字幕| 国产成人啪精品午夜网站| 一二三四社区在线视频社区8| 午夜福利影视在线免费观看| a在线观看视频网站| 国产精品影院久久| 国产高清videossex| 欧美日韩中文字幕国产精品一区二区三区 | 黄片播放在线免费| 中文字幕另类日韩欧美亚洲嫩草| 国产亚洲av高清不卡| 午夜老司机福利片| 欧美变态另类bdsm刘玥| 精品卡一卡二卡四卡免费| 久久免费观看电影| 亚洲熟女毛片儿| 操美女的视频在线观看| 亚洲成人国产一区在线观看| av电影中文网址| 国产精品偷伦视频观看了| 丁香六月天网| 天堂8中文在线网| 国产伦人伦偷精品视频| 妹子高潮喷水视频| 久久久久久亚洲精品国产蜜桃av| 久久中文看片网| 王馨瑶露胸无遮挡在线观看| 这个男人来自地球电影免费观看| 老司机靠b影院| 777米奇影视久久| 久久久久精品人妻al黑| 欧美激情久久久久久爽电影 | 9191精品国产免费久久| 午夜福利在线观看吧| 久久精品国产a三级三级三级| 久久久精品94久久精品| 免费高清在线观看日韩| 亚洲熟女毛片儿| 最新在线观看一区二区三区| 午夜福利,免费看| 我要看黄色一级片免费的| 欧美成狂野欧美在线观看| 在线观看一区二区三区激情| av国产精品久久久久影院| cao死你这个sao货| 好男人电影高清在线观看| 一级毛片电影观看| 99精国产麻豆久久婷婷| 久久久久久免费高清国产稀缺| 日韩中文字幕视频在线看片| 日韩,欧美,国产一区二区三区| a级毛片黄视频| 国产成人av教育| 国产精品久久久人人做人人爽| 午夜福利视频精品| 亚洲一区二区三区欧美精品| 亚洲少妇的诱惑av| 黄片播放在线免费| 国产成人精品久久二区二区91| 黄色 视频免费看| 色综合欧美亚洲国产小说| 美女高潮到喷水免费观看| 亚洲精品一卡2卡三卡4卡5卡 | 午夜视频精品福利| 多毛熟女@视频| 黄色视频,在线免费观看| 性色av一级| 人妻久久中文字幕网| 成人免费观看视频高清| 麻豆乱淫一区二区| 最新在线观看一区二区三区| 精品少妇黑人巨大在线播放| 丝袜脚勾引网站| 国产成人一区二区三区免费视频网站| 国产91精品成人一区二区三区 | av欧美777| 亚洲av成人一区二区三| 国产黄频视频在线观看| 精品国产一区二区三区四区第35| 少妇猛男粗大的猛烈进出视频| 汤姆久久久久久久影院中文字幕| 丁香六月天网| av在线播放精品| 视频在线观看一区二区三区| 天天躁狠狠躁夜夜躁狠狠躁| 窝窝影院91人妻| 母亲3免费完整高清在线观看| av天堂在线播放| 亚洲欧美日韩高清在线视频 | av一本久久久久| 肉色欧美久久久久久久蜜桃| 中文字幕制服av| 中文字幕最新亚洲高清| 日本a在线网址| 欧美+亚洲+日韩+国产| 国产一区二区 视频在线| 大型av网站在线播放| 人人妻,人人澡人人爽秒播| 色视频在线一区二区三区| 一级片免费观看大全| 丝瓜视频免费看黄片| 精品一区二区三区av网在线观看 | 99精品久久久久人妻精品| 另类亚洲欧美激情| 欧美性长视频在线观看| 一区二区av电影网| 99精品欧美一区二区三区四区| 午夜激情av网站| 一本色道久久久久久精品综合| 亚洲中文av在线|