• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Graphdiyne scaffold anchored highly dispersed ruthenium nanoparticles as an efficient cathode catalyst for rechargeable Li–CO2 battery

    2024-04-06 06:21:14YiruHuiqiQuWnnWngZiyngGuoYuqinYuFngLiuBinYuMingTinZhnjingLiBinLiLiWng
    Chinese Chemical Letters 2024年1期

    Yiru M ,Huiqi Qu,d ,Wnn Wng ,Ziyng Guo ,Yuqin Yu ,Fng Liu ,Bin Yu,Ming Tin,Zhnjing Li,Bin Li,?,Li Wng,c,?

    a College of Chemistry and Molecular Engineering,State Key Laboratory Base of Eco-Chemical Engineering,International Science and Technology Cooperation Base of Eco-Chemical Engineering and Green Manufacturing,Qingdao University of Science and Technology,Qingdao 266042,China

    b College of Materials Science and Engineering,Qingdao University of Science and Technology,Qingdao 266042,China

    c College of Environment and Safety Engineering,Qingdao University of Science and Technology,Qingdao 266042,China

    d College of Chemical Engineering,Qingdao University of Science and Technology,Qingdao 266042,China

    e Biomedical Sensing Engineering Technology Research Center,Shandong University,Ji’nan 250100,China

    f Scientific Green (Shandong) Environmental Technology Co.,Ltd.,Jining Economic Development Zone,Jining 272499,China

    Keywords: Nanopores Li–CO2 battery Anchored Ru nanoparticles Graphdiyne Synergistic effect

    ABSTRACT Lithium (Li)–CO2 battery is rising as an attractive energy-storage system with the competence of CO2 conversion/fixation.However,its practical development is seriously hindered by the high overpotential.Herein,a rational design on a highly catalytic Li–CO2 battery electrode built by graphdiyne powder as a multi-functional laminar scaffold with anchored highly dispersed Ru nanoparticles is explored.The strong interaction between the abundant acetylenic bond sites of graphdiyne scaffold and Ru nanoparticles can effectively promote the electrochemical progress and reduce the voltage polarization.The unique channels architecture of the cathodic catalyst with enough space not only accelerates CO2 diffusion and electrons/Li+ transport,but also allows a large amount of accommodation for discharged product (Li2CO3)to assure an advanced capacity.The corresponding Li–CO2 battery displays an advanced discharged capacity of 15,030 mAh/g at 500 mA/g,great capacity retention of 8873 mAh/g at 2 A/g,high coulombic efficiency of 97.6% at 500 mA/g and superior life span for 120 cycles with voltage gap of 1.67 V under a restricted capacity of 1000 mAh/g at 500 mA/g. Ex/in-situ studies prove that synergy between Ru nanoparticles and acetylene bonds of GDY can boost the round-trip CO2RR and CO2ER kinetics.

    “Greenhouse effect” generated by the massive exploitation of fossil fuels poses severe challenges to environmental protection[1–4].Recently,Li–CO2battery is attractive energy storage device,which creates an innovative path for converting CO2gas from external space to produce renewable energy [5–8].The electrochemical reaction of a classical rechargeable Li–CO2battery is 4Li+3CO2?2Li2CO3+C [9–11].Although Li–CO2battery has been widely researched and evaluated,there are still many challenges to be overcome before the actual application.The major challenge is Li2CO3,as an insulator product with wide gap in CO2reduction reaction (CO2RR) [12–14],not only affects the next mass transfer process,but also causes the electrolyte oxidized due to a high overpotential in the CO2evolution reaction (CO2ER) process [15–17]. Thus,developing an efficient catalyst with excellent catalytic performance and optimized structure is the key to promoting the performance of Li–CO2battery.

    To solve the above problems,great progresses have been made in designing cathodic catalysts for Li–CO2battery using carbon materials (CNTs [18]) and transition-metal based materials (NiO–CNT[19],Mo2C [20]).However,those of reported Li–CO2batteries still have the problems of high overvoltage and short cycle life.Nowadays,noble metal-based materials,especially ruthenium (Ru) have been regarded as the most promising catalysts in promoting the activity of CO2RR and CO2ER due to their unique electronic configuration and prominent electrochemical stability [21].For instance,He and co-workers introduce the Li–CO2battery based Ru@super P cathode,which reduces polarization voltage greatly and accelerates the decomposition of the discharged products [22].Nevertheless,the stability of Ru@Super P-based Li-CO2battery is still restricted,only 70 cycles.To address this issue,Chen and co-workers report Ru nanoparticles functionalized graphene-based Li-CO2battery which displays a charge voltage of ~4.02 V and a coulombic efficiency of ~89.2% [23].Despite these advances,the interaction between metal and nano-carbon matrix is so week that the catalytic sites always are easier to fade off [24–27].In addition,the distribution of active sites is difficult to control so that the stability and reversibility of the cells are not satisfied.In order to construct an efficient catalytic system,a scaffold is needed to firmly anchor these metal nanoparticles.Two key points need to be given concern about choosing a proper scaffold.One point is that the number of exposed active sites should be increased.Another important point is that the scaffold should interact strongly with the active site to form a good electronic structure and prevent catalyst deactivation [28–30].Therefore,it is of great significance to reasonably research a Ru metal anchored carbon-based scaffold catalyst possessing an excellent structure and effectively promoting the catalytic kinetics of CO2ER/CO2RR for long-life reversible Li-CO2battery.

    Graphdiyne (GDY),a new-type carbon allotrope constituted by highπ-conjugation network of well-organized sp and sp2hybrid carbon atoms [31–33],has been high-profile in many fields such as electrochemistry,photocatalytic,optics and electronics [34,35].The unique structure endows a promising platform for stabilizing metal centers.Meanwhile,the calculation [36] suggests that the coupling between metal and GDY is ascribed to the enhanced chemical adsorption,which could bring about a strong charge transfer between them.Moreover,the topological network with hexagonal voids formed by the three butadiene chains (–C≡C–C≡C–) not only provides a spatially limited framework to prevent metal aggregation,but also is more prone to attract CO2[37,38],which makes a great contribution to the kinetics of CO2ER process for Li-CO2battery.Therefore,it is very promising to combine noble metal and GDY as a cathodic catalyst.

    Herein,we select the graphdiyne scaffold (GDYS) with a laminar structure to anchor Ru nanoparticles with a uniform and firm layout.The catalyst is fabricated by acetylene coupling reaction and ethylene glycol reduction treatment.The highly dispersed Ru nanoparticles are anchored on graphdiyne scaffold (Ru-GDYS)which is further served as cathode for Li–CO2battery.The wellconducting and electronic-rich lamellar structure bestows GDY scaffold the capacity to reposit a large number of Li+in Li–CO2battery.The strong coupling between the GDYS and Ru nanoparticles results in a large amount of charge transfer,which can effectively improve the electrochemical activity and reduce the voltage polarization.Meanwhile,Ru-GDYS provides not only large specific surface area and unique triangular pores to improve the fast electrons transportation and facilitate electrolyte infiltration,but also sufficient space for Li2CO3to realize high discharged-capacity.In addition,the highly dispersed Ru nanoparticles serving as rich active sites forcefully facilitate the dynamics of CO2ER/CO2RR.The assembled Li–CO2battery with Ru-GDYS catalyst delivers a large discharged capacity of 15,030 mAh/g at 500 mA/g and superior cycling stability for 120 cycles with voltage gap of<1.67 V.Furthermore,a series of ex/in-situ technologies demonstrate the great reversibility and durability of Ru-GDYS in Li–CO2battery.Therefore,this kind of design opens up a roadway for developing such creative catalysts of advanced performance metal–gas battery.

    Fig.1a displays the synthesis procedure for the Ru-GDYS cathode catalyst.GDYS powder is preparedviaacetylene coupling reaction on copper foils (details in Supporting information) [39].Subsequently,GDYS powder and RuCl3?xH2O are uniformly mixed in ethylene glycol solution and then refluxed at 170 °C to anchor Ru nanoparticles on GDYS.Scanning electron microscope (SEM)images (Figs.S1a and b in Supporting information) display that the as-prepared GDY scaffold possesses a uniform and continuous lamellar structure.SEM images (Figs.S1c and d in Supporting information) show that,the GDY scaffold exhibits a threedimensional continuous network with lots of voids,which is composed of multiple layers.Transmission electron microscopy (TEM)images (Fig.1b and Fig.S2a in Supporting information) of GDY scaffold confirm that they have typical two-dimensional folded lamellar-like structure,in which the stacking of GDY layers can be seen at the edges.It should be noted that Ru-GDYS could remain the original lamellar morphology (Fig.1c),suggesting that the high-temperature reduction treatment does not break the basic framework of GDY.What is more,there are a mass of voids over the Ru-GDYS either (Fig.1d).The TEM images (Fig.1e and Fig.S2b in Supporting information) of Ru-GDYS reveal that the small Ru nanoparticles are encapsulated between the GDY layers.From the high-resolution (HR) TEM images (Fig.1f),the size of Ru nanoparticles is mostly less than 5 nm with lattice fringes spacing of 0.233 nm,which is related to the distances of Ru (100)crystal face.Moreover,it can be distinctly distinguished the lattice fringes of the well-crystallized GDYS layered backbone,with an interlayer space of 0.365 nm (Fig.1g).The selected area electron diffraction (SAED) further proves the existence of Ru species with polycrystalline nature (Fig.1h).There are three diffraction rings in SAED image,associated with the (100),(102) and (110)lattice planes of Ru metal,indicating that the obtained Ru-GDYS sample is polycrystalline.The energy dispersive X-ray spectroscopic(EDS) elemental mapping (Fig.1i) of Ru-GDYS demonstrates that the distributed Ru elementals are situated homogeneously in the all-carbon network,indicating the successful combination of Ru-C sites in GDYS.Besides,the existence of O element is as a result of the absorption of O2from air.To optimize the content of Ru nanoparticles loading,Ru-GDYS composites with different Ru contents (4.2,9.0 and 15.2 wt%) have been synthesized by adjusting the initial mass of RuCl3.Inductively coupled plasma-optical emission spectroscopy (ICP-OES) analysis (Table S1 in Supporting information) and TEM technology (Fig.S3 in Supporting information)are executed to characterize the three samples.In followed battery tests,the Ru-GDYS catalyst with 9.0 wt% shows the best cycling performance (Fig.S4 in Supporting information).Therefore,the Ru content is optimized to be around 9.0 wt%.

    Fig.1.(a) The preparation steps for Ru-GDYS.(b) TEM image of GDYS.(c,d) SEM images of Ru-GDYS.(e) TEM image and (f,g) HR-TEM images of Ru-GDYS.(h) SAED pattern of Ru nanoparticles.(i) EDS mapping images of C,O and Ru elements,respectively.

    The X-ray diffraction (XRD) pattern of GDYS exhibits a broad peak at around 22.8°,matched with the typical interlamellar spacing of 0.365 nm (Fig.2a).There is also a week and broad diffraction peak around 42.7° related to disordered carbon materials.Notably,XRD pattern of the Ru-GDYS catalyst reveals five typical peaks of Ru,which are located at 38.3°,42.2°,43.8°,58.2°and 69.1°.These results demonstrate that Ru nanoparticles are successfully anchored on carbon material.Defects/disorder carbon(D-bands) and graphitic carbon (G-bands) of Raman spectra are situated on ~1379 cm-1and ~1583 cm-1.The acetylenic link(–C≡C–C≡C–) at around 2173 cm-1is originated from the sp hybridized oscillation (Fig.2b) [34].The ratio of D-band to G-band(ID/IG) rises from 0.77 (GDYS) to 0.85 (Ru-GDYS),which reflects that the increase of defects in the Ru-GDYS catalyst (Fig.S5 in Supporting information) [40,41].The two obvious peaks (Ru 3d,Ru 3p) in full-scan X-ray photoelectron spectroscopy (XPS) of Ru-GDYS can be clearly seen (Fig.S6 in Supporting information).Additionally,compared with GDYS catalyst,the high-resolution C 1s and Ru 3d XPS spectra of Ru-GDYS expresses seven sub-peaks:C–C (sp2) at 284.4 eV,C–C (sp) at 285.2 eV,C–O at 286.7 eV,C=O at 288.5 eV,Ru 3d5/2at 280.2 eV,Ru 3d3/2at 284.5 eV andπ π?transition at 290.18 eV attributed to the interaction between Ru nanoparticles and GDYS (Fig.2c) [42,43].It is worth noting that the area of sp hybrid carbon is about twice that of sp2hybrid carbon in Ru-GDYS and GDYS,in keeping with the feature structure of graphdiyne.In addition,Ru 3p3/2and Ru 3p1/2sub-peaks are located in 461.4 eV and 483.8 eV,respectively in the high-resolution Ru 3p XPS spectra (Fig.S7 in Supporting information),further suggesting that Ru species with metallic form in the catalyst [44].The N2adsorption–desorption isotherms of Ru-GDYS shows uptake at the lowP/P0(type-I curves) and type-IV curves with a H3-type hysteresis loop atP/P0>0.45 [45,46],suggesting the existence of micropores and mesopores (Fig.2d) [47,48].The specific surface area and the pore volume of Ru-GDYS are calculated to be 257.7 m2/g and 0.34 cm3/g,respectively.The pore-size distribution curve of Ru-GDYS (Fig.S8 in Supporting information) further shows the hierarchical pores in Ru-GDYS catalysts with main pore size of 1.17 nm.These results corroborate that Ru-GDYS has hierarchically porous structure with plenty of micropores/mesopores.

    Fig.2.(a) XRD patterns of different catalysts and (b) Raman spectra of Ru-GDYS.(c) The high-resolution XPS spectra of C 1s and Ru 3d for Ru-GDYS and GDYS (d)N2 adsorption and desorption isotherms of Ru-GDYS.

    Cyclic voltammetry (CV) test with Ru-GDYS and GDYS cathode between at a scan rate of 0.1 mV/s are conducted (Fig.3a).Compared with GDYS,it is observed that the Ru-GDYS based battery has strong anodic peak properly around 2.36 V corresponding to the CO2evolution reaction,and cathodic peak around 4.18 V,concerned in CO2reduction process.As shown in Fig.3b,the Ru-GDYS cathode delivers an ultrahigh discharge capacity of 15,030 mAh/g at 500 mA/g,distinctly exceeding GDYS cathode(11,016 mAh/g).Additionally,a reversible charged capacity of Ru-GDYS (14,668 mAh/g) is gained with a splendid coulombic effi-ciency of 97.6%,manifesting that a majority of discharged products are decomposed during the charging process.On the contrary,pure GDYS cathode displays low reversible capacity and poor coulombic efficiency.The result further affirms the superiority of Ru nanoparticles combined with GDYS.The rate performance tests are exhibited in Fig.3c and Fig.S9 (Supporting information).The discharge capacity of the Ru-GDYS cathode mildly declines to 13,382 mAh/g at 1000 mA/g,nevertheless,the capacity of GDYS drops quickly (7981 mAh/g).Under 1500 mA/g,the discharge capacity of Ru-GDYS (10,720 mAh/g) is more than twice that of GDYS cathode (4523 mAh/g).Unexpectedly,the Ru-GDYS cathode remains a significant discharged capacity of 8873 mAh/g at 2000 mA/g.On the contrary,the capacity based on GDYS cathode has reduced to 2709 mAh/g.The data confirms the superior rate performance with great CO2RR/CO2ER activities of Li–CO2batteries using Ru-GDYS electrode.The Ru-GDYS cathode is capable of operating over 120 cycles and stays steady at 500 mA/g with a curtailing capacity of 1000 mAh/g (Fig.3d).At the same time,the voltage gap (△V) is around 1.42 V at the 50thcycle.Although the voltage gap shows a mild increase after 120thcycle,it is still below within 1.67 V,which may be attributed to the synergy of excellent activity of Ru and the optimized development route invited by GDYS of discharge products [49].In contrast,under the same conditions,the Li–CO2battery with GDYS cathode only works 80 cycles with large polarization (△V=2.38 V) (Fig.3e).To acquire deep insight into the catalytic activity and superiority of the well-dispersed Ru nanoparticles,we further compare the first cycled curves of different electrodes (Fig.3f).It is important that the charge voltage plateaus of the Ru-GDYS cathode (3.61 V) is considerably lower than that of GDYS cathode (4.77 V) and the initial discharge/charge voltage gap is remarkably declined to 1.11 V,demonstrating the Ru nanoparticles of the Ru-GDYS composite possess superior competency for boosting CO2reduction reaction.Interestingly,commercial graphene (COMG) cathode also shows a short cycling life-span of merely 75 loops,lower than GDYS under the same condition (Fig.S10 in Supporting information),highlighting that the carbon carrier of GDYS has better activity and stability.Moreover,according to the comparison of their corresponding terminal potentials-cycle number profiles in Fig.3g,the difference of the terminal voltages of the Ru-GDYS involved Li–CO2cells on the average is around 1.42 V.It is much smaller than that of GDYS during a long roundtrip (>120 cycles),featuring a prominent cycling reliability.Unfortunately,battery with GDYS electrode suffers from great losses of polarization with high CO2ER terminal voltage and CO2RR terminal potential rapidly dropping below 2.0 V at 80thcycles.

    Fig.3.(a) CV experiments of the Li–CO2 batteries with Ru-GDYS and GDYS cathodes.(b) Full discharge/charge curves at 500 mA/g.(c) The discharge capacities of the Ru-GDYS cathode and GDYS cathode at different current density.Galvanostatic tests of (d) Ru-GDYS cathode and (e) GDYS cathode at 500 mA/g with fixed capacity of 1000 mAh/g.(f)Initial discharge/charge profiles at 500 mA/g.(g) Terminal voltages versus the cycle number of Ru-GDYS and GDYS cathodes based batteries.

    The superiority of our elaborately designed Ru-GDYS is that a multi-functional laminar scaffold with anchored Ru nanoparticles can not only facilitate the storage of lithium metal and thus significantly increase the capacity of Li–CO2batteries,but also provide enough space for the reversible Li2CO3.The hierarchical porous construction and large surface area of Ru-GDYS can afford a superhighway for electrolyte permeation and CO2/Li+transport and provide enough available catalytic active sites for CO2RR/CO2ER electrochemical process in Li–CO2batteries.Fig.4a gives theexsituSEM images of Ru-GDYS cathode under the different states,which directly embodies the changes of morphology for the electrode.Compared with the pristine Ru-GDYS electrode (Fig.S11 in Supporting information),there are evenly filled with flower-like products composed of thin slices on the surface after discharging.Thanks to the superiority of the GDYS structure and the splendid activity of Ru nanoparticles,the discharge products are barely visible after following recharged progress,as same as the pristine Ru-GDYS cathode.Based on previous studies,the acetylenic bond of GDYS has the characteristic of active sites and can interact with Ru metal strongly [50],which not only reduces the energy barrier of CO2RR greatly,but also optimizes the formation of discharge products.Since the morphology and distribution of the discharge products are affected by the strong adsorption capacity of Ru species,the discharged Ru-GDYS cathode forms nanoflower-like products[51,52].Each nanosheet of cluster is thin and tightly bound,thus helping to improve the discharge capacity and enhancing the battery performance significantly.Conversely,SEM image of the discharged GDYS cathode (Fig.S12 in Supporting information) displays the cluttered products overlying the electrode and there are still clumps of undecomposed materials after recharging.

    Fig.4.(a) SEM images of the Ru-GDYS cathode at different stages.(b) XRD pattern,(c) Raman spectra and XPS spectra of (d) C 1s and (e) Li 1s for Ru-GDYS cathodes at pristine,discharged,and recharged conditions.(f) Charge curve of a Ru-GDYS based Li–CO2 battery and (g) the synchronous evolution of CO2 and O2 detected by in-situ DEMS.(h) The time vs. voltage curve of Li–CO2 cells with Ru-GDYS cathode and the corresponding 2D contour plot of in-situ FT-IR spectrum.

    The surplus products covered on the electrode surface conceal the active sites and enlarge the interface resistance between Li2CO3and catalyst [53].Fig.S13 (Supporting information) displays the impedance spectroscopy (EIS) spectra of Ru-GDYS and GDYS cathodes during cycling.The corresponding equivalent circuit of the EIS spectra has been shown in the inset of Fig.S13.A semicircle in the high frequency region represents the charge transfer resistance (Rct),implying the capability of charge transport between discharged products and cathodes [4,46].Since the insulating discharge products are constantly covered on the CO2cathode,theRctof Ru-GDYS involved Li–CO2cell increases from ~231 ohm of the pristine state to ~379 ohm at the discharged condition (Fig.S13a).After recharging,theRctof Li–CO2cell with Ru-GDYS returns to ~274 ohm.On the contrary,theRctof GDYS (~545 ohm)electrode is much larger than that of Ru-GDYS at full discharged stage.After recharging back,the recharged GDYS cathode shows unrecoveredRctof ~416 ohm,which is higher than that of pristine stage (~248 ohm) (Fig.S13b).It is consistent with the observed results from SEM images (Fig.S12c) that there are some undecomposed Li2CO3on the surface of the recharged GDYS electrode.To probe into the composition of the discharge product and reversibility during charge/discharge process,ex-situXRD and Raman are executed (Figs.4b and c).At discharged stage,many new broad peaks emerge compared with pristine cathode,which correspond to the typical characteristic of Li2CO3(JCPDS No.22–1141).Afterwards,every Li2CO3related diffraction peaks disappear entirely and a glossy curve reborn as the same as the pristine one during CO2evolution reaction.The result further proves that Li2CO3as one of the main products generates during discharge stage and fades away in the recharged period.Theex-situRaman experiment reveals the invertible formation/decomposition of Li2CO3(~1072 cm-1) over cycling (Fig.4c) [54,55],which is consistent with the evolution of above SEM morphology.Furthermore,alterations in chemical states of elements of the Ru-GDYS cathode are characterized by XPS technology.Compared to the primitive C 1s high-resolution spectrum,a strong peak at around 290.9 eV appears which is due to the discharge product Li2CO3taking shape (Fig.4d).As disclosed in Li 1s XPS spectrum (Fig.4e),the peak at 56.1 eV of Li2CO3clusters almost vanishes absolutely after CO2RR in compliance with the foregoing conclusion [56,57].

    To investigate the evolution of CO2gas of Li–CO2batteries during recharge stage,in-situdifferential electrochemical mass spectrometry (DEMS) is conducted.The Ru-GDYS-based battery is discharged 2 h under 300 μA in CO2gas.Then,the Ar stream is injected into DEMS system until the CO2concentration is very low and the airflow of Ar gas is stable (Fig.S14 in Supporting information).Finally,the battery is charged 2 h under 300 μA in Ar gas (Fig.4f).During this process,only CO2is generated with no change of O2.It further confirms that Li2CO3is the main product of discharging and mainly produces CO2gas under the condition of charging (Fig.4g) [58,59].To further gain insight of the mechanism about electrocatalysis of Ru-GDYS material over cycling,anin-situFourier transform-infrared spectroscopy (FT-IR) experiment is also applied.The assembledin-situFT-IR cell is examined by galvanostatic charge-discharge cycling test at 220 μA for 2 h under CO2atmosphere in parallel with FT-IR monitor.The corresponded timevs.voltage curve of the cell during a complete (dis)charge cycling is shown in Fig.4h.In corresponding 2D contour plot,the left side of color bar represents the strong and weak direction of the absorbance (Abs).In the wavenumber of 1400~1450 cm-1,a symmetric evolution in intensity is exhibited,confirming the gradual formation/decomposition of Li2CO3during cycling [60,61].Moreover,thein-situFT-IR spectrum in discharge process from 3.0 V to 2.0 V,an upward broad peak related to Li2CO3arises gradually at about 1420 cm-1(Fig.S15a in Supporting information).Subsequently,the peak of Li2CO3gradually weakens during the charging process and even disappears after full charged (Fig.S15b in Supporting information),suggesting that Li2CO3can be decomposed almost reversibly with the help of Ru-GDYS catalyst.Hence,it obviously proves that the Ru-GDYS catalyst can notably promote the reversible processes and reduce the charge voltage about the Li–CO2cell due to the synergy between Ru nanoparticles and GDYS.

    In summary,we fabricate a highly distributed Ru nanoparticles anchored on GDY scaffold as advanced electrocatalyst for highperformance Li–CO2battery.GDY scaffold with a great part of acetylenic bonds and special pores,not only possesses a splendid ability for metal adsorption but also has sufficient space for Li2CO3production and decomposition.The prepared Ru-GDYS composite has the advantages of high-efficiency active sites,fast kinetic behavior of CO2ER/CO2RR and excellent structure,which greatly enhances CO2conversion property in terms of capacity,voltage gap and rate capability.Due to outstanding catalytic activity of Ru-GDYS derived from the structural superiority and efficient modification of electronic structure,the Li–CO2battery has a remarkable rate capacity of reserving 8873 mAh/g at 2 A/g,great cycling performance of 120 cycles with a narrow overpotential below 1.67 V,low charge voltage of 3.61 V at initial cycle as well as a high coulombic efficiency of 97.6% at 500 mA/g.Ex/in-situtechnologies prove that the synergy between Ru nanoparticles and acetylene bonds of GDYS can greatly boost the CO2ER/CO2RR property of Ru-GDYS and further accelerate the reversible generation and decomposition of Li2CO3in Li–CO2battery.This work supplies new insights on design of highly efficient cathode catalysts in the field of metal air battery and beyond.

    Declaration of competing interest

    The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

    Acknowledgments

    This work was supported by the National Natural Science Foundation of China (Nos.21971132 and 52072197),Outstanding Youth Foundation of Shandong Province,China (No.ZR2019JQ14),Youth Innovation and Technology Foundation of Shandong Higher Education Institutions,China (No.2019KJC004),Major Scientific and Technological Innovation Project (No.2019JZZY020405),Major Basic Research Program of Natural Science Foundation of Shandong Province (No.ZR2020ZD09),Taishan Scholar Young Talent Program(No.tsqn201909114),the Key Laboratory of Resource Chemistry,Ministry of Education (No.KLRC_ME2101),Scientific and Technological Innovation Promotion Project for Small-medium Enterprises of Shandong Province (No.2022TSGC1257),Major Research Program of Jining City (No.2020ZDZP024) and The 111 Project of China (No.D20017).

    Supplementary materials

    Supplementary material associated with this article can be found,in the online version,at doi:10.1016/j.cclet.2023.108352.

    精品人妻偷拍中文字幕| av在线观看视频网站免费| 久久久成人免费电影| 日韩成人av中文字幕在线观看| 精品欧美国产一区二区三| 久久久久久久久久久丰满| av在线亚洲专区| 亚洲精品乱码久久久久久按摩| www.色视频.com| 日日干狠狠操夜夜爽| 日韩 亚洲 欧美在线| 免费少妇av软件| 欧美区成人在线视频| 91av网一区二区| 久久精品综合一区二区三区| 亚洲国产色片| 波多野结衣巨乳人妻| 三级国产精品欧美在线观看| 日韩av免费高清视频| 亚洲欧美清纯卡通| 日韩视频在线欧美| 日韩人妻高清精品专区| 嫩草影院精品99| 99久国产av精品国产电影| 亚洲国产精品国产精品| 亚洲电影在线观看av| 亚洲国产av新网站| 大片免费播放器 马上看| 中文字幕亚洲精品专区| 网址你懂的国产日韩在线| 日本午夜av视频| 免费看美女性在线毛片视频| 女的被弄到高潮叫床怎么办| 伊人久久精品亚洲午夜| 97人妻精品一区二区三区麻豆| 青春草亚洲视频在线观看| 少妇人妻精品综合一区二区| 免费看不卡的av| 男女啪啪激烈高潮av片| 搡老乐熟女国产| 午夜激情欧美在线| 国产伦一二天堂av在线观看| eeuss影院久久| 免费观看性生交大片5| 99热这里只有是精品在线观看| 国产淫语在线视频| 汤姆久久久久久久影院中文字幕 | 久久精品国产亚洲av天美| 国产一区二区三区综合在线观看 | 亚洲精品亚洲一区二区| 99九九线精品视频在线观看视频| 蜜桃亚洲精品一区二区三区| 日韩国内少妇激情av| 国产黄频视频在线观看| 久久精品久久精品一区二区三区| 午夜精品国产一区二区电影 | 身体一侧抽搐| 久久精品综合一区二区三区| 国产一级毛片在线| 看非洲黑人一级黄片| 亚洲av电影在线观看一区二区三区 | 精品久久久久久久久av| 日韩一区二区三区影片| 看免费成人av毛片| 久久这里只有精品中国| 亚洲最大成人手机在线| 免费av观看视频| 男人舔奶头视频| 久久久精品94久久精品| 中文乱码字字幕精品一区二区三区 | 国产三级在线视频| 亚洲国产精品成人综合色| 午夜福利成人在线免费观看| 夜夜看夜夜爽夜夜摸| 国产精品一及| 熟女人妻精品中文字幕| 欧美人与善性xxx| av免费观看日本| 69人妻影院| 亚洲国产成人一精品久久久| 国产熟女欧美一区二区| 日韩三级伦理在线观看| 免费黄色在线免费观看| 成人高潮视频无遮挡免费网站| 最新中文字幕久久久久| 亚洲va在线va天堂va国产| 在线观看人妻少妇| 天天躁夜夜躁狠狠久久av| 激情五月婷婷亚洲| 欧美丝袜亚洲另类| 国产白丝娇喘喷水9色精品| 婷婷六月久久综合丁香| 午夜福利视频1000在线观看| 国产又色又爽无遮挡免| 欧美日韩在线观看h| 一夜夜www| 亚洲精品国产av蜜桃| 久久久久久久久久久免费av| 中文精品一卡2卡3卡4更新| 久久国内精品自在自线图片| 80岁老熟妇乱子伦牲交| 91aial.com中文字幕在线观看| 少妇裸体淫交视频免费看高清| 免费看日本二区| 三级经典国产精品| 亚洲自偷自拍三级| 麻豆av噜噜一区二区三区| 熟妇人妻久久中文字幕3abv| 亚洲国产精品专区欧美| 在线免费十八禁| 久久久精品免费免费高清| 亚洲av国产av综合av卡| 久久精品久久精品一区二区三区| 真实男女啪啪啪动态图| 亚洲欧美精品专区久久| 午夜福利在线观看吧| 久久久a久久爽久久v久久| 国产免费一级a男人的天堂| 欧美另类一区| 九九爱精品视频在线观看| 三级男女做爰猛烈吃奶摸视频| 亚洲自偷自拍三级| 又爽又黄无遮挡网站| 久久久久久久久久久免费av| 国产亚洲午夜精品一区二区久久 | kizo精华| 国产伦精品一区二区三区视频9| 日韩欧美精品免费久久| 亚洲欧美成人精品一区二区| 国内揄拍国产精品人妻在线| 国产人妻一区二区三区在| av在线亚洲专区| 久久久久精品久久久久真实原创| av女优亚洲男人天堂| 少妇的逼水好多| 欧美日韩在线观看h| 亚洲婷婷狠狠爱综合网| 天堂av国产一区二区熟女人妻| 街头女战士在线观看网站| 两个人视频免费观看高清| 精品久久久久久久久久久久久| 国内精品美女久久久久久| 淫秽高清视频在线观看| 极品少妇高潮喷水抽搐| 汤姆久久久久久久影院中文字幕 | 亚洲无线观看免费| 国产成人免费观看mmmm| 国产视频内射| 精品不卡国产一区二区三区| 免费不卡的大黄色大毛片视频在线观看 | 成年版毛片免费区| 精品久久国产蜜桃| 亚洲av电影不卡..在线观看| 纵有疾风起免费观看全集完整版 | 成年女人在线观看亚洲视频 | 69av精品久久久久久| 观看免费一级毛片| 免费看a级黄色片| 91精品伊人久久大香线蕉| 国产高清三级在线| 日韩欧美精品v在线| 大片免费播放器 马上看| 联通29元200g的流量卡| 哪个播放器可以免费观看大片| 一级毛片我不卡| 小蜜桃在线观看免费完整版高清| 久久久成人免费电影| 国产精品一区www在线观看| 99re6热这里在线精品视频| 99热网站在线观看| 国产亚洲一区二区精品| 精品国产露脸久久av麻豆 | 十八禁国产超污无遮挡网站| 黄片无遮挡物在线观看| 丰满少妇做爰视频| 亚洲性久久影院| 国产成人91sexporn| 国产精品一区www在线观看| 日本熟妇午夜| 欧美另类一区| 免费黄频网站在线观看国产| 亚洲精品久久久久久婷婷小说| 欧美成人a在线观看| 美女被艹到高潮喷水动态| 少妇人妻一区二区三区视频| 能在线免费观看的黄片| 欧美区成人在线视频| 日韩强制内射视频| 久久精品国产鲁丝片午夜精品| 天天躁夜夜躁狠狠久久av| 两个人视频免费观看高清| 成人美女网站在线观看视频| 热99在线观看视频| 国产乱来视频区| 网址你懂的国产日韩在线| 日本猛色少妇xxxxx猛交久久| 免费看日本二区| 国产午夜福利久久久久久| 国产精品女同一区二区软件| 老师上课跳d突然被开到最大视频| 午夜日本视频在线| 国产成人精品福利久久| 又粗又硬又长又爽又黄的视频| 国产单亲对白刺激| 麻豆久久精品国产亚洲av| 视频中文字幕在线观看| 乱码一卡2卡4卡精品| 国产精品国产三级专区第一集| 大片免费播放器 马上看| 精品久久久久久久人妻蜜臀av| 美女主播在线视频| 国产成人aa在线观看| 伦理电影大哥的女人| 国产国拍精品亚洲av在线观看| 男人狂女人下面高潮的视频| 久久精品人妻少妇| 国产精品久久视频播放| 久久久久国产网址| 亚洲最大成人av| 尤物成人国产欧美一区二区三区| 国产极品天堂在线| 高清欧美精品videossex| 久久久久免费精品人妻一区二区| 男女下面进入的视频免费午夜| 在线免费十八禁| 白带黄色成豆腐渣| 一个人免费在线观看电影| 国产色婷婷99| 久久久成人免费电影| 三级国产精品片| 国产精品久久久久久久电影| 久久6这里有精品| 成人美女网站在线观看视频| 国产成人91sexporn| 日本黄色片子视频| 亚洲精品乱码久久久久久按摩| 欧美xxxx黑人xx丫x性爽| 午夜免费男女啪啪视频观看| 国产av不卡久久| 欧美极品一区二区三区四区| 黄片无遮挡物在线观看| 精品欧美国产一区二区三| 国产毛片a区久久久久| 麻豆国产97在线/欧美| 精品久久久久久成人av| 深夜a级毛片| 五月天丁香电影| 三级经典国产精品| 69人妻影院| 精品久久久久久久人妻蜜臀av| www.色视频.com| 啦啦啦啦在线视频资源| 亚洲精品自拍成人| 在线 av 中文字幕| 国产av码专区亚洲av| 免费大片18禁| 国产成人午夜福利电影在线观看| 日韩三级伦理在线观看| 又爽又黄a免费视频| 国产精品无大码| 国产人妻一区二区三区在| 夫妻性生交免费视频一级片| 久久6这里有精品| 免费看不卡的av| 亚洲18禁久久av| 精品久久久久久成人av| av国产免费在线观看| 国产成人精品久久久久久| 久久精品久久久久久噜噜老黄| 国产麻豆成人av免费视频| 全区人妻精品视频| 国产精品久久视频播放| 网址你懂的国产日韩在线| 99九九线精品视频在线观看视频| 人人妻人人看人人澡| 五月玫瑰六月丁香| 最近最新中文字幕大全电影3| 3wmmmm亚洲av在线观看| 超碰97精品在线观看| 国产爱豆传媒在线观看| 国产精品熟女久久久久浪| 三级经典国产精品| 视频中文字幕在线观看| 看黄色毛片网站| 五月玫瑰六月丁香| 国产乱人偷精品视频| 91av网一区二区| 99热全是精品| 午夜福利高清视频| 午夜福利视频1000在线观看| 国产熟女欧美一区二区| 性色avwww在线观看| 免费大片黄手机在线观看| 日韩强制内射视频| 午夜免费男女啪啪视频观看| 欧美另类一区| 国产在线男女| 有码 亚洲区| 亚洲天堂国产精品一区在线| 国产精品久久久久久精品电影| 欧美 日韩 精品 国产| 婷婷色麻豆天堂久久| 麻豆成人午夜福利视频| 你懂的网址亚洲精品在线观看| 亚洲aⅴ乱码一区二区在线播放| 国产伦在线观看视频一区| 亚洲av成人av| 国产日韩欧美在线精品| 久久99热这里只有精品18| 特大巨黑吊av在线直播| 国产精品国产三级专区第一集| 成人性生交大片免费视频hd| 中文天堂在线官网| 久久久久网色| 国产有黄有色有爽视频| 日本一二三区视频观看| 在线天堂最新版资源| 性插视频无遮挡在线免费观看| 久久久久久久久久成人| 综合色丁香网| 亚洲,欧美,日韩| 搡老乐熟女国产| 国产欧美日韩精品一区二区| 国产黄a三级三级三级人| 又黄又爽又刺激的免费视频.| 又大又黄又爽视频免费| 欧美高清性xxxxhd video| 五月伊人婷婷丁香| 午夜精品国产一区二区电影 | 一级毛片 在线播放| 久久久久久久国产电影| 少妇被粗大猛烈的视频| 午夜精品国产一区二区电影 | 国产欧美另类精品又又久久亚洲欧美| 十八禁国产超污无遮挡网站| 亚洲18禁久久av| 免费黄频网站在线观看国产| 国产精品人妻久久久影院| 国产在视频线在精品| 热99在线观看视频| 国产乱人偷精品视频| 婷婷六月久久综合丁香| 又爽又黄a免费视频| 久久这里只有精品中国| av黄色大香蕉| 色吧在线观看| 国产高清三级在线| 亚洲av成人av| 久久久精品免费免费高清| 床上黄色一级片| 免费观看精品视频网站| 国产精品日韩av在线免费观看| 中文字幕久久专区| 久久久久久国产a免费观看| 可以在线观看毛片的网站| 九色成人免费人妻av| 免费黄频网站在线观看国产| 97人妻精品一区二区三区麻豆| 男人爽女人下面视频在线观看| 寂寞人妻少妇视频99o| 校园人妻丝袜中文字幕| a级一级毛片免费在线观看| 国产精品一区二区三区四区久久| 中文字幕久久专区| 丰满乱子伦码专区| 看黄色毛片网站| 狂野欧美激情性xxxx在线观看| 午夜免费男女啪啪视频观看| 欧美一区二区亚洲| 日韩,欧美,国产一区二区三区| 免费观看性生交大片5| 伊人久久精品亚洲午夜| 男女视频在线观看网站免费| 精品国产露脸久久av麻豆 | 看十八女毛片水多多多| videossex国产| 精品国产一区二区三区久久久樱花 | 两个人的视频大全免费| 熟女人妻精品中文字幕| 亚洲真实伦在线观看| 麻豆av噜噜一区二区三区| 黄片无遮挡物在线观看| 国产91av在线免费观看| 色综合亚洲欧美另类图片| 中文在线观看免费www的网站| 国产成人91sexporn| 乱码一卡2卡4卡精品| 日韩大片免费观看网站| 国产淫语在线视频| or卡值多少钱| 精品少妇黑人巨大在线播放| 男女视频在线观看网站免费| 全区人妻精品视频| 成人av在线播放网站| 国产永久视频网站| 亚洲av免费高清在线观看| 我的老师免费观看完整版| 久久久久网色| 国产极品天堂在线| 一级av片app| av国产免费在线观看| 99热这里只有精品一区| 色吧在线观看| 国产欧美日韩精品一区二区| 听说在线观看完整版免费高清| 国产精品不卡视频一区二区| 91在线精品国自产拍蜜月| 免费无遮挡裸体视频| 国模一区二区三区四区视频| 身体一侧抽搐| 99热全是精品| 精品久久久久久久久亚洲| 熟妇人妻不卡中文字幕| 免费不卡的大黄色大毛片视频在线观看 | 五月伊人婷婷丁香| 伊人久久国产一区二区| 国产av不卡久久| 少妇的逼水好多| 超碰av人人做人人爽久久| 亚洲最大成人中文| 亚洲婷婷狠狠爱综合网| 国产精品一区二区性色av| 久99久视频精品免费| 国产精品国产三级专区第一集| 成人二区视频| 国产精品久久久久久精品电影| 日本一本二区三区精品| 久久久久久久午夜电影| 国产探花极品一区二区| 亚洲高清免费不卡视频| 国产一级毛片七仙女欲春2| 成人性生交大片免费视频hd| 国产午夜精品久久久久久一区二区三区| 欧美日韩亚洲高清精品| 色吧在线观看| 欧美变态另类bdsm刘玥| 啦啦啦中文免费视频观看日本| 亚洲av二区三区四区| 最近手机中文字幕大全| 亚洲精品自拍成人| 国产一级毛片在线| 久久久久久久久大av| 欧美97在线视频| or卡值多少钱| 白带黄色成豆腐渣| 亚洲av免费高清在线观看| 男女边摸边吃奶| 国产精品伦人一区二区| 国产伦精品一区二区三区视频9| 十八禁国产超污无遮挡网站| 精品一区在线观看国产| 久久久久国产网址| 免费观看的影片在线观看| 久久久久久九九精品二区国产| 韩国高清视频一区二区三区| 看十八女毛片水多多多| 免费观看a级毛片全部| 亚洲av不卡在线观看| 国产伦精品一区二区三区视频9| 国产精品麻豆人妻色哟哟久久 | 国产成人精品福利久久| 禁无遮挡网站| 亚洲精品久久久久久婷婷小说| 欧美 日韩 精品 国产| 日日撸夜夜添| 国产激情偷乱视频一区二区| 在线观看美女被高潮喷水网站| 黄色日韩在线| 成人av在线播放网站| 中文欧美无线码| 内地一区二区视频在线| 亚洲国产欧美在线一区| 欧美日本视频| 男女视频在线观看网站免费| 亚洲精品aⅴ在线观看| 麻豆精品久久久久久蜜桃| 欧美bdsm另类| 欧美97在线视频| 欧美性感艳星| 美女脱内裤让男人舔精品视频| 国产成人aa在线观看| 免费观看a级毛片全部| 国产综合懂色| 精品一区在线观看国产| 三级经典国产精品| 能在线免费观看的黄片| 国产一区二区在线观看日韩| 99热这里只有是精品50| 一级二级三级毛片免费看| 亚洲色图av天堂| 国产精品嫩草影院av在线观看| 亚洲真实伦在线观看| 国产久久久一区二区三区| 国产av不卡久久| 久久久久久久久久成人| 午夜福利视频1000在线观看| 免费看a级黄色片| 久久久久久久久久久丰满| 一级a做视频免费观看| 欧美人与善性xxx| 18禁裸乳无遮挡免费网站照片| 亚洲激情五月婷婷啪啪| 蜜桃久久精品国产亚洲av| 天堂√8在线中文| 一个人看视频在线观看www免费| 欧美成人一区二区免费高清观看| 国产永久视频网站| 成年av动漫网址| 中文精品一卡2卡3卡4更新| 亚洲,欧美,日韩| 婷婷色综合www| 只有这里有精品99| 老师上课跳d突然被开到最大视频| 精品一区在线观看国产| av福利片在线观看| 51国产日韩欧美| 久久久久精品久久久久真实原创| 可以在线观看毛片的网站| 最近中文字幕高清免费大全6| 日本-黄色视频高清免费观看| 三级国产精品片| 久久久久久伊人网av| 国产又色又爽无遮挡免| 欧美xxxx黑人xx丫x性爽| 日韩av在线免费看完整版不卡| 午夜福利成人在线免费观看| 少妇的逼好多水| 日韩国内少妇激情av| 国产精品熟女久久久久浪| 少妇人妻一区二区三区视频| 天堂网av新在线| 国产亚洲最大av| 三级男女做爰猛烈吃奶摸视频| 99热6这里只有精品| 亚洲欧洲国产日韩| 赤兔流量卡办理| 久久韩国三级中文字幕| av网站免费在线观看视频 | 中文欧美无线码| 十八禁国产超污无遮挡网站| 日本免费a在线| 日本黄大片高清| 如何舔出高潮| 一级a做视频免费观看| 国产精品.久久久| 午夜爱爱视频在线播放| 搡女人真爽免费视频火全软件| 欧美变态另类bdsm刘玥| 亚洲国产最新在线播放| 久久99蜜桃精品久久| 国产 一区 欧美 日韩| 青青草视频在线视频观看| av.在线天堂| 欧美3d第一页| xxx大片免费视频| 日本熟妇午夜| 国产精品一区www在线观看| 久久精品夜夜夜夜夜久久蜜豆| a级一级毛片免费在线观看| 大片免费播放器 马上看| 久久久午夜欧美精品| 天堂影院成人在线观看| 欧美一区二区亚洲| 国内精品美女久久久久久| 亚洲av不卡在线观看| 久久久久久国产a免费观看| 老司机影院毛片| 久久久久性生活片| 在线免费观看的www视频| 日韩国内少妇激情av| 久久久久精品性色| 国产伦精品一区二区三区视频9| 97超碰精品成人国产| 禁无遮挡网站| 看非洲黑人一级黄片| 欧美变态另类bdsm刘玥| 插阴视频在线观看视频| 日本色播在线视频| 美女被艹到高潮喷水动态| 久久午夜福利片| 国产极品天堂在线| 一级爰片在线观看| 欧美zozozo另类| 91午夜精品亚洲一区二区三区| 中文字幕人妻熟人妻熟丝袜美| 国产高清国产精品国产三级 | 亚洲经典国产精华液单| 久久久久性生活片| 精品午夜福利在线看| 岛国毛片在线播放| 秋霞在线观看毛片| 亚洲18禁久久av| 三级经典国产精品| 99热这里只有是精品在线观看| xxx大片免费视频| 亚洲色图av天堂| 99热这里只有是精品在线观看| 夫妻午夜视频| 欧美最新免费一区二区三区| 美女高潮的动态| 国产亚洲91精品色在线| 色综合色国产| 国产视频内射| 国产国拍精品亚洲av在线观看| .国产精品久久| 男人狂女人下面高潮的视频| 男女边吃奶边做爰视频| 亚洲成人av在线免费| 亚洲精品456在线播放app| 男女边吃奶边做爰视频| 全区人妻精品视频| 中文字幕免费在线视频6| 青春草亚洲视频在线观看| 午夜福利网站1000一区二区三区| 99久久人妻综合|