• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Parameter-Free Shifted Laplacian Reconstruction for Multiple Kernel Clustering

    2024-04-15 09:37:52XiWuZhenwenRenandRichardYu
    IEEE/CAA Journal of Automatica Sinica 2024年4期

    Xi Wu , Zhenwen Ren , and F.Richard Yu

    Dear Editor,

    This letter proposes a parameter-free multiple kernel clustering (MKC)method by using shifted Laplacian reconstruction.Traditional MKC can effectively cluster nonlinear data, but it faces two main challenges: 1) As an unsupervised method, it is up against parameter problems which makes the parameters intractable to tune and is unfeasible in real-life applications; 2) Only considers the clustering information, but ignores the interference of noise within Laplacian.To solve these problems, this letter proposes a parameter-free shifted Laplacian reconstruction (PF-SLR)method for MKC, relying on shifted Laplacian rather than traditional Laplacian.Specifically, we treat each base kernel as an affinity graph,and construct its corresponding shifted Laplacian with only low-frequency components.Then, by convex combination reconstructing a highquality shifted Laplacian, PF-SLR can preserve the energy information and clustering information on the largest eigenvalues simultaneously.After that, the cluster assignments can be obtained by performingkmeans on the co-product, without any parameters involved throughout the whole process.Compared with eight state-of-the-art methods, the effectiveness and feasibility of our method are verified.

    Introduction: As we know, clustering is a significant tool for data mining, machine learning and other communities [1], [2], which aims to partition data into disjoint clusters relying on the similarity between samples.However, plentiful clustering methods are tricky to deal with nonlinear data [3].Exactly, MKC is a milestone role for handling nonlinear data, it needs a set of predefined base kernels, and then integrates them into a consensus kernel for clustering.Also, MKC can yield better performance than that of single kernel methods, and can avoid users to select and tune kernel parameters [4].

    The most prevalent MKC methods are based on spectral graph learning, which learn an affinity graph and employ spectral clustering to obtain the results [5].According to spectral graph theory, such methods mainly use the spectrum of Laplacian to identify the clusters, and the relaxed solution of the crispy clusters is given by the minimum eigenvectors of Laplacian.They have achieved conspicuous performance, but thorny problems still remain.For example, [6] uses anchor strategy to reduce complexity, but it ignores the energy loss and may contain noise effect; [7] directly learns a Laplacian via Laplacian reconstruction, while the contradiction between preserving the energy information and clustering information inevitably decreases the performance; [8] is a parameterfree MKC method, but its performance relies on the manner of consensus kernel learning, which is exactly a stumbling block.

    In this letter, a parameter-free MKC method is proposed to deal with the above problems, dubbed as PF-SLR for multiple kernel clustering.Specifically, treats each kernel as an affinity matrix and then obtainsrrank shifted Laplacian by introducing a low-pass filter.After that, theser-rank shifted Laplacians are used to reconstruct a true shifted Laplacian,where the reconstruction energy and clustering information can be preserved simultaneously.The clusters can be obtained by performingkmeans on the co-product (i.e., eigenvectors with the most abundant information) produced in the optimizing algorithm of PF-SLR.

    Related work:

    Contradictory discovery and solution:

    1) Discovery: As shown in Fig.1, when performing Laplacian reconstruction, the energy information and the small reconstruction loss are in the largest eigenvalues, i.e., the energy information of LiSin (3) and (4) is preserved in the largest eigenvectors.However, according to (2), the clustering information is embedded in the smallest eigenvectors of LS.Thus, there is a contradictory discovery that reconstructing Laplacian is a contradiction with preserving cluster information.

    Fig.1.The obtained eigenvalues distribution of Laplacian via Gaussian kernel function on Yale dataset, where the eigenvalues are sorted with decreasing order.

    2) Solution: To solve the contradiction, we propose a Laplacian learning paradigm via

    It is effortless to see that thecsmallest eigenvalues of LSare corresponding to theclargest eigenvalues of L, so the clustering information can be given by theclargest eigenvectors of L.Considering the shift of cluster information on eigenvalues, we name L as shifted Laplacian.Thus L can perform reconstruction and encode clustering information, so as to solve contradiction exactly.

    Objective function:

    1) Shifted Laplacian reconstruction: For MKC, given a set of kerneleach Kpis regarded as an affinity graph rather than a plain kernel, so its normalized Laplacian can be easily obtained by graph spectral theorem.To delete the redundant edges of each graph,kis usually used to control the number of neighbors of nodes.Define Lpas the shifted Laplacian of Kp, it can be given by

    Overall, PF-SLR is quietly straightforward to implement, and the advantages can be summarized as follows:

    a) Parameter-free: As we known, the number of parameters is crucial for unsupervised methods, especially for clustering task.PF-SLR obtains the reconstructed shifted Laplacian without any parameters contained.

    b) Consider both clustering information and energy preservation: PFSLR proposes to reconstruct a shifted Laplacian, such that the main energy and clustering information can be obtained, and the noise effects are minimized.

    c) True Laplacian: As PF-SLR uses the convex combination to reconstruct the shifted Laplacian, such that obtains a true Laplacian mathematically, which can naturally apply spectral graph theorem and has a positive effect on the clustering performance.

    2) The optimal solution: Since the subproblems of (10) have the closed-form solutions, the coordinate descent method can be applied to find the optimal solutions.

    a) For αp: Assuming other variables are constant, the convex combinatio n αpof (10) is updated via

    it can be further written as

    Consequently, the optimization is completed and the co-product U is obtained, which is the informative eigenvectors (i.e., indicator matrix).And thenk-means is used to discretize U to get the final clustering results.The specific steps for optimization are exhibited in Algorithm 1.

    Algorithm 1 The Algorithm of the Proposed Method{Kp}mp=1 Require: Multiple kernel data , neighbors k, rank r;Ensure: The final clustering results;p=1 1: for to m do 2: Construct k-nearest graph by using graph spectral theorem;Dp LS 3: Calculate the degree matrix and the normalized Laplacian of each kernel using (1);Lp 4: Calculate the shifted Laplacian using (6);Lp 5: Calculate the eigen-decomposition of using (7) and obtain the rrank shifted Laplacian by using a low-pass filter;6: end for 7: while not converge do αp 8: Update using (13);9: Update M using (15) and store the co-product U;10: end while 11: Discretize U by k-means to obtain the clustering results.

    Rate=k×(c÷m) andS rank=r÷c, tune their ranges to [0.1, 0.15,...,1.5] and [1, 2,..., 5] with step length 0.05 and 1.For fairness, all codes are downloaded from the author’s website and parameters are set based on the corresponding literature.Especially, repeatk-means step 50 times to record the average value for minimizing the impact of initial cluster centers, and the parameter of the diversity term in ONMSC is set to zero.For MLAN and MCLES, we treat the input kernel matrix as plain data to their algorithms.In addition, clustering accuracy (ACC) and average running time (in seconds) are used to indicate the clustering results of all methods.

    3) Clustering results: The results are exhibited in Table 1, from which we can obtain: compared with BSKKM, AMKKM and RMKKM, PFSLR achieves superior performance because it has no use for selecting the kernel function; Compared with MLAN and MCLES, the improvement to view kernel matrix as affinity matrix for mining graph information is verified; Compared with CSA-MKC, they can strongly demonstrate PF-SLR considers the effects of reconstruction loss and noise; PFSLR achieves superior performance compared with ONMSC, indicating it can solve the contradiction between reconstruction energy and clustering information; Compared with CoALa, the effectiveness of taking the largest eigenvalues to obtain clustering information and principal energy is validated.In addition, compared to the Laplacian method with parameters (i.e., ONMSC, CoALa), PF-SLR shows the advantage of parameterfree method without tuning parameters in practice, and proves its advantage by using true Laplacian.Besides, the average time of PF-SLR is less than most methods especially CSA-MKC, demonstrating the effectiveness of usingr-rank shifted Laplacian instead of full rank, which can reduce complexity and improve clustering performance.

    Table 1.ACC and the Average Time of All Methods, Where the Best Results are Marked in Red, Suboptimal Results are Marked in Blue, And “-”Indicates the Failed Results Because Time Costs too Long

    4) The influence of initial values and convergence analysis: As shown in Fig.2(a), ACCis stablefor a wide rangeof initial valueskandr,which are straightforward to adjust for MKC method.Andthe experiments on all datasets show that ACC is optimal whenRateis between 0.1 and 0.75, usuallykis set to 2cor 3candris set toc.In other words,a relatively smallkwill yield the best ACC, indicating the ability of the graph can be improved by deleting redundant edges.Moreover, Figs.2(c)and 2(d) shows that the objective value rapidly drop to a flat area after three iterations, demonstrating Algorithm 1 can converge to a stable value.

    Fig.2.Performance validation.

    5) Study on the effectiveness ofr-rank filtering: In Fig.2(b), it can be clearly observed that ACC ofr

    Conclusion: This letter proposes a MKC method by adopting the shifted Laplacian without parameters, which uses a convex combination to integrate single shifted Laplacians and introduces a low-pass filter to remove the low-frequency components with low eigenvalues.The filtered high-frequency components are maximized to keep the principal energy of reconstruction and clustering information.Experiments on several datasets and comparisons with other methods confirm the superiority of the proposed method.

    Acknowledgments: This work was supported by Guangxi Key Laboratory of Machine Vision and Intelligent Control (2022B07), the Open Research Fund from Guangdong Laboratory of Artificial Intelligence and Digital Economy (SZ) (GML-KF-22-04), the Natural Science Foundation of Southwest University of Science and Technology (22zx7101), and the National Natural Science Foundation of China (62106209).

    99九九在线精品视频| 你懂的网址亚洲精品在线观看| 啦啦啦中文免费视频观看日本| 成年女人毛片免费观看观看9 | 少妇精品久久久久久久| 日韩欧美精品免费久久| av在线播放精品| 老司机影院毛片| 我要看黄色一级片免费的| 欧美激情极品国产一区二区三区| 国产亚洲最大av| 丝袜喷水一区| 欧美日韩一级在线毛片| av福利片在线| 欧美国产精品va在线观看不卡| 少妇被粗大猛烈的视频| 最近中文字幕2019免费版| av视频免费观看在线观看| 99香蕉大伊视频| 亚洲精品久久成人aⅴ小说| 日日摸夜夜添夜夜爱| 亚洲av电影在线观看一区二区三区| 亚洲国产欧美在线一区| 国产一区二区 视频在线| 啦啦啦中文免费视频观看日本| xxxhd国产人妻xxx| 嫩草影院入口| 狂野欧美激情性bbbbbb| 国产精品久久久久久精品电影小说| 日韩免费高清中文字幕av| 一区二区三区乱码不卡18| 在线观看免费高清a一片| 中文字幕av电影在线播放| 人人妻人人爽人人添夜夜欢视频| 国产成人精品无人区| 嫩草影视91久久| 综合色丁香网| bbb黄色大片| 亚洲中文av在线| 老司机亚洲免费影院| 免费观看av网站的网址| 久久人人97超碰香蕉20202| 啦啦啦啦在线视频资源| 久热爱精品视频在线9| 黄网站色视频无遮挡免费观看| 晚上一个人看的免费电影| 波多野结衣av一区二区av| 高清在线视频一区二区三区| 日韩免费高清中文字幕av| 欧美精品亚洲一区二区| 亚洲av综合色区一区| 丰满乱子伦码专区| 亚洲综合精品二区| 亚洲精品在线美女| 精品一品国产午夜福利视频| 午夜免费观看性视频| 蜜桃在线观看..| 成年人免费黄色播放视频| 亚洲av电影在线进入| 在线看a的网站| 交换朋友夫妻互换小说| 久久精品久久久久久噜噜老黄| 岛国毛片在线播放| 男女下面插进去视频免费观看| 国产精品一国产av| 18禁裸乳无遮挡动漫免费视频| 成年女人毛片免费观看观看9 | 欧美成人午夜精品| 国产亚洲精品第一综合不卡| 久久亚洲国产成人精品v| 日本欧美视频一区| 久久久久久人妻| 午夜影院在线不卡| 99国产精品免费福利视频| 国产在线免费精品| 国产精品av久久久久免费| 1024视频免费在线观看| 久久久国产一区二区| 伦理电影免费视频| 啦啦啦视频在线资源免费观看| 精品少妇久久久久久888优播| av国产久精品久网站免费入址| 国产精品一区二区精品视频观看| 国产欧美日韩一区二区三区在线| 国产xxxxx性猛交| 久久精品国产亚洲av涩爱| 亚洲中文av在线| 女人久久www免费人成看片| 精品国产露脸久久av麻豆| 热99久久久久精品小说推荐| 欧美日本中文国产一区发布| 精品亚洲乱码少妇综合久久| 操出白浆在线播放| 国产男女内射视频| 国产片内射在线| 9191精品国产免费久久| 亚洲精品国产色婷婷电影| 青青草视频在线视频观看| 一区二区三区激情视频| 男男h啪啪无遮挡| 久久久亚洲精品成人影院| 亚洲久久久国产精品| 男男h啪啪无遮挡| 欧美乱码精品一区二区三区| av在线播放精品| 制服人妻中文乱码| 我要看黄色一级片免费的| 丝袜脚勾引网站| 激情视频va一区二区三区| 久久久久久人妻| 国产乱人偷精品视频| 日韩欧美一区视频在线观看| 亚洲成国产人片在线观看| 一本色道久久久久久精品综合| 99久久精品国产亚洲精品| 久久ye,这里只有精品| 午夜日韩欧美国产| 亚洲精品日本国产第一区| 水蜜桃什么品种好| 精品一区二区三卡| 久久久久久久久久久免费av| 婷婷色综合大香蕉| 伦理电影免费视频| 色婷婷久久久亚洲欧美| 欧美 亚洲 国产 日韩一| 精品少妇一区二区三区视频日本电影 | 大香蕉久久网| 亚洲激情五月婷婷啪啪| 久久久久视频综合| 久久久久久久精品精品| 九色亚洲精品在线播放| 国产亚洲av片在线观看秒播厂| 久久国产精品男人的天堂亚洲| 国产精品.久久久| 日韩大码丰满熟妇| 欧美国产精品一级二级三级| 一级a爱视频在线免费观看| 97在线人人人人妻| 亚洲国产日韩一区二区| 精品少妇黑人巨大在线播放| 亚洲激情五月婷婷啪啪| 国产精品欧美亚洲77777| 日日摸夜夜添夜夜爱| 精品少妇一区二区三区视频日本电影 | 日韩中文字幕欧美一区二区 | 国产男人的电影天堂91| 亚洲 欧美一区二区三区| 久久精品亚洲熟妇少妇任你| 搡老岳熟女国产| 午夜福利乱码中文字幕| 久久99一区二区三区| 免费人妻精品一区二区三区视频| 十分钟在线观看高清视频www| 欧美日韩视频高清一区二区三区二| 欧美久久黑人一区二区| 水蜜桃什么品种好| 老司机在亚洲福利影院| 久久久久精品国产欧美久久久 | 一区福利在线观看| 少妇人妻精品综合一区二区| 欧美国产精品va在线观看不卡| 免费观看性生交大片5| 嫩草影院入口| 黄色怎么调成土黄色| 成人亚洲欧美一区二区av| 精品酒店卫生间| 欧美变态另类bdsm刘玥| 国产在线一区二区三区精| 最近2019中文字幕mv第一页| 亚洲精品日本国产第一区| 热re99久久国产66热| 看免费av毛片| 午夜免费鲁丝| 中文字幕最新亚洲高清| 久久午夜综合久久蜜桃| 中国国产av一级| 日本爱情动作片www.在线观看| 国产激情久久老熟女| av电影中文网址| 悠悠久久av| 亚洲第一av免费看| 成年动漫av网址| 九草在线视频观看| 国产精品久久久久久人妻精品电影 | 亚洲国产欧美网| 欧美国产精品一级二级三级| 最新在线观看一区二区三区 | 香蕉国产在线看| 人人妻人人爽人人添夜夜欢视频| 婷婷成人精品国产| 亚洲欧美色中文字幕在线| 久久久国产精品麻豆| 悠悠久久av| 丝瓜视频免费看黄片| 女人高潮潮喷娇喘18禁视频| videosex国产| 香蕉国产在线看| 丰满乱子伦码专区| 日韩 亚洲 欧美在线| 久久精品aⅴ一区二区三区四区| 亚洲第一区二区三区不卡| 亚洲国产av新网站| 亚洲五月色婷婷综合| 午夜激情av网站| 久久狼人影院| 女人久久www免费人成看片| 男的添女的下面高潮视频| 欧美日韩亚洲国产一区二区在线观看 | 国产xxxxx性猛交| kizo精华| 两性夫妻黄色片| 多毛熟女@视频| 日韩成人av中文字幕在线观看| 亚洲精品日本国产第一区| 亚洲精品国产av蜜桃| 18禁国产床啪视频网站| 黄色视频不卡| 少妇人妻久久综合中文| 国产成人免费无遮挡视频| 丰满饥渴人妻一区二区三| 亚洲第一av免费看| 欧美最新免费一区二区三区| 亚洲一级一片aⅴ在线观看| 久久 成人 亚洲| 大片电影免费在线观看免费| 超碰成人久久| 天天躁狠狠躁夜夜躁狠狠躁| 看十八女毛片水多多多| 精品国产露脸久久av麻豆| 国产精品国产av在线观看| 国产精品香港三级国产av潘金莲 | 亚洲五月色婷婷综合| 国产精品99久久99久久久不卡 | 亚洲色图综合在线观看| 国产极品粉嫩免费观看在线| 狂野欧美激情性xxxx| 国产精品人妻久久久影院| 亚洲国产欧美在线一区| 中国国产av一级| 国产精品国产三级国产专区5o| 夜夜骑夜夜射夜夜干| 丰满迷人的少妇在线观看| 黄片播放在线免费| 啦啦啦在线免费观看视频4| 久久97久久精品| 中文字幕高清在线视频| 人人妻人人添人人爽欧美一区卜| 乱人伦中国视频| 九色亚洲精品在线播放| 少妇 在线观看| 97精品久久久久久久久久精品| 国产精品免费视频内射| 欧美成人午夜精品| 欧美日韩亚洲高清精品| 中文字幕av电影在线播放| 亚洲综合精品二区| 久久精品熟女亚洲av麻豆精品| 国产成人精品在线电影| 少妇人妻久久综合中文| 中文字幕精品免费在线观看视频| 深夜精品福利| 国产亚洲午夜精品一区二区久久| 女人高潮潮喷娇喘18禁视频| 午夜老司机福利片| 纯流量卡能插随身wifi吗| 高清黄色对白视频在线免费看| 久久韩国三级中文字幕| 日韩,欧美,国产一区二区三区| 国产精品无大码| 搡老乐熟女国产| 嫩草影院入口| 国产日韩欧美在线精品| 欧美日韩成人在线一区二区| 又粗又硬又长又爽又黄的视频| 人人澡人人妻人| 亚洲精品日本国产第一区| 欧美av亚洲av综合av国产av | 99精国产麻豆久久婷婷| 91国产中文字幕| 校园人妻丝袜中文字幕| 如何舔出高潮| 一级毛片黄色毛片免费观看视频| 色婷婷av一区二区三区视频| 国产成人免费无遮挡视频| 男人舔女人的私密视频| 99re6热这里在线精品视频| 欧美日韩成人在线一区二区| av在线播放精品| 伊人久久大香线蕉亚洲五| 日韩熟女老妇一区二区性免费视频| 日韩av不卡免费在线播放| √禁漫天堂资源中文www| 久久精品亚洲熟妇少妇任你| 国产午夜精品一二区理论片| 亚洲国产精品一区二区三区在线| 女人精品久久久久毛片| 国语对白做爰xxxⅹ性视频网站| 少妇精品久久久久久久| 久久99一区二区三区| 国产成人欧美在线观看 | av在线app专区| 伦理电影大哥的女人| av网站免费在线观看视频| av又黄又爽大尺度在线免费看| 9191精品国产免费久久| 国产精品久久久av美女十八| 亚洲人成电影观看| 日韩成人av中文字幕在线观看| 最近手机中文字幕大全| 搡老岳熟女国产| 大香蕉久久成人网| 国产成人系列免费观看| 日韩大码丰满熟妇| 又粗又硬又长又爽又黄的视频| 我的亚洲天堂| 99久国产av精品国产电影| 亚洲人成网站在线观看播放| 日本av免费视频播放| 青青草视频在线视频观看| 一个人免费看片子| 色精品久久人妻99蜜桃| 久久综合国产亚洲精品| 狠狠精品人妻久久久久久综合| 国产欧美亚洲国产| 色吧在线观看| 欧美日韩精品网址| 欧美日本中文国产一区发布| 一区二区av电影网| 国产成人av激情在线播放| 欧美日韩亚洲高清精品| 日韩一区二区三区影片| 亚洲成人免费av在线播放| 丝袜美腿诱惑在线| 一级毛片电影观看| 侵犯人妻中文字幕一二三四区| 免费在线观看完整版高清| 视频区图区小说| 丝袜美足系列| 秋霞伦理黄片| 亚洲熟女精品中文字幕| 久久精品久久精品一区二区三区| 狂野欧美激情性bbbbbb| 日本黄色日本黄色录像| 精品久久蜜臀av无| 国产精品久久久久久精品古装| 欧美人与善性xxx| 国产熟女午夜一区二区三区| 美女午夜性视频免费| 如何舔出高潮| 中文字幕亚洲精品专区| 男女床上黄色一级片免费看| 日本午夜av视频| bbb黄色大片| 成人18禁高潮啪啪吃奶动态图| 日韩 亚洲 欧美在线| 成人午夜精彩视频在线观看| 婷婷色麻豆天堂久久| 18在线观看网站| 欧美日韩视频高清一区二区三区二| 夜夜骑夜夜射夜夜干| 亚洲成人免费av在线播放| 久久久国产精品麻豆| 美女大奶头黄色视频| 亚洲国产av新网站| 亚洲精品国产色婷婷电影| 最近中文字幕高清免费大全6| 亚洲五月色婷婷综合| 久久狼人影院| 国产熟女欧美一区二区| 亚洲免费av在线视频| 搡老乐熟女国产| 日韩欧美精品免费久久| 男人舔女人的私密视频| 精品人妻熟女毛片av久久网站| 母亲3免费完整高清在线观看| xxx大片免费视频| 大香蕉久久成人网| 在线观看三级黄色| 亚洲情色 制服丝袜| 校园人妻丝袜中文字幕| 久久精品久久久久久久性| 国产又色又爽无遮挡免| 亚洲精品视频女| 国产成人免费观看mmmm| 日韩制服丝袜自拍偷拍| 国产精品无大码| 一级黄片播放器| 色网站视频免费| 观看美女的网站| 成人午夜精彩视频在线观看| 亚洲欧美成人综合另类久久久| 嫩草影院入口| 99久久人妻综合| 男女边摸边吃奶| 少妇的丰满在线观看| 乱人伦中国视频| 欧美人与性动交α欧美精品济南到| 久久久久久久大尺度免费视频| 欧美亚洲 丝袜 人妻 在线| 成年人午夜在线观看视频| 成人免费观看视频高清| 亚洲精品久久午夜乱码| 亚洲国产日韩一区二区| 日日摸夜夜添夜夜爱| 国产免费现黄频在线看| 色播在线永久视频| 欧美日韩一区二区视频在线观看视频在线| av电影中文网址| 99精国产麻豆久久婷婷| 久久综合国产亚洲精品| 国产xxxxx性猛交| 少妇人妻 视频| 色婷婷久久久亚洲欧美| 午夜福利影视在线免费观看| 99久久99久久久精品蜜桃| 午夜福利乱码中文字幕| 性少妇av在线| 丰满饥渴人妻一区二区三| 国产av精品麻豆| www.精华液| 日韩制服丝袜自拍偷拍| 亚洲人成电影观看| 国产片特级美女逼逼视频| 大香蕉久久网| 丰满迷人的少妇在线观看| 亚洲av在线观看美女高潮| 母亲3免费完整高清在线观看| 一区二区三区乱码不卡18| 在线精品无人区一区二区三| 我的亚洲天堂| 欧美最新免费一区二区三区| 亚洲精品日本国产第一区| 纵有疾风起免费观看全集完整版| 9热在线视频观看99| 交换朋友夫妻互换小说| 一二三四在线观看免费中文在| 亚洲精品,欧美精品| 欧美日韩亚洲高清精品| 国产麻豆69| 在线观看一区二区三区激情| av网站在线播放免费| 亚洲国产看品久久| 亚洲情色 制服丝袜| 欧美黄色片欧美黄色片| 久久97久久精品| 在线精品无人区一区二区三| 国产免费视频播放在线视频| 亚洲成色77777| 不卡av一区二区三区| 中文天堂在线官网| 国产精品久久久久久精品古装| 欧美人与性动交α欧美精品济南到| 久久精品国产a三级三级三级| 精品一区二区三区四区五区乱码 | 激情视频va一区二区三区| 少妇被粗大猛烈的视频| 亚洲国产毛片av蜜桃av| 女人精品久久久久毛片| 午夜影院在线不卡| 熟女少妇亚洲综合色aaa.| 国产精品久久久人人做人人爽| 天天躁日日躁夜夜躁夜夜| 国产午夜精品一二区理论片| 黑人猛操日本美女一级片| 久久毛片免费看一区二区三区| 成人漫画全彩无遮挡| 18禁国产床啪视频网站| 男男h啪啪无遮挡| 成人免费观看视频高清| 无限看片的www在线观看| 欧美精品一区二区大全| 欧美精品亚洲一区二区| 90打野战视频偷拍视频| 亚洲国产精品成人久久小说| 国产黄频视频在线观看| 国产精品一二三区在线看| av福利片在线| 精品亚洲成国产av| 午夜激情久久久久久久| 亚洲精品一二三| 精品少妇久久久久久888优播| 看免费成人av毛片| 一本久久精品| 久久免费观看电影| 久久久精品区二区三区| 免费不卡黄色视频| 赤兔流量卡办理| 精品一区二区三区av网在线观看 | 日韩成人av中文字幕在线观看| 老司机影院毛片| 久久久久网色| 男人操女人黄网站| 国产亚洲精品第一综合不卡| 国产视频首页在线观看| 波野结衣二区三区在线| 国产黄色视频一区二区在线观看| 亚洲人成电影观看| 日日啪夜夜爽| 久久久久视频综合| 精品国产一区二区三区四区第35| 午夜免费鲁丝| 国产一区二区激情短视频 | 精品少妇内射三级| 免费女性裸体啪啪无遮挡网站| 欧美精品亚洲一区二区| 免费观看a级毛片全部| 波多野结衣av一区二区av| 成人影院久久| 看免费成人av毛片| 亚洲精品日本国产第一区| 亚洲人成电影观看| 亚洲少妇的诱惑av| 国产精品一区二区在线不卡| 成人免费观看视频高清| 老司机影院成人| 午夜av观看不卡| 97在线人人人人妻| 免费av中文字幕在线| 亚洲男人天堂网一区| 咕卡用的链子| 男女边摸边吃奶| 晚上一个人看的免费电影| 精品午夜福利在线看| 91精品三级在线观看| 欧美 亚洲 国产 日韩一| 国产精品 国内视频| 欧美成人精品欧美一级黄| 在线观看三级黄色| 国产成人一区二区在线| 天天躁日日躁夜夜躁夜夜| 又大又爽又粗| 乱人伦中国视频| 国产激情久久老熟女| 精品酒店卫生间| 在线 av 中文字幕| 亚洲精品,欧美精品| 91成人精品电影| 伦理电影免费视频| 国产免费现黄频在线看| 国产 精品1| 日本av免费视频播放| 久久精品国产a三级三级三级| 2018国产大陆天天弄谢| 亚洲精华国产精华液的使用体验| 午夜免费鲁丝| 色94色欧美一区二区| 久久精品国产综合久久久| 成人亚洲欧美一区二区av| 久久久久精品性色| 香蕉国产在线看| 亚洲欧美色中文字幕在线| 日本av手机在线免费观看| av.在线天堂| 老汉色∧v一级毛片| 日韩中文字幕视频在线看片| kizo精华| 欧美人与性动交α欧美软件| 国产 一区精品| 天天影视国产精品| 亚洲精品av麻豆狂野| 一级片免费观看大全| 成年av动漫网址| 伦理电影免费视频| 亚洲av电影在线进入| 亚洲熟女毛片儿| 女人精品久久久久毛片| 欧美精品高潮呻吟av久久| 在线观看免费午夜福利视频| 女的被弄到高潮叫床怎么办| 久久鲁丝午夜福利片| 男女之事视频高清在线观看 | 少妇人妻久久综合中文| 超碰成人久久| 久久人人97超碰香蕉20202| 亚洲熟女精品中文字幕| 国产黄色视频一区二区在线观看| 黄频高清免费视频| 免费在线观看视频国产中文字幕亚洲 | 亚洲国产精品一区二区三区在线| 一区二区三区乱码不卡18| 满18在线观看网站| 一边摸一边做爽爽视频免费| 啦啦啦 在线观看视频| 亚洲欧洲国产日韩| 黑人巨大精品欧美一区二区蜜桃| 成年女人毛片免费观看观看9 | e午夜精品久久久久久久| 考比视频在线观看| 国产1区2区3区精品| 性高湖久久久久久久久免费观看| 青青草视频在线视频观看| 99精国产麻豆久久婷婷| 最近手机中文字幕大全| 日韩av不卡免费在线播放| 18禁动态无遮挡网站| 日韩大片免费观看网站| 久久精品熟女亚洲av麻豆精品| 高清av免费在线| 国产成人一区二区在线| 王馨瑶露胸无遮挡在线观看| 美女高潮到喷水免费观看| 久久 成人 亚洲| 在线天堂中文资源库| 久久 成人 亚洲| 黄色视频不卡| 大片免费播放器 马上看| 国产高清不卡午夜福利| 日本欧美国产在线视频| 久久天躁狠狠躁夜夜2o2o | 国产亚洲一区二区精品| 别揉我奶头~嗯~啊~动态视频 | 观看美女的网站| 久久国产精品大桥未久av| 丝袜脚勾引网站| 只有这里有精品99|