• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Parameter-Free Shifted Laplacian Reconstruction for Multiple Kernel Clustering

    2024-04-15 09:37:52XiWuZhenwenRenandRichardYu
    IEEE/CAA Journal of Automatica Sinica 2024年4期

    Xi Wu , Zhenwen Ren , and F.Richard Yu

    Dear Editor,

    This letter proposes a parameter-free multiple kernel clustering (MKC)method by using shifted Laplacian reconstruction.Traditional MKC can effectively cluster nonlinear data, but it faces two main challenges: 1) As an unsupervised method, it is up against parameter problems which makes the parameters intractable to tune and is unfeasible in real-life applications; 2) Only considers the clustering information, but ignores the interference of noise within Laplacian.To solve these problems, this letter proposes a parameter-free shifted Laplacian reconstruction (PF-SLR)method for MKC, relying on shifted Laplacian rather than traditional Laplacian.Specifically, we treat each base kernel as an affinity graph,and construct its corresponding shifted Laplacian with only low-frequency components.Then, by convex combination reconstructing a highquality shifted Laplacian, PF-SLR can preserve the energy information and clustering information on the largest eigenvalues simultaneously.After that, the cluster assignments can be obtained by performingkmeans on the co-product, without any parameters involved throughout the whole process.Compared with eight state-of-the-art methods, the effectiveness and feasibility of our method are verified.

    Introduction: As we know, clustering is a significant tool for data mining, machine learning and other communities [1], [2], which aims to partition data into disjoint clusters relying on the similarity between samples.However, plentiful clustering methods are tricky to deal with nonlinear data [3].Exactly, MKC is a milestone role for handling nonlinear data, it needs a set of predefined base kernels, and then integrates them into a consensus kernel for clustering.Also, MKC can yield better performance than that of single kernel methods, and can avoid users to select and tune kernel parameters [4].

    The most prevalent MKC methods are based on spectral graph learning, which learn an affinity graph and employ spectral clustering to obtain the results [5].According to spectral graph theory, such methods mainly use the spectrum of Laplacian to identify the clusters, and the relaxed solution of the crispy clusters is given by the minimum eigenvectors of Laplacian.They have achieved conspicuous performance, but thorny problems still remain.For example, [6] uses anchor strategy to reduce complexity, but it ignores the energy loss and may contain noise effect; [7] directly learns a Laplacian via Laplacian reconstruction, while the contradiction between preserving the energy information and clustering information inevitably decreases the performance; [8] is a parameterfree MKC method, but its performance relies on the manner of consensus kernel learning, which is exactly a stumbling block.

    In this letter, a parameter-free MKC method is proposed to deal with the above problems, dubbed as PF-SLR for multiple kernel clustering.Specifically, treats each kernel as an affinity matrix and then obtainsrrank shifted Laplacian by introducing a low-pass filter.After that, theser-rank shifted Laplacians are used to reconstruct a true shifted Laplacian,where the reconstruction energy and clustering information can be preserved simultaneously.The clusters can be obtained by performingkmeans on the co-product (i.e., eigenvectors with the most abundant information) produced in the optimizing algorithm of PF-SLR.

    Related work:

    Contradictory discovery and solution:

    1) Discovery: As shown in Fig.1, when performing Laplacian reconstruction, the energy information and the small reconstruction loss are in the largest eigenvalues, i.e., the energy information of LiSin (3) and (4) is preserved in the largest eigenvectors.However, according to (2), the clustering information is embedded in the smallest eigenvectors of LS.Thus, there is a contradictory discovery that reconstructing Laplacian is a contradiction with preserving cluster information.

    Fig.1.The obtained eigenvalues distribution of Laplacian via Gaussian kernel function on Yale dataset, where the eigenvalues are sorted with decreasing order.

    2) Solution: To solve the contradiction, we propose a Laplacian learning paradigm via

    It is effortless to see that thecsmallest eigenvalues of LSare corresponding to theclargest eigenvalues of L, so the clustering information can be given by theclargest eigenvectors of L.Considering the shift of cluster information on eigenvalues, we name L as shifted Laplacian.Thus L can perform reconstruction and encode clustering information, so as to solve contradiction exactly.

    Objective function:

    1) Shifted Laplacian reconstruction: For MKC, given a set of kerneleach Kpis regarded as an affinity graph rather than a plain kernel, so its normalized Laplacian can be easily obtained by graph spectral theorem.To delete the redundant edges of each graph,kis usually used to control the number of neighbors of nodes.Define Lpas the shifted Laplacian of Kp, it can be given by

    Overall, PF-SLR is quietly straightforward to implement, and the advantages can be summarized as follows:

    a) Parameter-free: As we known, the number of parameters is crucial for unsupervised methods, especially for clustering task.PF-SLR obtains the reconstructed shifted Laplacian without any parameters contained.

    b) Consider both clustering information and energy preservation: PFSLR proposes to reconstruct a shifted Laplacian, such that the main energy and clustering information can be obtained, and the noise effects are minimized.

    c) True Laplacian: As PF-SLR uses the convex combination to reconstruct the shifted Laplacian, such that obtains a true Laplacian mathematically, which can naturally apply spectral graph theorem and has a positive effect on the clustering performance.

    2) The optimal solution: Since the subproblems of (10) have the closed-form solutions, the coordinate descent method can be applied to find the optimal solutions.

    a) For αp: Assuming other variables are constant, the convex combinatio n αpof (10) is updated via

    it can be further written as

    Consequently, the optimization is completed and the co-product U is obtained, which is the informative eigenvectors (i.e., indicator matrix).And thenk-means is used to discretize U to get the final clustering results.The specific steps for optimization are exhibited in Algorithm 1.

    Algorithm 1 The Algorithm of the Proposed Method{Kp}mp=1 Require: Multiple kernel data , neighbors k, rank r;Ensure: The final clustering results;p=1 1: for to m do 2: Construct k-nearest graph by using graph spectral theorem;Dp LS 3: Calculate the degree matrix and the normalized Laplacian of each kernel using (1);Lp 4: Calculate the shifted Laplacian using (6);Lp 5: Calculate the eigen-decomposition of using (7) and obtain the rrank shifted Laplacian by using a low-pass filter;6: end for 7: while not converge do αp 8: Update using (13);9: Update M using (15) and store the co-product U;10: end while 11: Discretize U by k-means to obtain the clustering results.

    Rate=k×(c÷m) andS rank=r÷c, tune their ranges to [0.1, 0.15,...,1.5] and [1, 2,..., 5] with step length 0.05 and 1.For fairness, all codes are downloaded from the author’s website and parameters are set based on the corresponding literature.Especially, repeatk-means step 50 times to record the average value for minimizing the impact of initial cluster centers, and the parameter of the diversity term in ONMSC is set to zero.For MLAN and MCLES, we treat the input kernel matrix as plain data to their algorithms.In addition, clustering accuracy (ACC) and average running time (in seconds) are used to indicate the clustering results of all methods.

    3) Clustering results: The results are exhibited in Table 1, from which we can obtain: compared with BSKKM, AMKKM and RMKKM, PFSLR achieves superior performance because it has no use for selecting the kernel function; Compared with MLAN and MCLES, the improvement to view kernel matrix as affinity matrix for mining graph information is verified; Compared with CSA-MKC, they can strongly demonstrate PF-SLR considers the effects of reconstruction loss and noise; PFSLR achieves superior performance compared with ONMSC, indicating it can solve the contradiction between reconstruction energy and clustering information; Compared with CoALa, the effectiveness of taking the largest eigenvalues to obtain clustering information and principal energy is validated.In addition, compared to the Laplacian method with parameters (i.e., ONMSC, CoALa), PF-SLR shows the advantage of parameterfree method without tuning parameters in practice, and proves its advantage by using true Laplacian.Besides, the average time of PF-SLR is less than most methods especially CSA-MKC, demonstrating the effectiveness of usingr-rank shifted Laplacian instead of full rank, which can reduce complexity and improve clustering performance.

    Table 1.ACC and the Average Time of All Methods, Where the Best Results are Marked in Red, Suboptimal Results are Marked in Blue, And “-”Indicates the Failed Results Because Time Costs too Long

    4) The influence of initial values and convergence analysis: As shown in Fig.2(a), ACCis stablefor a wide rangeof initial valueskandr,which are straightforward to adjust for MKC method.Andthe experiments on all datasets show that ACC is optimal whenRateis between 0.1 and 0.75, usuallykis set to 2cor 3candris set toc.In other words,a relatively smallkwill yield the best ACC, indicating the ability of the graph can be improved by deleting redundant edges.Moreover, Figs.2(c)and 2(d) shows that the objective value rapidly drop to a flat area after three iterations, demonstrating Algorithm 1 can converge to a stable value.

    Fig.2.Performance validation.

    5) Study on the effectiveness ofr-rank filtering: In Fig.2(b), it can be clearly observed that ACC ofr

    Conclusion: This letter proposes a MKC method by adopting the shifted Laplacian without parameters, which uses a convex combination to integrate single shifted Laplacians and introduces a low-pass filter to remove the low-frequency components with low eigenvalues.The filtered high-frequency components are maximized to keep the principal energy of reconstruction and clustering information.Experiments on several datasets and comparisons with other methods confirm the superiority of the proposed method.

    Acknowledgments: This work was supported by Guangxi Key Laboratory of Machine Vision and Intelligent Control (2022B07), the Open Research Fund from Guangdong Laboratory of Artificial Intelligence and Digital Economy (SZ) (GML-KF-22-04), the Natural Science Foundation of Southwest University of Science and Technology (22zx7101), and the National Natural Science Foundation of China (62106209).

    国产av在哪里看| 国产一区二区三区在线臀色熟女| 给我免费播放毛片高清在线观看| 国产又黄又爽又无遮挡在线| 国产乱人伦免费视频| 村上凉子中文字幕在线| 国产精品自产拍在线观看55亚洲| 很黄的视频免费| 男女那种视频在线观看| 在线a可以看的网站| 亚洲国产精品999在线| 一个人免费在线观看的高清视频| 18禁黄网站禁片午夜丰满| 淫妇啪啪啪对白视频| 婷婷亚洲欧美| 久久精品夜夜夜夜夜久久蜜豆 | 成人国语在线视频| 亚洲一区二区三区不卡视频| av中文乱码字幕在线| 国产欧美日韩精品亚洲av| 色精品久久人妻99蜜桃| 精品久久久久久久久久久久久| 亚洲va日本ⅴa欧美va伊人久久| 女人高潮潮喷娇喘18禁视频| 搡老妇女老女人老熟妇| 一卡2卡三卡四卡精品乱码亚洲| 国产伦一二天堂av在线观看| 精华霜和精华液先用哪个| 国产一区二区三区在线臀色熟女| 国产单亲对白刺激| 欧美日韩瑟瑟在线播放| av在线播放免费不卡| 亚洲av第一区精品v没综合| 国产69精品久久久久777片 | 欧美在线黄色| 两个人视频免费观看高清| 国产97色在线日韩免费| 又黄又粗又硬又大视频| 午夜a级毛片| 两个人视频免费观看高清| 国产v大片淫在线免费观看| 国产成+人综合+亚洲专区| 久久久久亚洲av毛片大全| 国产三级黄色录像| 午夜激情福利司机影院| 在线国产一区二区在线| 天天躁狠狠躁夜夜躁狠狠躁| 国产成人精品无人区| 99久久综合精品五月天人人| 国产黄片美女视频| 88av欧美| 欧美人与性动交α欧美精品济南到| 国产精品一区二区免费欧美| 国内少妇人妻偷人精品xxx网站 | 欧美3d第一页| 曰老女人黄片| 久久中文看片网| www.www免费av| 精品久久久久久久久久久久久| 麻豆成人av在线观看| 99久久精品热视频| 桃红色精品国产亚洲av| 人妻丰满熟妇av一区二区三区| 亚洲 欧美 日韩 在线 免费| 亚洲精品国产精品久久久不卡| 欧美人与性动交α欧美精品济南到| 亚洲 欧美一区二区三区| 日本黄大片高清| 国产高清视频在线观看网站| 麻豆国产av国片精品| 高潮久久久久久久久久久不卡| 999精品在线视频| 十八禁网站免费在线| 真人一进一出gif抽搐免费| 淫妇啪啪啪对白视频| 老司机靠b影院| 黄色视频不卡| 欧美3d第一页| 亚洲激情在线av| 久久精品影院6| 青草久久国产| 中文字幕av在线有码专区| 亚洲电影在线观看av| 国产伦一二天堂av在线观看| 黄色视频,在线免费观看| 亚洲性夜色夜夜综合| 97碰自拍视频| 成人av在线播放网站| av在线播放免费不卡| 国产精品99久久99久久久不卡| 99热这里只有精品一区 | 成人国产一区最新在线观看| 韩国av一区二区三区四区| 看片在线看免费视频| 一级毛片高清免费大全| 正在播放国产对白刺激| 亚洲成a人片在线一区二区| bbb黄色大片| 国产成人aa在线观看| tocl精华| 制服诱惑二区| 国产熟女午夜一区二区三区| a在线观看视频网站| www.www免费av| 桃红色精品国产亚洲av| 久久天躁狠狠躁夜夜2o2o| 国产精品久久视频播放| 1024视频免费在线观看| 黄频高清免费视频| 色播亚洲综合网| 男女视频在线观看网站免费 | 99精品在免费线老司机午夜| 99热这里只有是精品50| 国内久久婷婷六月综合欲色啪| 免费在线观看亚洲国产| 精品熟女少妇八av免费久了| 亚洲一码二码三码区别大吗| 国产一区二区三区在线臀色熟女| 亚洲精品色激情综合| 日韩成人在线观看一区二区三区| 黄色 视频免费看| 精品不卡国产一区二区三区| 在线观看舔阴道视频| 99久久99久久久精品蜜桃| 最近最新中文字幕大全电影3| 法律面前人人平等表现在哪些方面| 欧美极品一区二区三区四区| 欧美3d第一页| 久久这里只有精品19| 亚洲成人久久爱视频| 中文字幕精品亚洲无线码一区| 国产精华一区二区三区| 日韩av在线大香蕉| 欧美在线一区亚洲| 大型av网站在线播放| 成在线人永久免费视频| 久久久久久久午夜电影| 久久久久久久午夜电影| 国产精品自产拍在线观看55亚洲| 亚洲av电影在线进入| 视频区欧美日本亚洲| 十八禁网站免费在线| 99久久精品热视频| 国产免费av片在线观看野外av| 99久久精品热视频| 亚洲国产精品成人综合色| 一进一出好大好爽视频| 日韩欧美国产一区二区入口| 久久久国产欧美日韩av| 久久久久亚洲av毛片大全| 午夜福利在线在线| 国产精品久久久久久亚洲av鲁大| av免费在线观看网站| 免费无遮挡裸体视频| 亚洲va日本ⅴa欧美va伊人久久| 国产精品乱码一区二三区的特点| 在线观看舔阴道视频| 久久久久免费精品人妻一区二区| 国产精品电影一区二区三区| 国产精品一区二区免费欧美| 级片在线观看| 国产69精品久久久久777片 | 欧美一区二区国产精品久久精品 | 亚洲国产欧美一区二区综合| 免费搜索国产男女视频| 狠狠狠狠99中文字幕| 国产成人精品无人区| 18美女黄网站色大片免费观看| 成年人黄色毛片网站| 精品欧美一区二区三区在线| 91大片在线观看| 国产亚洲精品综合一区在线观看 | a级毛片a级免费在线| 夜夜爽天天搞| 国产成人av教育| 精品久久久久久久久久久久久| 窝窝影院91人妻| 国语自产精品视频在线第100页| 久久久久久九九精品二区国产 | 国产成人影院久久av| 日本一区二区免费在线视频| 校园春色视频在线观看| 国产精品一区二区免费欧美| 女人爽到高潮嗷嗷叫在线视频| 麻豆成人av在线观看| 久久国产乱子伦精品免费另类| 久久这里只有精品中国| 亚洲九九香蕉| 久久九九热精品免费| 免费看日本二区| 一级毛片女人18水好多| 久久久久免费精品人妻一区二区| 久久精品91蜜桃| 亚洲欧美日韩无卡精品| 免费在线观看完整版高清| 亚洲精品粉嫩美女一区| 黄频高清免费视频| 99精品久久久久人妻精品| 91麻豆av在线| 亚洲欧美日韩高清在线视频| 亚洲专区字幕在线| 久久久久久免费高清国产稀缺| 99re在线观看精品视频| 视频区欧美日本亚洲| 禁无遮挡网站| 亚洲一区高清亚洲精品| 日本一本二区三区精品| 欧美乱码精品一区二区三区| 亚洲人成网站在线播放欧美日韩| 丁香欧美五月| 99在线人妻在线中文字幕| 两性夫妻黄色片| 精品午夜福利视频在线观看一区| 日韩欧美在线乱码| 麻豆成人av在线观看| 亚洲国产看品久久| videosex国产| 成人av在线播放网站| 九色国产91popny在线| 婷婷精品国产亚洲av| 午夜福利18| 国产一区二区在线av高清观看| 夜夜爽天天搞| 性欧美人与动物交配| 看片在线看免费视频| 人妻夜夜爽99麻豆av| 国产免费av片在线观看野外av| 日韩欧美免费精品| 欧美成狂野欧美在线观看| 日本在线视频免费播放| 又黄又粗又硬又大视频| 欧美一区二区精品小视频在线| 日韩欧美一区二区三区在线观看| 国产精品久久久久久人妻精品电影| 欧美黄色淫秽网站| 看黄色毛片网站| 欧美一区二区精品小视频在线| 亚洲,欧美精品.| 日韩高清综合在线| 国产久久久一区二区三区| 欧美乱码精品一区二区三区| 999久久久国产精品视频| 中文字幕人妻丝袜一区二区| 在线观看午夜福利视频| 人妻久久中文字幕网| 国产伦一二天堂av在线观看| 黄色 视频免费看| 丰满的人妻完整版| 亚洲五月天丁香| 精品久久蜜臀av无| 亚洲国产欧美网| 国产一区二区三区视频了| 香蕉av资源在线| 免费搜索国产男女视频| 国产69精品久久久久777片 | 天天添夜夜摸| 制服诱惑二区| 夜夜躁狠狠躁天天躁| 女同久久另类99精品国产91| 国产精品香港三级国产av潘金莲| 国产一区二区三区在线臀色熟女| 99久久国产精品久久久| 国产探花在线观看一区二区| 久久久久久免费高清国产稀缺| 国产欧美日韩一区二区三| 成人午夜高清在线视频| 午夜老司机福利片| 亚洲 欧美一区二区三区| 欧美三级亚洲精品| 久久精品国产清高在天天线| 久久人妻福利社区极品人妻图片| 三级毛片av免费| 国产探花在线观看一区二区| 国产精品亚洲一级av第二区| 国产主播在线观看一区二区| 性色av乱码一区二区三区2| 老司机午夜十八禁免费视频| 亚洲国产日韩欧美精品在线观看 | 久久性视频一级片| 国产aⅴ精品一区二区三区波| 欧美精品亚洲一区二区| 亚洲国产精品sss在线观看| 性色av乱码一区二区三区2| 欧美丝袜亚洲另类 | 久久人妻福利社区极品人妻图片| 久久这里只有精品19| 精品久久久久久久人妻蜜臀av| 日本黄大片高清| 在线免费观看的www视频| 久久九九热精品免费| 午夜精品一区二区三区免费看| 一区二区三区激情视频| 在线免费观看的www视频| 禁无遮挡网站| 国产激情欧美一区二区| 每晚都被弄得嗷嗷叫到高潮| 免费在线观看完整版高清| 露出奶头的视频| 成人av在线播放网站| 免费一级毛片在线播放高清视频| 亚洲专区中文字幕在线| 99在线人妻在线中文字幕| 欧美成狂野欧美在线观看| 高潮久久久久久久久久久不卡| 成人特级黄色片久久久久久久| 在线免费观看的www视频| 久久香蕉激情| 成人一区二区视频在线观看| ponron亚洲| 亚洲18禁久久av| 国产麻豆成人av免费视频| 国产亚洲精品av在线| 午夜影院日韩av| 亚洲av熟女| 伦理电影免费视频| 国产精品亚洲一级av第二区| 色综合亚洲欧美另类图片| 午夜福利在线观看吧| 级片在线观看| 在线观看www视频免费| 国产精品免费一区二区三区在线| 免费搜索国产男女视频| 亚洲avbb在线观看| 日本熟妇午夜| 国产一区在线观看成人免费| 午夜亚洲福利在线播放| 成人国语在线视频| 又黄又粗又硬又大视频| 在线观看一区二区三区| 亚洲一码二码三码区别大吗| svipshipincom国产片| 亚洲专区国产一区二区| 亚洲片人在线观看| 这个男人来自地球电影免费观看| 精品第一国产精品| 精品国产亚洲在线| 久久精品国产亚洲av香蕉五月| 亚洲精华国产精华精| 精品久久久久久成人av| 女同久久另类99精品国产91| 久久久久久久久久黄片| 午夜精品在线福利| 亚洲午夜理论影院| 久久人人精品亚洲av| 日本a在线网址| 91麻豆av在线| 婷婷精品国产亚洲av| 久久精品国产清高在天天线| 亚洲五月婷婷丁香| 狂野欧美激情性xxxx| 熟女电影av网| 久久久国产精品麻豆| 精品一区二区三区四区五区乱码| 黑人操中国人逼视频| 人人妻人人澡欧美一区二区| 亚洲中文av在线| 性欧美人与动物交配| 久热爱精品视频在线9| 丰满的人妻完整版| 日本一二三区视频观看| 校园春色视频在线观看| 白带黄色成豆腐渣| 免费电影在线观看免费观看| 亚洲成av人片免费观看| 窝窝影院91人妻| 久久精品人妻少妇| 一夜夜www| 欧美3d第一页| 亚洲精品一卡2卡三卡4卡5卡| 国产高清视频在线观看网站| 麻豆成人午夜福利视频| 中文在线观看免费www的网站 | 18禁美女被吸乳视频| 成人亚洲精品av一区二区| 亚洲成人久久性| 嫩草影院精品99| 成人18禁在线播放| 一区二区三区激情视频| 久久久久久久午夜电影| www.精华液| 免费在线观看影片大全网站| 国产精品九九99| 成人国语在线视频| 精品不卡国产一区二区三区| 老汉色av国产亚洲站长工具| 国产野战对白在线观看| 亚洲一码二码三码区别大吗| 亚洲人成网站高清观看| 久久久国产欧美日韩av| 久久久久国内视频| 久久热在线av| av中文乱码字幕在线| 免费看十八禁软件| 一级毛片高清免费大全| 久久婷婷人人爽人人干人人爱| 狂野欧美白嫩少妇大欣赏| 国产精品一区二区精品视频观看| 日韩三级视频一区二区三区| 性欧美人与动物交配| 一区二区三区激情视频| 国产精品av久久久久免费| 亚洲第一电影网av| 最好的美女福利视频网| 亚洲五月婷婷丁香| 亚洲av片天天在线观看| 国产精品香港三级国产av潘金莲| 欧美人与性动交α欧美精品济南到| 欧美乱色亚洲激情| 精品乱码久久久久久99久播| 亚洲成a人片在线一区二区| 夜夜看夜夜爽夜夜摸| 一个人免费在线观看电影 | 国产99久久九九免费精品| 亚洲国产看品久久| av福利片在线| 白带黄色成豆腐渣| 亚洲精品美女久久av网站| 色av中文字幕| 老熟妇仑乱视频hdxx| 久久精品国产亚洲av高清一级| 免费观看精品视频网站| 色在线成人网| 亚洲欧美日韩高清专用| 曰老女人黄片| 久久久久久国产a免费观看| 亚洲第一电影网av| av天堂在线播放| 制服诱惑二区| 老司机在亚洲福利影院| 一个人免费在线观看的高清视频| 久久人妻av系列| 波多野结衣高清无吗| av福利片在线| 黑人巨大精品欧美一区二区mp4| 国产高清有码在线观看视频 | 女人高潮潮喷娇喘18禁视频| 好男人在线观看高清免费视频| 国产精品国产高清国产av| 深夜精品福利| 在线播放国产精品三级| 亚洲中文字幕一区二区三区有码在线看 | 天天添夜夜摸| 久久久久久久久免费视频了| 精华霜和精华液先用哪个| 无人区码免费观看不卡| 久久精品91蜜桃| 中国美女看黄片| 在线十欧美十亚洲十日本专区| 91成年电影在线观看| 99热这里只有是精品50| 欧美在线黄色| 久久这里只有精品19| 精品一区二区三区视频在线观看免费| 亚洲av熟女| 在线观看舔阴道视频| 亚洲精品美女久久av网站| 午夜久久久久精精品| 中文亚洲av片在线观看爽| 淫秽高清视频在线观看| 九色国产91popny在线| 亚洲美女视频黄频| 亚洲成a人片在线一区二区| 久久久久久九九精品二区国产 | 亚洲欧美精品综合一区二区三区| 欧美性猛交╳xxx乱大交人| 脱女人内裤的视频| 日韩欧美精品v在线| 日本撒尿小便嘘嘘汇集6| 精品电影一区二区在线| av超薄肉色丝袜交足视频| 色老头精品视频在线观看| 欧美性猛交╳xxx乱大交人| 真人做人爱边吃奶动态| 99热只有精品国产| 高清在线国产一区| 国产又色又爽无遮挡免费看| xxxwww97欧美| 亚洲成人久久性| 欧美乱妇无乱码| 精品福利观看| 国产亚洲精品久久久久5区| 国产激情偷乱视频一区二区| 久久中文看片网| 欧洲精品卡2卡3卡4卡5卡区| 国产亚洲精品第一综合不卡| av福利片在线| 悠悠久久av| 在线观看免费日韩欧美大片| 国产精品98久久久久久宅男小说| 我要搜黄色片| 精品久久久久久久人妻蜜臀av| www.999成人在线观看| 国产av一区在线观看免费| 男女下面进入的视频免费午夜| 可以免费在线观看a视频的电影网站| 2021天堂中文幕一二区在线观| 最近在线观看免费完整版| 变态另类成人亚洲欧美熟女| 欧美日韩亚洲综合一区二区三区_| 国产探花在线观看一区二区| 五月玫瑰六月丁香| svipshipincom国产片| 欧美黑人精品巨大| 人妻久久中文字幕网| 美女免费视频网站| 可以免费在线观看a视频的电影网站| 免费看a级黄色片| 亚洲人与动物交配视频| 悠悠久久av| 制服诱惑二区| 亚洲国产高清在线一区二区三| a级毛片在线看网站| 两性午夜刺激爽爽歪歪视频在线观看 | 嫁个100分男人电影在线观看| 搞女人的毛片| 日本免费a在线| 国产av麻豆久久久久久久| 九色成人免费人妻av| 窝窝影院91人妻| АⅤ资源中文在线天堂| 国产精品电影一区二区三区| 日本精品一区二区三区蜜桃| 国产又黄又爽又无遮挡在线| 在线永久观看黄色视频| 99热这里只有精品一区 | 国语自产精品视频在线第100页| 一夜夜www| 欧美精品啪啪一区二区三区| 亚洲七黄色美女视频| 女人爽到高潮嗷嗷叫在线视频| 99国产综合亚洲精品| 99久久99久久久精品蜜桃| 淫秽高清视频在线观看| 人人妻,人人澡人人爽秒播| 毛片女人毛片| 国产精品久久久久久久电影 | 老熟妇仑乱视频hdxx| 好男人在线观看高清免费视频| 身体一侧抽搐| 久久性视频一级片| 我的老师免费观看完整版| 免费在线观看黄色视频的| 欧美又色又爽又黄视频| 国产69精品久久久久777片 | 在线永久观看黄色视频| 欧美国产日韩亚洲一区| 在线永久观看黄色视频| 成人18禁高潮啪啪吃奶动态图| 亚洲精品美女久久av网站| 成人18禁高潮啪啪吃奶动态图| 久久精品aⅴ一区二区三区四区| 婷婷丁香在线五月| 少妇被粗大的猛进出69影院| 国产区一区二久久| 不卡一级毛片| www.www免费av| 亚洲中文字幕一区二区三区有码在线看 | 久久久久久免费高清国产稀缺| 成在线人永久免费视频| www.精华液| 在线观看www视频免费| 国产三级黄色录像| 国产成人欧美在线观看| 999久久久精品免费观看国产| 俄罗斯特黄特色一大片| 黄色a级毛片大全视频| 搡老岳熟女国产| 免费看日本二区| 欧美在线黄色| 国产激情久久老熟女| 色噜噜av男人的天堂激情| 少妇的丰满在线观看| 亚洲成人精品中文字幕电影| 特大巨黑吊av在线直播| 在线观看一区二区三区| 日韩欧美在线二视频| 在线永久观看黄色视频| 级片在线观看| 一二三四社区在线视频社区8| 成人欧美大片| 最近视频中文字幕2019在线8| 国产免费男女视频| 日日干狠狠操夜夜爽| 亚洲欧美精品综合一区二区三区| 俺也久久电影网| 精品一区二区三区视频在线观看免费| 国产欧美日韩一区二区精品| 午夜福利高清视频| 免费在线观看亚洲国产| 亚洲国产精品sss在线观看| 欧美另类亚洲清纯唯美| 在线永久观看黄色视频| 99热这里只有是精品50| 视频区欧美日本亚洲| 国产亚洲精品一区二区www| 狠狠狠狠99中文字幕| 777久久人妻少妇嫩草av网站| 日韩高清综合在线| 老司机靠b影院| 欧美丝袜亚洲另类 | 国产探花在线观看一区二区| 19禁男女啪啪无遮挡网站| 欧美高清成人免费视频www| а√天堂www在线а√下载| 国产精品一区二区精品视频观看| 欧美成狂野欧美在线观看| 国产爱豆传媒在线观看 | 亚洲精品在线观看二区| 欧美成人免费av一区二区三区| 久久这里只有精品中国| 国产精品一区二区免费欧美| 国产一区二区三区在线臀色熟女| 日韩国内少妇激情av| 18禁裸乳无遮挡免费网站照片| 大型黄色视频在线免费观看|