• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Path-Following Control With Obstacle Avoidance of Autonomous Surface Vehicles Subject to Actuator Faults

    2024-04-15 09:37:10LiYingHaoGegeDongTieshanLiSeniorandZhouhuaPengSenior
    IEEE/CAA Journal of Automatica Sinica 2024年4期

    Li-Ying Hao ,,, Gege Dong , Tieshan Li , Senior,, and Zhouhua Peng , Senior,

    Abstract—This paper investigates the path-following control problem with obstacle avoidance of autonomous surface vehicles in the presence of actuator faults, uncertainty and external disturbances.Autonomous surface vehicles inevitably suffer from actuator faults in complex sea environments, which may cause existing obstacle avoidance strategies to fail.To reduce the influence of actuator faults, an improved artificial potential function is constructed by introducing the lower bound of actuator efficiency factors.The nonlinear state observer, which only depends on measurable position information of the autonomous surface vehicle, is used to address uncertainties and external disturbances.By using a backstepping technique and adaptive mechanism, a path-following control strategy with obstacle avoidance and fault tolerance is designed which can ensure that the tracking errors converge to a small neighborhood of zero.Compared with existing results, the proposed control strategy has the capability of obstacle avoidance and fault tolerance simultaneously.Finally, the comparison results through simulations are given to verify the effectiveness of the proposed method.

    I.INTRODUCTION

    WITH the expansion of applications in military actions,fishing, marine environmental monitoring, search and rescue, maritime safety and so on [1]–[3], autonomous surface vehicles (ASVs) have attracted intensive research [4]–[6].There are some control techniques being studied including trajectory tracking [7], dynamic positioning [8], path following[9], etc.

    Path following is a common motion control problem[10]–[13].In [14], an algebraic implicit path was introduced to design a path-following controller, which is divided into speed control and heading control.Reference [15] adopted a parametric path to design an output feedback path-following controller.ASVs usually sail in challenging sea environments,and the occurrence of actuator faults is practically unavoidable.Actuator fault is one of the challenging issues associated with the path following control of ASVs, which may result in terrible performance or the cancellation of tasks [16]–[19].Hence, it is essential for ASVs to have certain fault-tolerant abilities, which has motivated researchers to investigate this problem [20]–[22].Control allocation is an effective approach for achieving fault tolerance against actuator faults.In [23],the actuator fault was modeled as a change of constraint input matrix.Reference [24] designed a fault-tolerant control scheme to compensate for offshore vessels system.Considering partial faults, a fault-tolerant model predictive control strategy [25] was proposed.However, only a few type of faults such as the partial loss of effectiveness and bias fault are considered in the above works.As a matter of fact, multiple types of actuator faults may occur in the meantime for ASVs.There exist marine plant twisters in complex marine environments, and the occurrence of the stuck fault is inevitable.Therefore, it is essential to consider a more general actuator fault model including the stuck fault for ASVs.References [26], [27] constructed a general fault model to solve the fault-tolerant control problem for dynamic positioning of a ship.However, the above fault-tolerant control was proposed based on the linearized model of the ship, and the problem becomes more complex when the nonlinear model of ASVs is taken into account.To enhance the ability of fault tolerance for ASV, dealing with more general types of actuator faults is valuable.Hence, designing a path-following control strategy of ASV in the framework of a more general actuator fault model including a stuck fault is the first motivation of this paper.

    In complex marine environments, there exist various obstacles which will affect normal operation and even threaten the safety of ASVs.Therefore, obstacle avoidance capabilities are of primary concern for the safe sailing of ASVs.Determining how to achieve obstacle avoidance has resulted in significant research [28]–[31].Many efficient obstacle avoidance methods have been proposed including prescribed performance techniques [32], artificial potential function methods [33],fuzzy logic methods [34] and so on.The advantages of artificial potential function methods include having a simple structure, less adjustment parameters and real-time collision avoidance.Thus, it is widely used in practice [35]–[37].A mobile robot can bypass obstacles by using an artificial potential function method [35].The issue of unmanned aerial vehicles collision avoidance in [36] was solved using the potential function method.Considering the movement of obstacles, [37]constructed a positive potential function for unmanned aerial vehicles capable of obstacle avoidance.In addition, the artificial potential function was often used to design formation control for ASVs [38]–[40] employed the repulsive potentials to avoid collisions with obstacles.Note that all the aforementioned results were developed without considering the occurrence of actuator faults.When taking actuator faults into consideration, the current obstacle avoidance strategy may become ineffective.Hence, determining how to develop a path-following controller that can compensate for actuator faults and has the capability of obstacle avoidance is another motivation of this paper.

    In view of the above discussions, this paper aims to develop a path-following controller with obstacle avoidance and fault tolerance for ASV subject to model uncertainty, external disturbances.The following main contributions are concluded.

    1) Considering actuator faults and obstacle avoidance simultaneously, the path-following control scheme with obstacle avoidance and fault tolerance is developed which can ensure the uniform ultimate boundedness of tracking errors.

    2) The actuator fault effect on existing obstacle avoidance strategy is revealed.As the lower bound of actuator efficiency factors decreases, the safe obstacle avoidance distance becomes smaller.In other words, the occurrence of actuator faults leads to the conservativeness of the traditional obstacle avoidance strategy.

    3) To compensate for actuator faults, an improved artificial potential function is constructed by introducing the lower bound of actuator efficiency factors.The proposed obstacle avoidance strategy can be reduced to an existing one in [38] in the absence of actuator faults.

    In this paper, the sections are summarized as follows.Section II presents description and problem statement.Section III provides the path-following controller design and stability analysis.Comparison simulation results are shown in Section IV.Section V is the conclusion of this paper.

    There are some notations below.//·// represents thel2-norm of a vector.λmax(·) and λmin(·) are the maximal eigenvalue and minimal eigenvalue of symmetric matrix, respectively.

    II.DESCRIPTION AND PROBLEM STATEMENT

    A. ASV Model

    Considering the ASV equipping with actuators, the dynamics of ASV is described as [41]

    whereη(t)=[x(t)y(t)ψ(t)]T∈R3represents the position and

    R(ψ)∈R3×3heading of ASV.is expressed as

    Remark 1: Compared with the parametric path in (4), a nonparametric path [14] can ensure the invariance of the path.However, this paper considers fault-tolerant control for the fully actuated ASV in the framework of control allocation,which does not need to control speed and heading separately.Therefore, the parametric path to design path following control strategy is adopted in this paper.

    B. Actuator Fault Model

    In complex marine environments, actuator faults inevitably occur.We consider the actuator fault model [42] as follows:

    whereu(t)∈Rmdenotes the control input signal, and?is defined as ?=diag{?1,...,?i,...,?m} where?is a semi-positive-define weighting matrix, and its elements satisfy

    whereχ is an unknown positive constant.

    Assumption 2:rank (G?) = rank (G) holds for all? ∈??j,j=1,2,...,j=1,2,...,L.

    Remark 2: It is natural to assume that the stuck fault or bias fault is bounded.Assumption 2 indicates that actuators are redundant, which is significant in compensating for stuck faults.

    C. Problem Formulation

    To develop the path-following control strategy with obstacle avoidance and fault tolerance, the following tasks should be satisfied.

    1)Geometric Task: The ASV moves along a predefined path.A small positive constantp1exists such that

    2)Dynamic Task: The update velocity of the path variable?converges to expected path update speedvs(t), that is

    wherep2∈R is a small positive constant.

    3)Obstacle Avoidance Task: In the presence of obstacles,ASV can avoid collision and maintain sailing safely

    wherep(t) andpk(t) denote the position of the ASV and thekth obstacle, respectively.∈R is the smallest safe obstacle avoidance distance.

    III.PATH-FOLLOWING CONTROLLER DESIGN AND STABILITY ANALYSIS

    A. Improved Artificial Potential Function

    Considering that the actuator faults and obstacle avoidance occur simultaneously, we construct a new artificial potential function as follows:

    Remark 3:Compared with the existing artificial potential function in [38], we improve the artificial potential function by intro ducing actuator information φk.When there is no actuator fault, φk=1, i.e., the artificial potential function can be reduced to the existing result [38] in the fault-free case.The proposed artificial potential function considers the occurrence of actuator faults, and is capable of obstacle avoidance in this case.

    B. Nonlinear State Observer Design

    The nonlinear state observer is employed in this part to estimate the model uncertainty and disturbances.And the ASV dynamics (1), (2) can be rewritten as follows:

    where ζ(t)=M-1[-C(ν)ν(t)-D(ν)ν(t)-g(ν,η)+ω(t)] represents model uncertainty and external disturbances.In addition,the nonlinear state observer requires the following assumption.

    ˙ζ(t)

    Assumption 3:is bounded, that is

    where ζ?is a positive constant.

    In Assumption 3, ζ (t) is a vector as the function of velocity.Moreover, the control inputs and the energy of external disturbance are bounded, so it is reasonable to make the above assumption.

    The following nonlinear state observer is designed for estimating the model uncertainty and external disturbances:

    The observer error dynamics can be obtained as follows:

    where

    Based on the above nonlinear state observer, the stability analysis of the error dynamics (17) is shown as follows.

    Lemma 1: In the case that Assumption 1 holds, the observer error dynamics (17) is input-to-state stable, and the error signals satisfy the following inequalities:

    and

    where γ1=([?(1-ρ)]/[λmax(Q)]) and 0 <ρ<1 provided that

    C. Path-Following Controller Design and Stability Analysis

    The controller is designed so that obstacle avoidance and fault tolerance can be achieved.To facilitate the controller design, our previous result in the subsequent lemma [42] is introduced, which is shown here to guarantee the completeness of the results.To simplify the representation, the state variabletis omitted from the relevant functions in this section.

    Lemma 2:Assuming Assumption 1 is true, a known positive constant φ exists such that the following inequality is satisfied:

    where it holds for all ? ∈??j,j=1,2,...,j=1,2,...,L.

    The position error vector is defined as follows:

    whereR=R(ψ) , η ∈R3is the position of the ASV.

    From (1) and (2), the derivative ofz1is given by

    Letvs-δ(t)= ?˙(t), then we have

    Step 1: To design the path-following controller with obstacle avoidance and fault tolerance, we design a kinematic control law νcas follows:

    Next, the stability of the cascade system made up of the nonlinear state observer error subsystem and path following control error subsystem is described.

    Theorem 1: Under the precondition of Assumptions 1 and 3,the path following control strategy with obstacle avoidance and fault tolerance can be designed.Besides, the all error signals in the cascade system are uniformly ultimately bounded.Take into account the ASV dynamics in (1), (2), as well as the nonlinear state observer (14), the proposed controller (28),(35)-(38) and the path update law (32), we can obtain the above conclusion.

    Proof: Firstly, outside the obstacle avoidance range, we verify the stability of the cascade system.By applying Lemmas 1,3 and [46, Lemma 1], we obtain that the cascade system is input-to-state stable.||ζ||-||ξ||, ξ˙ and //B// are bounded.There exists a positive constant ? satisfying ||ζ||-||ξ||≤?.So we can obtain that | |E1|| is uniformly ultimately bounded satisfying

    IV.SIMULATION RESULTS

    To verify the effectiveness of the proposed control strategy with obstacle avoidance and fault tolerance, Cybership II is used to simulate the scenario in this section.The corresponding parameters of Cybership II and the equipment of the actuator can be obtained in [47].G∈R3×5is an actuator configuration matrix of ASV and its parameters are given in [41].Then the actuator configuration matrix is

    Fig.1 shows that the ASV moves along a parametric path,and the proposed control strategy is capable of obstacle avoidance and has fault tolerance.Fig.2 demonstrates that the surge, sway, yaw velocities of ASV can be estimated precisely.Fig.3 shows that uncertainty and external disturbances are estimated by using the nonlinear state observer.From these figures, we can observe that the nonlinear state observer can accurately address the model uncertainty and external disturbances where only measurable position information of ASV is used.To illustrate the effectiveness of the proposed strategy, this paper compares the existing results without considering actuator faults.Figs.4 and 5 illustrate the comparison results through simulations.The comparison velocities of ASV system are drawn in Fig.4.Fig.5 depicts the comparisons responses curves of tracking error.We can see that the proposed control strategy can not only compensate for actuator faults and ensure obstacle avoidance but also accomplish the tasks in (7)-(9), when obstacle avoidance and actuator faults occur simultaneously.

    Fig.1.The effect of path following control strategy with obstacle avoidance and fault tolerance.

    V.CONCLUSION

    This paper presents the path-following control strategy with fault tolerance and obstacle avoidance for ASV.First, the nonlinear state observer is utilized to address model uncertainties and external disturbances, which only depends on measurable position information of ASV.Considering the occurrence of actuator faults, an improved artificial potential function is constructed by introducing the lower bound of actuator efficiency factors.Furthermore, the upper bound of the stuck fault is estimated using an adaptive mechanism.Then, based on the backstepping technique, a path-following controller with obstacle avoidance and fault tolerance is designed to compensate for actuator faults, and ensure the tracking performance and suppress uncertainty and external disturbances.It is verified that all signals are bounded.Finally, the efficacy of the proposed control strategy is shown through simulation.

    Fig.2.The estimation of velocities using the nonlinear state observer.

    Fig.3.The estimations of disturbances using the nonlinear state observer.

    Fig.4.The velocity comparisons of the ASV.

    Fig.5.The tracking error comparisons.

    亚洲精品色激情综合| 久久99热6这里只有精品| 亚洲国产精品国产精品| 亚洲国产日韩欧美精品在线观看| 国产成人精品福利久久| 91aial.com中文字幕在线观看| 日本wwww免费看| 国产国拍精品亚洲av在线观看| 国产一区二区亚洲精品在线观看| 啦啦啦中文免费视频观看日本| 欧美成人一区二区免费高清观看| 日本黄色片子视频| 18+在线观看网站| 国产精品久久久久久久电影| 99久久精品热视频| 久久97久久精品| 免费黄色在线免费观看| 精品国内亚洲2022精品成人| 老司机影院毛片| 2021天堂中文幕一二区在线观| 国产伦精品一区二区三区视频9| 国产国拍精品亚洲av在线观看| 成人午夜高清在线视频| 水蜜桃什么品种好| 精品久久久噜噜| 九草在线视频观看| 国产黄频视频在线观看| 久久精品综合一区二区三区| 国产老妇伦熟女老妇高清| 精品久久久久久久久久久久久| 久久久久久久亚洲中文字幕| 国产精品久久久久久久电影| 丰满人妻一区二区三区视频av| 欧美精品国产亚洲| 久久久精品94久久精品| 在线观看美女被高潮喷水网站| 亚洲内射少妇av| 亚洲欧洲日产国产| 日本av手机在线免费观看| 亚洲精品久久午夜乱码| 成人无遮挡网站| 久久久国产一区二区| 精品一区二区免费观看| 国产精品三级大全| 最近中文字幕高清免费大全6| 久久精品综合一区二区三区| 一级a做视频免费观看| 亚洲av福利一区| 免费不卡的大黄色大毛片视频在线观看 | 日本-黄色视频高清免费观看| www.av在线官网国产| 18+在线观看网站| 日韩欧美一区视频在线观看 | 伊人久久精品亚洲午夜| 一区二区三区高清视频在线| 欧美精品国产亚洲| 最近手机中文字幕大全| 尤物成人国产欧美一区二区三区| 岛国毛片在线播放| 亚洲欧美成人综合另类久久久| av福利片在线观看| 国产午夜精品久久久久久一区二区三区| 我的女老师完整版在线观看| 久久久久九九精品影院| 中文字幕免费在线视频6| 色5月婷婷丁香| 亚洲av国产av综合av卡| 亚洲av电影在线观看一区二区三区 | 在线观看免费高清a一片| 男人狂女人下面高潮的视频| 高清视频免费观看一区二区 | 狂野欧美白嫩少妇大欣赏| 男女那种视频在线观看| av在线蜜桃| 一级毛片 在线播放| 久久6这里有精品| 女人被狂操c到高潮| 免费看不卡的av| 天天躁夜夜躁狠狠久久av| 五月玫瑰六月丁香| 好男人在线观看高清免费视频| 内地一区二区视频在线| 欧美不卡视频在线免费观看| 深夜a级毛片| 免费大片18禁| 国产精品蜜桃在线观看| kizo精华| 亚洲成人精品中文字幕电影| 日本爱情动作片www.在线观看| 国产成人aa在线观看| 男女那种视频在线观看| 日韩欧美 国产精品| 五月玫瑰六月丁香| 国产美女午夜福利| 欧美日本视频| 少妇人妻一区二区三区视频| 美女xxoo啪啪120秒动态图| 麻豆乱淫一区二区| 日本熟妇午夜| 国内揄拍国产精品人妻在线| 欧美激情在线99| 超碰97精品在线观看| 国产伦理片在线播放av一区| 亚洲精品久久久久久婷婷小说| 亚洲国产欧美在线一区| 毛片女人毛片| 日韩一区二区视频免费看| 亚洲欧美一区二区三区黑人 | av在线老鸭窝| 亚洲av日韩在线播放| 97超视频在线观看视频| 日韩 亚洲 欧美在线| 欧美最新免费一区二区三区| 婷婷色综合大香蕉| 国产高清有码在线观看视频| 别揉我奶头 嗯啊视频| 人人妻人人澡人人爽人人夜夜 | 最近2019中文字幕mv第一页| 成人午夜精彩视频在线观看| 亚洲精品,欧美精品| 久久久精品欧美日韩精品| 免费在线观看成人毛片| 人妻一区二区av| 免费看a级黄色片| 搡老乐熟女国产| 秋霞在线观看毛片| 成人高潮视频无遮挡免费网站| 婷婷色麻豆天堂久久| 激情 狠狠 欧美| 国产乱来视频区| 欧美日本视频| 国内揄拍国产精品人妻在线| 一本久久精品| 美女被艹到高潮喷水动态| 国内少妇人妻偷人精品xxx网站| 免费电影在线观看免费观看| 成年人午夜在线观看视频 | 亚洲精品成人久久久久久| 久久综合国产亚洲精品| 九九爱精品视频在线观看| 亚洲成人av在线免费| 99热网站在线观看| 老司机影院成人| 亚洲丝袜综合中文字幕| 日产精品乱码卡一卡2卡三| or卡值多少钱| 特大巨黑吊av在线直播| 国产精品久久久久久久电影| 一级毛片电影观看| 女人被狂操c到高潮| 国产精品一区二区三区四区免费观看| 日韩中字成人| 一本一本综合久久| 中国美白少妇内射xxxbb| 97人妻精品一区二区三区麻豆| av卡一久久| 嘟嘟电影网在线观看| 十八禁网站网址无遮挡 | 国产白丝娇喘喷水9色精品| 国产高潮美女av| 欧美另类一区| 99久国产av精品| h日本视频在线播放| 最近最新中文字幕免费大全7| 欧美成人一区二区免费高清观看| 亚洲av成人精品一区久久| 日本黄大片高清| 男女边吃奶边做爰视频| 男人狂女人下面高潮的视频| 亚洲av二区三区四区| 久久久久久久久大av| 一本一本综合久久| 日韩欧美一区视频在线观看 | 免费黄色在线免费观看| h日本视频在线播放| 日韩三级伦理在线观看| 人妻少妇偷人精品九色| av在线亚洲专区| 精华霜和精华液先用哪个| 久久韩国三级中文字幕| 免费人成在线观看视频色| 神马国产精品三级电影在线观看| 九色成人免费人妻av| 欧美xxxx性猛交bbbb| 欧美日本视频| av国产免费在线观看| av国产久精品久网站免费入址| 高清毛片免费看| 三级男女做爰猛烈吃奶摸视频| eeuss影院久久| 日韩欧美精品免费久久| 秋霞伦理黄片| 日韩伦理黄色片| 一夜夜www| 精品亚洲乱码少妇综合久久| 国产极品天堂在线| 亚洲精品影视一区二区三区av| 欧美高清性xxxxhd video| 亚洲成人av在线免费| 亚洲av福利一区| 人妻系列 视频| 天天一区二区日本电影三级| 国产成人福利小说| 中文字幕免费在线视频6| 亚洲第一区二区三区不卡| 一级a做视频免费观看| 久久草成人影院| 欧美最新免费一区二区三区| 床上黄色一级片| 久久精品久久久久久久性| 不卡视频在线观看欧美| 亚洲18禁久久av| 成人性生交大片免费视频hd| 18+在线观看网站| 精品国产三级普通话版| 简卡轻食公司| .国产精品久久| 久久99热这里只有精品18| 春色校园在线视频观看| 午夜免费观看性视频| 高清午夜精品一区二区三区| av免费在线看不卡| 国产69精品久久久久777片| 在线a可以看的网站| 爱豆传媒免费全集在线观看| 三级毛片av免费| 网址你懂的国产日韩在线| 久久久成人免费电影| 在线 av 中文字幕| 国产伦在线观看视频一区| 国产精品av视频在线免费观看| 大香蕉97超碰在线| 成人综合一区亚洲| 亚洲国产精品专区欧美| 乱系列少妇在线播放| 黄色配什么色好看| 有码 亚洲区| 午夜福利成人在线免费观看| 熟女电影av网| 视频中文字幕在线观看| 啦啦啦韩国在线观看视频| 国产极品天堂在线| 男女视频在线观看网站免费| 91精品一卡2卡3卡4卡| 亚洲怡红院男人天堂| 午夜激情福利司机影院| 欧美激情久久久久久爽电影| 高清av免费在线| 国产单亲对白刺激| 国产爱豆传媒在线观看| av国产久精品久网站免费入址| 亚洲在线观看片| 亚洲成人精品中文字幕电影| 一区二区三区乱码不卡18| 97超碰精品成人国产| 菩萨蛮人人尽说江南好唐韦庄| 毛片女人毛片| 女人久久www免费人成看片| 中文精品一卡2卡3卡4更新| 国产亚洲一区二区精品| 两个人的视频大全免费| 欧美xxxx黑人xx丫x性爽| 免费少妇av软件| 日本午夜av视频| 亚洲精品日本国产第一区| 少妇熟女aⅴ在线视频| 免费不卡的大黄色大毛片视频在线观看 | 岛国毛片在线播放| 有码 亚洲区| 欧美高清性xxxxhd video| 国产黄色免费在线视频| 午夜老司机福利剧场| 亚洲精品一二三| 99久久中文字幕三级久久日本| 亚洲国产精品成人久久小说| 国产精品一区二区在线观看99 | 中文字幕制服av| 国产一级毛片七仙女欲春2| 视频中文字幕在线观看| 夜夜爽夜夜爽视频| 日日撸夜夜添| 欧美3d第一页| 成人毛片a级毛片在线播放| 少妇裸体淫交视频免费看高清| 亚洲精品乱码久久久v下载方式| 国产av码专区亚洲av| 一级a做视频免费观看| 亚洲精品456在线播放app| 中文天堂在线官网| 亚洲精品国产av成人精品| 国产伦一二天堂av在线观看| 国产一区二区亚洲精品在线观看| 国产在线一区二区三区精| 久久久午夜欧美精品| 能在线免费看毛片的网站| 搞女人的毛片| 国产一区二区亚洲精品在线观看| 极品少妇高潮喷水抽搐| 3wmmmm亚洲av在线观看| 在线免费观看不下载黄p国产| 日韩电影二区| 一本—道久久a久久精品蜜桃钙片 精品乱码久久久久久99久播 | 亚洲国产日韩欧美精品在线观看| av国产久精品久网站免费入址| 男女边吃奶边做爰视频| 婷婷色av中文字幕| 亚洲精品一区蜜桃| 日日摸夜夜添夜夜添av毛片| 神马国产精品三级电影在线观看| 国产精品人妻久久久影院| 免费在线观看成人毛片| 免费av不卡在线播放| 亚洲国产欧美在线一区| 国产亚洲av嫩草精品影院| 亚洲人成网站高清观看| 国产女主播在线喷水免费视频网站 | 亚洲成人中文字幕在线播放| 搡老妇女老女人老熟妇| 亚洲图色成人| 亚洲成人av在线免费| 亚洲精品乱久久久久久| 亚洲av免费高清在线观看| 天堂网av新在线| 亚洲电影在线观看av| 我的女老师完整版在线观看| 亚洲av免费高清在线观看| 国产欧美日韩精品一区二区| 中文字幕av成人在线电影| 国产亚洲午夜精品一区二区久久 | 国产精品美女特级片免费视频播放器| 青春草国产在线视频| 一个人看视频在线观看www免费| 日韩av不卡免费在线播放| 搡老乐熟女国产| 日本黄色片子视频| 一个人看的www免费观看视频| 国产不卡一卡二| 一本一本综合久久| 久久久欧美国产精品| 丰满人妻一区二区三区视频av| 久久精品久久久久久久性| 久久热精品热| 麻豆成人午夜福利视频| 三级国产精品欧美在线观看| 久久久久九九精品影院| 大陆偷拍与自拍| 最近中文字幕高清免费大全6| 国产探花在线观看一区二区| 精品国产三级普通话版| 嘟嘟电影网在线观看| 汤姆久久久久久久影院中文字幕 | 日本熟妇午夜| 国产综合精华液| kizo精华| 噜噜噜噜噜久久久久久91| 免费观看精品视频网站| 久久久国产一区二区| 日本一本二区三区精品| 久久久久久久久大av| 中文字幕免费在线视频6| 亚洲国产精品sss在线观看| 97精品久久久久久久久久精品| 亚洲丝袜综合中文字幕| 男女边吃奶边做爰视频| 国产精品人妻久久久久久| 男女国产视频网站| 波多野结衣巨乳人妻| 亚洲欧洲日产国产| 免费av观看视频| 精品一区在线观看国产| 亚洲欧美成人精品一区二区| 亚洲精品国产成人久久av| 秋霞伦理黄片| 床上黄色一级片| 国产 一区 欧美 日韩| 热99在线观看视频| 午夜久久久久精精品| 婷婷色综合大香蕉| 国产91av在线免费观看| 亚洲欧美成人综合另类久久久| 国产人妻一区二区三区在| 欧美三级亚洲精品| 女人十人毛片免费观看3o分钟| 可以在线观看毛片的网站| 777米奇影视久久| 真实男女啪啪啪动态图| 丰满人妻一区二区三区视频av| 国产视频内射| 久久99精品国语久久久| 午夜激情福利司机影院| 日韩av在线免费看完整版不卡| 亚洲欧美清纯卡通| 你懂的网址亚洲精品在线观看| 观看美女的网站| 国产午夜精品一二区理论片| 舔av片在线| 人人妻人人看人人澡| 亚洲精品乱久久久久久| 中文字幕久久专区| 国产精品爽爽va在线观看网站| 成人综合一区亚洲| 男女国产视频网站| 99re6热这里在线精品视频| 免费看美女性在线毛片视频| 久久久久国产网址| 国模一区二区三区四区视频| 一级毛片黄色毛片免费观看视频| 毛片女人毛片| 在线观看av片永久免费下载| 麻豆av噜噜一区二区三区| 国产黄色免费在线视频| 啦啦啦啦在线视频资源| 久久精品久久久久久噜噜老黄| 亚洲精品成人av观看孕妇| 日日啪夜夜撸| 国产单亲对白刺激| 男女下面进入的视频免费午夜| 亚洲欧美清纯卡通| 久久久久久九九精品二区国产| 午夜福利视频精品| 欧美三级亚洲精品| 最近2019中文字幕mv第一页| 国产精品无大码| 国产一级毛片在线| www.色视频.com| 男女那种视频在线观看| 九色成人免费人妻av| a级一级毛片免费在线观看| 成人特级av手机在线观看| 尾随美女入室| 久久97久久精品| av福利片在线观看| 精品一区二区三区视频在线| 亚洲真实伦在线观看| 美女高潮的动态| 久久国产乱子免费精品| 亚洲精品一区蜜桃| 国产成年人精品一区二区| 亚洲丝袜综合中文字幕| 舔av片在线| 亚洲最大成人中文| 欧美xxxx黑人xx丫x性爽| 在线天堂最新版资源| 精品一区二区三区视频在线| 日本与韩国留学比较| 啦啦啦啦在线视频资源| 九九久久精品国产亚洲av麻豆| 久久草成人影院| 亚洲美女视频黄频| av在线老鸭窝| a级毛片免费高清观看在线播放| 免费人成在线观看视频色| 成人特级av手机在线观看| 欧美激情国产日韩精品一区| videossex国产| 亚洲av日韩在线播放| 国产美女午夜福利| 人人妻人人澡欧美一区二区| 欧美变态另类bdsm刘玥| 久久久久久久久久久免费av| 日本免费a在线| 精品酒店卫生间| 国产精品女同一区二区软件| 亚洲人成网站在线播| 熟女电影av网| 欧美bdsm另类| 亚洲人成网站高清观看| 亚洲美女视频黄频| 啦啦啦韩国在线观看视频| 欧美性猛交╳xxx乱大交人| 中文字幕人妻熟人妻熟丝袜美| 永久免费av网站大全| 国产精品国产三级国产专区5o| 成人毛片60女人毛片免费| 国产黄色视频一区二区在线观看| 全区人妻精品视频| 国产高清有码在线观看视频| 成年女人看的毛片在线观看| 日韩欧美精品免费久久| 男女边摸边吃奶| 国产精品久久久久久久久免| 哪个播放器可以免费观看大片| 超碰97精品在线观看| 国产免费一级a男人的天堂| 国产视频内射| 亚洲美女视频黄频| 国产精品伦人一区二区| 99热网站在线观看| 久久久久久久久中文| 精品午夜福利在线看| 免费人成在线观看视频色| 国产综合精华液| 人人妻人人澡人人爽人人夜夜 | 精品久久久噜噜| 国产 亚洲一区二区三区 | 亚洲不卡免费看| 男人舔女人下体高潮全视频| 午夜精品一区二区三区免费看| 国产黄色免费在线视频| 亚洲精品乱码久久久v下载方式| 99久久精品热视频| 伊人久久国产一区二区| 中文精品一卡2卡3卡4更新| 天堂网av新在线| 偷拍熟女少妇极品色| 蜜桃久久精品国产亚洲av| 亚洲18禁久久av| 中文字幕人妻熟人妻熟丝袜美| av又黄又爽大尺度在线免费看| 晚上一个人看的免费电影| 黑人高潮一二区| 免费黄频网站在线观看国产| 我要看日韩黄色一级片| 亚洲人成网站在线观看播放| 国精品久久久久久国模美| 天天一区二区日本电影三级| 国模一区二区三区四区视频| 色综合色国产| av卡一久久| 久久热精品热| 亚洲人与动物交配视频| 国产精品av视频在线免费观看| 99久国产av精品| 精品午夜福利在线看| 晚上一个人看的免费电影| 黑人高潮一二区| 色5月婷婷丁香| 视频中文字幕在线观看| 永久网站在线| 欧美丝袜亚洲另类| 国产精品无大码| 丝袜喷水一区| xxx大片免费视频| 人妻一区二区av| 最后的刺客免费高清国语| 亚洲欧美精品自产自拍| 欧美丝袜亚洲另类| 亚洲国产精品sss在线观看| 十八禁国产超污无遮挡网站| 久久久精品欧美日韩精品| 国产亚洲精品av在线| 精品久久久精品久久久| 寂寞人妻少妇视频99o| 久久精品国产亚洲网站| av免费在线看不卡| 夜夜爽夜夜爽视频| 成人午夜高清在线视频| 成人毛片a级毛片在线播放| 能在线免费观看的黄片| 久久这里只有精品中国| 国产在视频线在精品| 亚洲内射少妇av| 国产成人freesex在线| 免费大片18禁| 日本-黄色视频高清免费观看| 精品欧美国产一区二区三| 色综合色国产| 国语对白做爰xxxⅹ性视频网站| 波野结衣二区三区在线| 欧美xxxx性猛交bbbb| 亚洲国产av新网站| 精品亚洲乱码少妇综合久久| av在线天堂中文字幕| 国产伦在线观看视频一区| 国产成人a∨麻豆精品| 午夜日本视频在线| 美女cb高潮喷水在线观看| 日韩欧美精品v在线| 国产在线一区二区三区精| 丰满人妻一区二区三区视频av| 国产激情偷乱视频一区二区| 有码 亚洲区| 久久久久久久久中文| 97热精品久久久久久| 永久网站在线| 干丝袜人妻中文字幕| 国产精品人妻久久久影院| 久久久久免费精品人妻一区二区| 深爱激情五月婷婷| 麻豆久久精品国产亚洲av| 一级av片app| 久久久久久久久大av| 国产精品99久久久久久久久| 久久久精品94久久精品| 高清午夜精品一区二区三区| 嘟嘟电影网在线观看| 国产精品av视频在线免费观看| 99久久人妻综合| 精品人妻视频免费看| 嘟嘟电影网在线观看| 国产极品天堂在线| 中文字幕亚洲精品专区| 久久精品久久久久久噜噜老黄| 日本三级黄在线观看| 国产精品爽爽va在线观看网站| 久久这里有精品视频免费| 丰满少妇做爰视频| 日本色播在线视频| 丝瓜视频免费看黄片| 嫩草影院精品99| 夜夜看夜夜爽夜夜摸| 最近2019中文字幕mv第一页| 七月丁香在线播放| 联通29元200g的流量卡| 国产成人a∨麻豆精品| 国产精品国产三级专区第一集| 久99久视频精品免费| 亚洲国产精品专区欧美| 免费人成在线观看视频色| 美女内射精品一级片tv| 精品一区二区三区人妻视频| 精品99又大又爽又粗少妇毛片| 亚洲成人中文字幕在线播放| 精品久久久久久久人妻蜜臀av| a级毛片免费高清观看在线播放|