• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Path-Following Control With Obstacle Avoidance of Autonomous Surface Vehicles Subject to Actuator Faults

    2024-04-15 09:37:10LiYingHaoGegeDongTieshanLiSeniorandZhouhuaPengSenior
    IEEE/CAA Journal of Automatica Sinica 2024年4期

    Li-Ying Hao ,,, Gege Dong , Tieshan Li , Senior,, and Zhouhua Peng , Senior,

    Abstract—This paper investigates the path-following control problem with obstacle avoidance of autonomous surface vehicles in the presence of actuator faults, uncertainty and external disturbances.Autonomous surface vehicles inevitably suffer from actuator faults in complex sea environments, which may cause existing obstacle avoidance strategies to fail.To reduce the influence of actuator faults, an improved artificial potential function is constructed by introducing the lower bound of actuator efficiency factors.The nonlinear state observer, which only depends on measurable position information of the autonomous surface vehicle, is used to address uncertainties and external disturbances.By using a backstepping technique and adaptive mechanism, a path-following control strategy with obstacle avoidance and fault tolerance is designed which can ensure that the tracking errors converge to a small neighborhood of zero.Compared with existing results, the proposed control strategy has the capability of obstacle avoidance and fault tolerance simultaneously.Finally, the comparison results through simulations are given to verify the effectiveness of the proposed method.

    I.INTRODUCTION

    WITH the expansion of applications in military actions,fishing, marine environmental monitoring, search and rescue, maritime safety and so on [1]–[3], autonomous surface vehicles (ASVs) have attracted intensive research [4]–[6].There are some control techniques being studied including trajectory tracking [7], dynamic positioning [8], path following[9], etc.

    Path following is a common motion control problem[10]–[13].In [14], an algebraic implicit path was introduced to design a path-following controller, which is divided into speed control and heading control.Reference [15] adopted a parametric path to design an output feedback path-following controller.ASVs usually sail in challenging sea environments,and the occurrence of actuator faults is practically unavoidable.Actuator fault is one of the challenging issues associated with the path following control of ASVs, which may result in terrible performance or the cancellation of tasks [16]–[19].Hence, it is essential for ASVs to have certain fault-tolerant abilities, which has motivated researchers to investigate this problem [20]–[22].Control allocation is an effective approach for achieving fault tolerance against actuator faults.In [23],the actuator fault was modeled as a change of constraint input matrix.Reference [24] designed a fault-tolerant control scheme to compensate for offshore vessels system.Considering partial faults, a fault-tolerant model predictive control strategy [25] was proposed.However, only a few type of faults such as the partial loss of effectiveness and bias fault are considered in the above works.As a matter of fact, multiple types of actuator faults may occur in the meantime for ASVs.There exist marine plant twisters in complex marine environments, and the occurrence of the stuck fault is inevitable.Therefore, it is essential to consider a more general actuator fault model including the stuck fault for ASVs.References [26], [27] constructed a general fault model to solve the fault-tolerant control problem for dynamic positioning of a ship.However, the above fault-tolerant control was proposed based on the linearized model of the ship, and the problem becomes more complex when the nonlinear model of ASVs is taken into account.To enhance the ability of fault tolerance for ASV, dealing with more general types of actuator faults is valuable.Hence, designing a path-following control strategy of ASV in the framework of a more general actuator fault model including a stuck fault is the first motivation of this paper.

    In complex marine environments, there exist various obstacles which will affect normal operation and even threaten the safety of ASVs.Therefore, obstacle avoidance capabilities are of primary concern for the safe sailing of ASVs.Determining how to achieve obstacle avoidance has resulted in significant research [28]–[31].Many efficient obstacle avoidance methods have been proposed including prescribed performance techniques [32], artificial potential function methods [33],fuzzy logic methods [34] and so on.The advantages of artificial potential function methods include having a simple structure, less adjustment parameters and real-time collision avoidance.Thus, it is widely used in practice [35]–[37].A mobile robot can bypass obstacles by using an artificial potential function method [35].The issue of unmanned aerial vehicles collision avoidance in [36] was solved using the potential function method.Considering the movement of obstacles, [37]constructed a positive potential function for unmanned aerial vehicles capable of obstacle avoidance.In addition, the artificial potential function was often used to design formation control for ASVs [38]–[40] employed the repulsive potentials to avoid collisions with obstacles.Note that all the aforementioned results were developed without considering the occurrence of actuator faults.When taking actuator faults into consideration, the current obstacle avoidance strategy may become ineffective.Hence, determining how to develop a path-following controller that can compensate for actuator faults and has the capability of obstacle avoidance is another motivation of this paper.

    In view of the above discussions, this paper aims to develop a path-following controller with obstacle avoidance and fault tolerance for ASV subject to model uncertainty, external disturbances.The following main contributions are concluded.

    1) Considering actuator faults and obstacle avoidance simultaneously, the path-following control scheme with obstacle avoidance and fault tolerance is developed which can ensure the uniform ultimate boundedness of tracking errors.

    2) The actuator fault effect on existing obstacle avoidance strategy is revealed.As the lower bound of actuator efficiency factors decreases, the safe obstacle avoidance distance becomes smaller.In other words, the occurrence of actuator faults leads to the conservativeness of the traditional obstacle avoidance strategy.

    3) To compensate for actuator faults, an improved artificial potential function is constructed by introducing the lower bound of actuator efficiency factors.The proposed obstacle avoidance strategy can be reduced to an existing one in [38] in the absence of actuator faults.

    In this paper, the sections are summarized as follows.Section II presents description and problem statement.Section III provides the path-following controller design and stability analysis.Comparison simulation results are shown in Section IV.Section V is the conclusion of this paper.

    There are some notations below.//·// represents thel2-norm of a vector.λmax(·) and λmin(·) are the maximal eigenvalue and minimal eigenvalue of symmetric matrix, respectively.

    II.DESCRIPTION AND PROBLEM STATEMENT

    A. ASV Model

    Considering the ASV equipping with actuators, the dynamics of ASV is described as [41]

    whereη(t)=[x(t)y(t)ψ(t)]T∈R3represents the position and

    R(ψ)∈R3×3heading of ASV.is expressed as

    Remark 1: Compared with the parametric path in (4), a nonparametric path [14] can ensure the invariance of the path.However, this paper considers fault-tolerant control for the fully actuated ASV in the framework of control allocation,which does not need to control speed and heading separately.Therefore, the parametric path to design path following control strategy is adopted in this paper.

    B. Actuator Fault Model

    In complex marine environments, actuator faults inevitably occur.We consider the actuator fault model [42] as follows:

    whereu(t)∈Rmdenotes the control input signal, and?is defined as ?=diag{?1,...,?i,...,?m} where?is a semi-positive-define weighting matrix, and its elements satisfy

    whereχ is an unknown positive constant.

    Assumption 2:rank (G?) = rank (G) holds for all? ∈??j,j=1,2,...,j=1,2,...,L.

    Remark 2: It is natural to assume that the stuck fault or bias fault is bounded.Assumption 2 indicates that actuators are redundant, which is significant in compensating for stuck faults.

    C. Problem Formulation

    To develop the path-following control strategy with obstacle avoidance and fault tolerance, the following tasks should be satisfied.

    1)Geometric Task: The ASV moves along a predefined path.A small positive constantp1exists such that

    2)Dynamic Task: The update velocity of the path variable?converges to expected path update speedvs(t), that is

    wherep2∈R is a small positive constant.

    3)Obstacle Avoidance Task: In the presence of obstacles,ASV can avoid collision and maintain sailing safely

    wherep(t) andpk(t) denote the position of the ASV and thekth obstacle, respectively.∈R is the smallest safe obstacle avoidance distance.

    III.PATH-FOLLOWING CONTROLLER DESIGN AND STABILITY ANALYSIS

    A. Improved Artificial Potential Function

    Considering that the actuator faults and obstacle avoidance occur simultaneously, we construct a new artificial potential function as follows:

    Remark 3:Compared with the existing artificial potential function in [38], we improve the artificial potential function by intro ducing actuator information φk.When there is no actuator fault, φk=1, i.e., the artificial potential function can be reduced to the existing result [38] in the fault-free case.The proposed artificial potential function considers the occurrence of actuator faults, and is capable of obstacle avoidance in this case.

    B. Nonlinear State Observer Design

    The nonlinear state observer is employed in this part to estimate the model uncertainty and disturbances.And the ASV dynamics (1), (2) can be rewritten as follows:

    where ζ(t)=M-1[-C(ν)ν(t)-D(ν)ν(t)-g(ν,η)+ω(t)] represents model uncertainty and external disturbances.In addition,the nonlinear state observer requires the following assumption.

    ˙ζ(t)

    Assumption 3:is bounded, that is

    where ζ?is a positive constant.

    In Assumption 3, ζ (t) is a vector as the function of velocity.Moreover, the control inputs and the energy of external disturbance are bounded, so it is reasonable to make the above assumption.

    The following nonlinear state observer is designed for estimating the model uncertainty and external disturbances:

    The observer error dynamics can be obtained as follows:

    where

    Based on the above nonlinear state observer, the stability analysis of the error dynamics (17) is shown as follows.

    Lemma 1: In the case that Assumption 1 holds, the observer error dynamics (17) is input-to-state stable, and the error signals satisfy the following inequalities:

    and

    where γ1=([?(1-ρ)]/[λmax(Q)]) and 0 <ρ<1 provided that

    C. Path-Following Controller Design and Stability Analysis

    The controller is designed so that obstacle avoidance and fault tolerance can be achieved.To facilitate the controller design, our previous result in the subsequent lemma [42] is introduced, which is shown here to guarantee the completeness of the results.To simplify the representation, the state variabletis omitted from the relevant functions in this section.

    Lemma 2:Assuming Assumption 1 is true, a known positive constant φ exists such that the following inequality is satisfied:

    where it holds for all ? ∈??j,j=1,2,...,j=1,2,...,L.

    The position error vector is defined as follows:

    whereR=R(ψ) , η ∈R3is the position of the ASV.

    From (1) and (2), the derivative ofz1is given by

    Letvs-δ(t)= ?˙(t), then we have

    Step 1: To design the path-following controller with obstacle avoidance and fault tolerance, we design a kinematic control law νcas follows:

    Next, the stability of the cascade system made up of the nonlinear state observer error subsystem and path following control error subsystem is described.

    Theorem 1: Under the precondition of Assumptions 1 and 3,the path following control strategy with obstacle avoidance and fault tolerance can be designed.Besides, the all error signals in the cascade system are uniformly ultimately bounded.Take into account the ASV dynamics in (1), (2), as well as the nonlinear state observer (14), the proposed controller (28),(35)-(38) and the path update law (32), we can obtain the above conclusion.

    Proof: Firstly, outside the obstacle avoidance range, we verify the stability of the cascade system.By applying Lemmas 1,3 and [46, Lemma 1], we obtain that the cascade system is input-to-state stable.||ζ||-||ξ||, ξ˙ and //B// are bounded.There exists a positive constant ? satisfying ||ζ||-||ξ||≤?.So we can obtain that | |E1|| is uniformly ultimately bounded satisfying

    IV.SIMULATION RESULTS

    To verify the effectiveness of the proposed control strategy with obstacle avoidance and fault tolerance, Cybership II is used to simulate the scenario in this section.The corresponding parameters of Cybership II and the equipment of the actuator can be obtained in [47].G∈R3×5is an actuator configuration matrix of ASV and its parameters are given in [41].Then the actuator configuration matrix is

    Fig.1 shows that the ASV moves along a parametric path,and the proposed control strategy is capable of obstacle avoidance and has fault tolerance.Fig.2 demonstrates that the surge, sway, yaw velocities of ASV can be estimated precisely.Fig.3 shows that uncertainty and external disturbances are estimated by using the nonlinear state observer.From these figures, we can observe that the nonlinear state observer can accurately address the model uncertainty and external disturbances where only measurable position information of ASV is used.To illustrate the effectiveness of the proposed strategy, this paper compares the existing results without considering actuator faults.Figs.4 and 5 illustrate the comparison results through simulations.The comparison velocities of ASV system are drawn in Fig.4.Fig.5 depicts the comparisons responses curves of tracking error.We can see that the proposed control strategy can not only compensate for actuator faults and ensure obstacle avoidance but also accomplish the tasks in (7)-(9), when obstacle avoidance and actuator faults occur simultaneously.

    Fig.1.The effect of path following control strategy with obstacle avoidance and fault tolerance.

    V.CONCLUSION

    This paper presents the path-following control strategy with fault tolerance and obstacle avoidance for ASV.First, the nonlinear state observer is utilized to address model uncertainties and external disturbances, which only depends on measurable position information of ASV.Considering the occurrence of actuator faults, an improved artificial potential function is constructed by introducing the lower bound of actuator efficiency factors.Furthermore, the upper bound of the stuck fault is estimated using an adaptive mechanism.Then, based on the backstepping technique, a path-following controller with obstacle avoidance and fault tolerance is designed to compensate for actuator faults, and ensure the tracking performance and suppress uncertainty and external disturbances.It is verified that all signals are bounded.Finally, the efficacy of the proposed control strategy is shown through simulation.

    Fig.2.The estimation of velocities using the nonlinear state observer.

    Fig.3.The estimations of disturbances using the nonlinear state observer.

    Fig.4.The velocity comparisons of the ASV.

    Fig.5.The tracking error comparisons.

    韩国高清视频一区二区三区| 婷婷色麻豆天堂久久| 日韩视频在线欧美| 国产乱来视频区| 校园人妻丝袜中文字幕| 一区在线观看完整版| 成人亚洲精品一区在线观看| 亚洲av在线观看美女高潮| 亚洲高清免费不卡视频| 日韩大片免费观看网站| 久久久久久久久久久久大奶| 人妻一区二区av| 丝瓜视频免费看黄片| 国内精品宾馆在线| 中国国产av一级| 国产一区二区在线观看日韩| 成人亚洲欧美一区二区av| 日韩一区二区视频免费看| 国产精品一二三区在线看| 亚洲av电影在线观看一区二区三区| 国产精品成人在线| 熟女电影av网| 免费看不卡的av| 高清毛片免费看| 老司机影院成人| 97在线视频观看| 看非洲黑人一级黄片| 狠狠婷婷综合久久久久久88av| 在线观看免费视频网站a站| 欧美成人午夜精品| 丝袜美足系列| 免费av中文字幕在线| 看非洲黑人一级黄片| 国产成人精品无人区| 久久鲁丝午夜福利片| 久久久久久久亚洲中文字幕| 一级黄片播放器| 午夜福利影视在线免费观看| 激情五月婷婷亚洲| 搡女人真爽免费视频火全软件| 边亲边吃奶的免费视频| 成年人免费黄色播放视频| 国产免费又黄又爽又色| 婷婷成人精品国产| 国产亚洲精品久久久com| 久久人人爽av亚洲精品天堂| 99久久中文字幕三级久久日本| 91午夜精品亚洲一区二区三区| 日韩,欧美,国产一区二区三区| 久久久国产欧美日韩av| 另类精品久久| 亚洲av免费高清在线观看| 中文字幕最新亚洲高清| 精品国产乱码久久久久久小说| 欧美xxⅹ黑人| 国产在线免费精品| 日韩电影二区| 91成人精品电影| 黄网站色视频无遮挡免费观看| 在线观看美女被高潮喷水网站| 成人国语在线视频| 香蕉国产在线看| 国产女主播在线喷水免费视频网站| 久久av网站| 国产乱人偷精品视频| 国产69精品久久久久777片| 中文字幕精品免费在线观看视频 | 99久久综合免费| 亚洲欧洲精品一区二区精品久久久 | 极品少妇高潮喷水抽搐| 另类精品久久| 熟女人妻精品中文字幕| 免费观看性生交大片5| 又粗又硬又长又爽又黄的视频| 久久精品国产自在天天线| 亚洲一码二码三码区别大吗| 成人免费观看视频高清| 久久久欧美国产精品| 免费黄频网站在线观看国产| 亚洲av综合色区一区| 亚洲欧美中文字幕日韩二区| av在线播放精品| 欧美另类一区| 一级毛片 在线播放| av免费观看日本| 亚洲精品视频女| 天天操日日干夜夜撸| 免费大片黄手机在线观看| 精品国产一区二区三区四区第35| 国产成人欧美| 成年人午夜在线观看视频| 夜夜骑夜夜射夜夜干| 啦啦啦中文免费视频观看日本| 夫妻午夜视频| 观看av在线不卡| 高清黄色对白视频在线免费看| 国产在线免费精品| 深夜精品福利| 午夜福利乱码中文字幕| 在线观看人妻少妇| 成年av动漫网址| 激情视频va一区二区三区| 欧美日韩av久久| 亚洲av免费高清在线观看| 哪个播放器可以免费观看大片| 黄色配什么色好看| 免费看不卡的av| 80岁老熟妇乱子伦牲交| 久久国产精品男人的天堂亚洲 | 超色免费av| 交换朋友夫妻互换小说| 国产av码专区亚洲av| 色94色欧美一区二区| 欧美日本中文国产一区发布| 国产不卡av网站在线观看| 精品视频人人做人人爽| 午夜影院在线不卡| 免费少妇av软件| 精品亚洲成国产av| 熟妇人妻不卡中文字幕| 婷婷色av中文字幕| 丰满饥渴人妻一区二区三| 亚洲欧美一区二区三区国产| 一本大道久久a久久精品| 久久国产亚洲av麻豆专区| 视频中文字幕在线观看| 免费大片18禁| 国产精品女同一区二区软件| 搡老乐熟女国产| 欧美另类一区| 国产亚洲午夜精品一区二区久久| 自拍欧美九色日韩亚洲蝌蚪91| 免费不卡的大黄色大毛片视频在线观看| 桃花免费在线播放| 免费在线观看黄色视频的| 欧美日韩精品成人综合77777| 免费人妻精品一区二区三区视频| 男女啪啪激烈高潮av片| 亚洲一码二码三码区别大吗| 亚洲一码二码三码区别大吗| 成人毛片60女人毛片免费| 午夜福利在线观看免费完整高清在| 全区人妻精品视频| 久久精品人人爽人人爽视色| 看十八女毛片水多多多| 国产欧美亚洲国产| 九草在线视频观看| 捣出白浆h1v1| 中文天堂在线官网| 国产精品一国产av| 国产精品国产三级专区第一集| 22中文网久久字幕| 国产精品 国内视频| 亚洲精品日韩在线中文字幕| 91午夜精品亚洲一区二区三区| 18在线观看网站| 大香蕉久久成人网| 69精品国产乱码久久久| av福利片在线| 美女国产视频在线观看| 女人精品久久久久毛片| 国产男人的电影天堂91| 啦啦啦在线观看免费高清www| 一本色道久久久久久精品综合| 日韩制服骚丝袜av| 国产精品国产三级专区第一集| 亚洲经典国产精华液单| 人人妻人人澡人人爽人人夜夜| 久久精品熟女亚洲av麻豆精品| 性色av一级| 婷婷色综合www| 在线观看免费高清a一片| 国产成人a∨麻豆精品| 精品卡一卡二卡四卡免费| av电影中文网址| 国产老妇伦熟女老妇高清| 久久久久精品性色| 97精品久久久久久久久久精品| 免费黄色在线免费观看| 国产乱来视频区| 欧美成人精品欧美一级黄| 久久久久久久国产电影| av在线app专区| 久久狼人影院| 国产精品人妻久久久久久| 亚洲成av片中文字幕在线观看 | 免费日韩欧美在线观看| 欧美xxxx性猛交bbbb| 人妻系列 视频| 纯流量卡能插随身wifi吗| 久久久久久人妻| 亚洲精品一区蜜桃| 国产成人精品一,二区| 国产av一区二区精品久久| 精品人妻熟女毛片av久久网站| 看免费成人av毛片| 国产成人精品在线电影| 全区人妻精品视频| 欧美精品人与动牲交sv欧美| 国产精品国产三级专区第一集| 69精品国产乱码久久久| 桃花免费在线播放| 国产精品免费大片| 亚洲av国产av综合av卡| 亚洲美女黄色视频免费看| 99热国产这里只有精品6| 我的女老师完整版在线观看| 欧美国产精品一级二级三级| 久久 成人 亚洲| 又黄又粗又硬又大视频| 亚洲人与动物交配视频| 亚洲国产欧美日韩在线播放| av黄色大香蕉| 午夜福利乱码中文字幕| 欧美+日韩+精品| 免费高清在线观看日韩| 国产免费一级a男人的天堂| 午夜日本视频在线| 男人操女人黄网站| 视频区图区小说| 一边亲一边摸免费视频| 久久影院123| 精品卡一卡二卡四卡免费| 欧美精品亚洲一区二区| 妹子高潮喷水视频| 伊人久久国产一区二区| 亚洲精品久久成人aⅴ小说| 在线精品无人区一区二区三| 日本免费在线观看一区| 国产一区二区三区av在线| 爱豆传媒免费全集在线观看| 亚洲精品国产色婷婷电影| 午夜福利视频精品| 大香蕉97超碰在线| 人妻系列 视频| 黑人巨大精品欧美一区二区蜜桃 | 久久精品国产自在天天线| 一本色道久久久久久精品综合| 免费大片18禁| 高清欧美精品videossex| 人妻系列 视频| 一级爰片在线观看| 熟女av电影| 欧美最新免费一区二区三区| 制服丝袜香蕉在线| 免费高清在线观看视频在线观看| 草草在线视频免费看| 久久久精品94久久精品| 卡戴珊不雅视频在线播放| www日本在线高清视频| 国产69精品久久久久777片| 十八禁高潮呻吟视频| 亚洲人成77777在线视频| 最新中文字幕久久久久| 国产成人精品婷婷| 久久青草综合色| 在线 av 中文字幕| 18禁观看日本| 成年女人在线观看亚洲视频| 亚洲精品一二三| 国产精品.久久久| 天天躁夜夜躁狠狠久久av| 亚洲国产av影院在线观看| 中文字幕最新亚洲高清| 夜夜骑夜夜射夜夜干| 欧美日韩亚洲高清精品| 国产午夜精品一二区理论片| 国产成人精品在线电影| 两性夫妻黄色片 | 亚洲 欧美一区二区三区| 国产精品熟女久久久久浪| 日韩制服丝袜自拍偷拍| 国产精品国产av在线观看| 免费高清在线观看日韩| 男人操女人黄网站| 欧美少妇被猛烈插入视频| 99九九在线精品视频| 婷婷成人精品国产| 久久久精品免费免费高清| 大陆偷拍与自拍| 中文字幕人妻熟女乱码| 国产视频首页在线观看| www日本在线高清视频| 十八禁高潮呻吟视频| 久久久久精品人妻al黑| 国产有黄有色有爽视频| 成人手机av| 男女边吃奶边做爰视频| 美国免费a级毛片| 香蕉精品网在线| 赤兔流量卡办理| 你懂的网址亚洲精品在线观看| 亚洲精品,欧美精品| 大片电影免费在线观看免费| 亚洲精品国产av成人精品| 中文字幕免费在线视频6| 亚洲人成网站在线观看播放| 大话2 男鬼变身卡| 久久久久久伊人网av| 91精品伊人久久大香线蕉| 亚洲五月色婷婷综合| 又黄又爽又刺激的免费视频.| 国产白丝娇喘喷水9色精品| 国产黄频视频在线观看| 欧美国产精品一级二级三级| 精品久久久精品久久久| 亚洲国产欧美日韩在线播放| 秋霞伦理黄片| 在线天堂最新版资源| 中文字幕人妻熟女乱码| 亚洲国产精品一区三区| 狂野欧美激情性bbbbbb| 亚洲第一av免费看| 久久久国产精品麻豆| 亚洲美女黄色视频免费看| 国产精品免费大片| 又黄又粗又硬又大视频| 亚洲欧美日韩另类电影网站| 天天躁夜夜躁狠狠躁躁| 尾随美女入室| 中文天堂在线官网| 亚洲精品乱久久久久久| 国产成人a∨麻豆精品| 啦啦啦啦在线视频资源| 一区二区日韩欧美中文字幕 | 国产精品一国产av| 男女国产视频网站| 久久久久网色| 在线观看人妻少妇| 插逼视频在线观看| 国产极品粉嫩免费观看在线| 国产成人av激情在线播放| 九色亚洲精品在线播放| 午夜福利乱码中文字幕| 中文字幕人妻丝袜制服| 极品人妻少妇av视频| 日韩成人av中文字幕在线观看| 一级黄片播放器| 亚洲精品久久成人aⅴ小说| 永久网站在线| 一级毛片 在线播放| 中文字幕av电影在线播放| 婷婷成人精品国产| 18禁国产床啪视频网站| 亚洲精品视频女| 国产精品欧美亚洲77777| 国产片特级美女逼逼视频| 日韩 亚洲 欧美在线| 18禁观看日本| 日韩精品免费视频一区二区三区 | 欧美精品一区二区大全| av免费在线看不卡| 热99国产精品久久久久久7| 亚洲三级黄色毛片| 高清黄色对白视频在线免费看| 精品午夜福利在线看| 免费日韩欧美在线观看| 亚洲国产毛片av蜜桃av| 国产精品久久久久久久电影| 亚洲av男天堂| 欧美日韩国产mv在线观看视频| 久久精品国产a三级三级三级| 五月开心婷婷网| 国产精品秋霞免费鲁丝片| av国产久精品久网站免费入址| 久久精品国产a三级三级三级| 波野结衣二区三区在线| 国产一区二区在线观看av| 午夜老司机福利剧场| 国产深夜福利视频在线观看| 老司机影院毛片| 七月丁香在线播放| 一区二区三区乱码不卡18| 少妇被粗大的猛进出69影院 | 久久久久视频综合| 精品久久久精品久久久| 在线观看人妻少妇| 国产成人精品久久久久久| 久久久国产一区二区| 美女国产高潮福利片在线看| 男人操女人黄网站| 精品第一国产精品| 国产一级毛片在线| 国产在线视频一区二区| 久久精品国产自在天天线| 美女福利国产在线| 国产日韩欧美亚洲二区| 久久人妻熟女aⅴ| 久久久国产一区二区| 亚洲五月色婷婷综合| 亚洲成av片中文字幕在线观看 | 精品视频人人做人人爽| 亚洲美女黄色视频免费看| 中文字幕av电影在线播放| 国产在线一区二区三区精| 国产熟女欧美一区二区| 2018国产大陆天天弄谢| 国产精品一区www在线观看| 久久这里有精品视频免费| 久久99精品国语久久久| 亚洲精品久久午夜乱码| 亚洲精品国产av蜜桃| 亚洲经典国产精华液单| 亚洲精品视频女| 一级毛片 在线播放| 国产在视频线精品| 久久久精品免费免费高清| 国产黄色免费在线视频| 久久精品国产自在天天线| av在线播放精品| 韩国av在线不卡| av黄色大香蕉| 在线看a的网站| 夫妻午夜视频| 热re99久久精品国产66热6| 亚洲精品美女久久久久99蜜臀 | 午夜av观看不卡| 中文字幕av电影在线播放| 久久精品国产鲁丝片午夜精品| 中文字幕另类日韩欧美亚洲嫩草| 又粗又硬又长又爽又黄的视频| 少妇 在线观看| 伦精品一区二区三区| 亚洲综合色惰| 亚洲国产色片| 免费在线观看完整版高清| 亚洲国产精品专区欧美| 国产老妇伦熟女老妇高清| 亚洲精品一二三| 欧美bdsm另类| 99久久精品国产国产毛片| h视频一区二区三区| 久久99精品国语久久久| 国产成人免费无遮挡视频| 亚洲国产精品国产精品| 久久99一区二区三区| 欧美精品av麻豆av| 女人被躁到高潮嗷嗷叫费观| 午夜福利在线观看免费完整高清在| 精品99又大又爽又粗少妇毛片| 美女脱内裤让男人舔精品视频| 亚洲欧洲日产国产| 亚洲欧美日韩另类电影网站| 国产探花极品一区二区| av免费在线看不卡| 一二三四在线观看免费中文在 | 男女下面插进去视频免费观看 | 免费少妇av软件| 男女边摸边吃奶| 91在线精品国自产拍蜜月| 精品人妻一区二区三区麻豆| 国产女主播在线喷水免费视频网站| 久久久久人妻精品一区果冻| 国产欧美日韩一区二区三区在线| 国产有黄有色有爽视频| 韩国av在线不卡| 飞空精品影院首页| freevideosex欧美| 久久久久精品久久久久真实原创| 久久影院123| 国产乱人偷精品视频| 亚洲激情五月婷婷啪啪| 亚洲 欧美一区二区三区| 国产亚洲一区二区精品| 国产熟女欧美一区二区| av一本久久久久| 老熟女久久久| 久久99蜜桃精品久久| 99九九在线精品视频| 欧美激情 高清一区二区三区| 女人精品久久久久毛片| 亚洲人与动物交配视频| 国产av精品麻豆| 日本猛色少妇xxxxx猛交久久| 男人舔女人的私密视频| 日本黄大片高清| 黑人巨大精品欧美一区二区蜜桃 | 中文天堂在线官网| 成人无遮挡网站| 国产又色又爽无遮挡免| 桃花免费在线播放| 国产乱来视频区| 欧美日韩一区二区视频在线观看视频在线| 人人澡人人妻人| 免费少妇av软件| 免费在线观看黄色视频的| 在现免费观看毛片| 国产在线视频一区二区| 午夜激情久久久久久久| 久久久久久人妻| freevideosex欧美| 国产亚洲精品久久久com| 亚洲在久久综合| 中文精品一卡2卡3卡4更新| 国产精品久久久久久精品古装| 永久网站在线| 午夜福利视频精品| 国产成人一区二区在线| 欧美精品国产亚洲| 中文字幕制服av| 2022亚洲国产成人精品| 国产亚洲精品久久久com| 在线天堂中文资源库| 精品久久国产蜜桃| 亚洲av综合色区一区| 肉色欧美久久久久久久蜜桃| 啦啦啦中文免费视频观看日本| 人妻 亚洲 视频| 久久久久久伊人网av| 美女视频免费永久观看网站| 一级片免费观看大全| 精品卡一卡二卡四卡免费| 亚洲国产看品久久| 精品国产乱码久久久久久小说| 欧美成人午夜精品| 你懂的网址亚洲精品在线观看| 日本av手机在线免费观看| 久久久欧美国产精品| 日本wwww免费看| 久久精品久久久久久久性| 久久国产精品大桥未久av| 美女国产视频在线观看| 亚洲欧美中文字幕日韩二区| 90打野战视频偷拍视频| 人人澡人人妻人| 久久这里有精品视频免费| 亚洲国产av新网站| 妹子高潮喷水视频| 亚洲av国产av综合av卡| 欧美国产精品va在线观看不卡| 看十八女毛片水多多多| 男女高潮啪啪啪动态图| 国产又爽黄色视频| 亚洲av.av天堂| 18禁观看日本| 91国产中文字幕| 国产 精品1| 人成视频在线观看免费观看| 夜夜骑夜夜射夜夜干| 亚洲人成77777在线视频| 91精品伊人久久大香线蕉| 日本黄色日本黄色录像| 久久99热这里只频精品6学生| 久久久久久久久久成人| www.熟女人妻精品国产 | 看非洲黑人一级黄片| 麻豆乱淫一区二区| 成人毛片a级毛片在线播放| 人妻少妇偷人精品九色| 你懂的网址亚洲精品在线观看| 久久国产亚洲av麻豆专区| 亚洲在久久综合| 中文字幕最新亚洲高清| 男女无遮挡免费网站观看| 18禁裸乳无遮挡动漫免费视频| 亚洲精品一区蜜桃| 久久这里只有精品19| 熟妇人妻不卡中文字幕| 免费在线观看黄色视频的| 成人二区视频| 国产精品成人在线| 最近2019中文字幕mv第一页| 国产成人精品无人区| 2021少妇久久久久久久久久久| 99精国产麻豆久久婷婷| 亚洲婷婷狠狠爱综合网| 国产一区二区激情短视频 | 18禁国产床啪视频网站| 激情五月婷婷亚洲| 久久久精品免费免费高清| 欧美国产精品一级二级三级| 少妇被粗大的猛进出69影院 | 国产精品久久久久成人av| 国产高清不卡午夜福利| 日日摸夜夜添夜夜爱| 国产一区二区三区综合在线观看 | 国产av一区二区精品久久| 午夜激情久久久久久久| 国产成人精品一,二区| 日韩三级伦理在线观看| 老女人水多毛片| 亚洲一级一片aⅴ在线观看| av线在线观看网站| 色婷婷av一区二区三区视频| 亚洲图色成人| 菩萨蛮人人尽说江南好唐韦庄| 老熟女久久久| 精品一区二区免费观看| 高清在线视频一区二区三区| 精品国产一区二区久久| 内地一区二区视频在线| 菩萨蛮人人尽说江南好唐韦庄| 内地一区二区视频在线| 国产一区二区在线观看日韩| 国产成人欧美| 一区在线观看完整版| 婷婷色av中文字幕| 亚洲一区二区三区欧美精品| 夜夜骑夜夜射夜夜干| 亚洲精品美女久久久久99蜜臀 | 美女中出高潮动态图| 如日韩欧美国产精品一区二区三区| 最近手机中文字幕大全| 久久久久久久久久成人| 国产精品人妻久久久影院| 欧美3d第一页| 高清黄色对白视频在线免费看| 午夜免费鲁丝| 又黄又爽又刺激的免费视频.| 免费高清在线观看视频在线观看| 大片免费播放器 马上看| 成人午夜精彩视频在线观看| 99热国产这里只有精品6| 亚洲欧美日韩另类电影网站| 久久久久久久久久人人人人人人|