• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    The compatibly large nonlinear optical effect and high laser-induced damage threshold in a thiophosphate CsInP2S7 constructed with[P2S7]4- and [InS6]9-

    2024-04-06 06:21:14MengjiaLuoXiaohuiLiXingxingJiangZheshuaiLinZhengyangZhou
    Chinese Chemical Letters 2024年1期

    Mengjia Luo ,Xiaohui Li ,Xingxing Jiang ,Zheshuai Lin ,Zhengyang Zhou

    a Nanchang Key Laboratory of Photoelectric Conversion and Energy Storage Materials,Nanchang Institute of Technology,Nanchang 330099,China

    b Shanghai Institute of Ceramics,Chinese Academy of Sciences,Shanghai 200050,China

    c Functional Crystals Lab,Technical Institute of Physics and Chemistry,Chinese Academy of Sciences,Beijing 100190,China

    d Institute of Experimental Physics,Free University Berlin,Berlin D-14195,Germany

    Keywords: Infrared nonlinear optics materials A novel thiophosphate Structure design Structure-activity relationship High laser-induced damage threshold

    ABSTRACT It is challenging to cooperatively improve the nonlinear optical (NLO) efficiency and the laser-induced damage threshold (LIDT).This work reports a novel IR NLO materials CsInP2S7 (CIPS) designed by combination the strategies of alkali metals substitution and microscopic NLO units PS4 introduction based on AgGaS2.CIPS was composed of strongly distorted [InS6]9- octahedra and [P2S7]4- dimers constructed by corner-sharing [PS4]3-,which increase the NLO efficiency and decrease thermal expansion anisotropy simultaneously.Compared with AgGaS2,CIPS exhibited strong phase matchable NLO response ca. 1.1×AGS@2.1 μm,high LIDT ca. 20.8×AgGaS2,and IR transparency up to 15.3 μm.Structural analysis and theoretical investigation confirmed that large SHG effect and ultrahigh LIDT of CIPS originated from the synergistic contribution of [InS6]9- octahedra and [P2S7]4- dimers.These results indicate that CIPS is a promising NLO candidate in the mid-IR region,and this study provides a new approach for developing potential NLO-LIDT compatible materials.

    To release medical diagnostics,atmospheric detection,laser guidance and laser telecommunications,coherent tunable lasers in the mid-IR region (2–20 μm) are very necessary [1,2].Infrared nonlinear optical (IR NLO) materials can convert near IR light to mid-IR bandviafrequency down-conversion,which play important roles in solid state laser technology [3].However,the commercially available middle-IR (MIR) NLO crystals are relatively rare.Notably,AgGaS2(AGS),AgGaSe2and ZnGeP2,featuring large NLO coeffi-cients,are the only available commercial IR NLO materials [4–6].Nonetheless,they still suffer from intrinsic defects such as harmful two-photon absorption (TPA) of ZnGeP2and low laser-induced damage thresholds (LIDTs) of AGS and AgGaSe2,which severely limit their high-power laser applications.As a result,they cannot achieve a good balance between large second-harmonic generation(SHG) and high LIDT.Therefore,systematic explorations of new IR NLO materials to realize NLO-LIDT compatible have become a research hot-spot.

    Alkali-metal possess high electro-positivity and large ionic radius.When alkali-metal was introduced into a compound,the band gap and local structure distortion of this compound will increase [7,8].Therefore,alkali-metal atoms substitution is a common regulation strategy for IR NLO materials to increase properties,such as Rb10Zn4Sn4S17(NLO response: 0.7×AGS;LIDT:5×AGS) [9].In addition,introduction of NLO active units or complex coordinated functional groups is a good strategy to discover new materials whose NLO efficiencies and LIDTs are balanced [10–19].Among numerous active units,PS4has short P-S bond length and small volume,and PS4units can form other active NLO units such as edge-sharing P2S6[20].Moreover,thiophosphates possess wide IR transparency ranges,such as Hg3P2S8(NLO response: 4.2×AGS@2.09 μm,optical transmitting range: 0.45–16.7 μm),Eu2P2S6(0.9×AGS@2.1 μm,0.49–15.4 μm),AgGa2PS6(1×AGS@2.1 μm,0.60–16.7 μm),thus attracting extensive attention [13,21,22].

    In this work,a new compound CsInP2S7(CIPS) was obtained by combination the strategies of alkali metals substitution and microscopic NLO units PS4introduction based on AgGaS2.Ag+was replaced by Cs+cation and PS4unit was introduced to replace S site.In order to maintain structural stability,In3+cation with flexible coordination number (4,6,and 8) was introduced to coordinate with S atoms of [PS4]3-(Fig.1a).The CIPS exhibits a wide optical transmittance in the range of 0.414–15.3 μm,strong phasematchable NLO responseca.1.1×AGS@2.1 μm,and high LIDTca.20.8×AGS.Through the structural analysis and first-principles calculations,the origin of optical properties from cooperation of the[InS6]9-and [P2S7]4-groups was revealed.It was proposed that alkali metals substitution combined with microscopic NLO units introduction based on known mother materials could be a new method for materials design,which could maintain the original structural framework with large effects and modulate the LIDT performance.

    Fig.1.(a) Schematic diagram of the structural evolution from AgGaS2 to CsInP2S7.(b) 2D [InP2S7]- anionic framework of CIPS,Cs+ cations are filled in the interlayer space.(c) [InP2S11]9- ring in red circle and layer in the ab plane.

    Light yellow plate-like crystals of CIPS were obtained through solid-state reaction with mixture containing In,P2S5,S,and CsCl at 1223 K (see detailed description in Supporting information).The powder X-ray diffraction (PXRD) pattern matches well with the calculated results based on single-crystal XRD analysis (Fig.S1 in Supporting information).The corresponding crystallographic data are summarized in Tables S1–S3 (Supporting information).Energy dispersive spectroscopy (EDS) analysis confirms the presence of Cs,In,P,and S elements with the approximate molar ratio of 1:1:2.02:6.97 (Fig.S2 in Supporting information),which is consistent with the single-crystal XRD analysis.

    CIPS crystallizes in the Non centrosymmetric monoclinic space groupC2 (No.5) and features a 2D [InP2S7]-layer with Cs+cations filled in the interlayer space (Fig.1b).The [InS6]9-octahedra and the [P2S7]4-dimers share S2 atoms to form [InP2S11]9-rings (Fig.1c).The [InP2S11]9-rings connected to another oneviaedge-sharing and then form the 2D [InP2S7]-anionic framework.To maintain charge balance,Cs+cations get filled in the interlayer space.The In-S bond lengths in the [InS6]9-polyhedra range from 2.587(3) ?A to 2.686(3) ?A (Fig.S3a in Supporting information),which are in accordance with CuInP2S6[23].The P-S bond lengths in [P2S7]4-dimers,ranging from 2.007(5) ?A to 2.142(3) ?A (Fig.S3b in Supporting information),are close to those in SnPS3,Zn3P2S8[24,25].The distances between Cs and S in [CsS10]19-polyhedra range from 3.533(3) ?A to 4.062(3) ?A (Fig.S3c in Supporting information),comparable to those in CsVP2S7[26].

    Details of the structure evolution from AGS to CIPS were shown in Fig.S4 (Supporting information).The red-line circled part (A)and blue-line circled part (B) in the structure of CIPS correspond to an infinitely extended [InP2] layer and [CsInP3] layer (Figs.S4b and c),which is highly similar with the red-line circled part (A?)and blue-line circled part (B?) in the structure of AGS,respectively(Figs.S4e and f).Compared with the two isolated four-connected S atoms in AGS,the PS4units in CIPS are linked to form [P2S7]4-dimers due to the introduction of the strongly distorted [InS6]9-octahedron,which makes CIPS with alkali metal inherit the effective framework from AGS,and still brings about the effective superposition of microscopic second-order nonlinear susceptibility.

    The Rietveld refinement against the PXRD patterns of the samples used for SHG response evaluation on dry powder reveals that almost no impurity is involved,and this confirms that the measured result is intrinsic property of CIPS (Fig.2a).According to the TG-DTA result,CIPS starts to lose weight significantly at around 192°C,corresponding to the decomposition (Fig.S5 in Supporting information).CIPS exhibits typical phase-matching behavior,i.e.,a tendency to increase gradually to platform of SHG intensities with the increase in particle size (Fig.2b).The SHG response of pure polycrystalline dry CIPS powder (Fig.2c) was measured using a Qswitch laser (2.1 μm),and AGS was used as the Ref.[27].Moreover,the SHG efficiency of CIPS is ~1.1×AGS at the largest particle size range of 200–250 μm.Such SHG responses are moderate compared with other promising IR-NLO chalcogenides,including LiZnPS4(0.8×AGS),Sn7Br10S2(1.5×AGS),and LaBS3(1.2×AGS)[28–30].Hitherto,some thiophosphates (Table S4 in Supporting information) with good NLO performances were studied.However,most of them are formed with [PS4]3-units and [P2S6]4-dimers,except for Rb2Ga2P2S9(0.1×AGS) with [P2S7]4-dimers [31].

    Fig.2.(a) Rietveld refinement for the powder X-ray diffraction pattern of CIPS.(b) SHG signals of CIPS and AGS for particle sizes of 200–250 μm.(c) The size-dependent SHG responses of CIPS and AGS when irradiated by a 2.1 μm laser.(d) UV–vis–NIR diffuse reflectance spectra and FT-IR spectra for CIPS.

    The experimentalEgof CIPS was deduced from the UV–vis–NIR transmittance spectrum to be 3.0 eV (Fig.2d),larger than that of the commercial AGS (2.56 eV) and enough to get away from the drawback of TPA (2.33 eV,532 nm).The IR cutoff edge of CIPS was verified by IR transmittance spectra,and it was measured to be about 15.3 μm,which covers two atmospheric windows of 3–5 and 8–12 μm.Several absorption peaks are present at 8–11 μm in the IR transmittance spectra,which is possibly caused by multi-phonon absorption and the similar phenomenon is also found in Hg3P2S8and CuZnPS4.Therefore,CIPS shows a transparency of 0.414–15.3 μm,superior to that of the commercial mid-IR NLO crystals of AGS (0.48–11.4 μm) and similar to the other reported thiophosphates,such as CuHgPS4(0.54–16.7 μm)and CuZnPS4(0.43–16.5 μm) [21,32,33].

    Corresponding to the larger band gap,the LIDT is always higher.Through the evaluation of LIDT,CIPS shows 20.8 times higher LIDT than AGS (Table S5 in Supporting information),which is consistent with the general observation that theEgand LIDT are somewhat positively correlated.Apart from the influence of band gap,materials with a smaller thermal expansion anisotropy (TEA) could suffer greater thermal shock due to the temperature increase under laser irradiation and exhibits higher LIDT [34].Fig.3a shows the unit-cell variations in parameters of CIPS as a function of temperature byin situPXRD characterization in the range of 293–473 K.Based on these data,the TEA of CIPS (0.84) is smaller than that of AGS (1.60) (Table 1).According to the above-mentioned structural analysis,the two S sites in AGS are isolated without interaction,so that AGS exhibits negative thermal expansion (NTE) behaviors alongcdirection.However,in CIPS,the S sites are replaced with two [PS4]3-units linked with S to form [P2S7]4-dimers and possesses the interaction alongadirection,which prevents CIPS to have NTE capability and reduces the TEA of CIPS,leading to significant increase in LIDT value.The LIDT of CIPS is better than or comparable with those of the recently reported distinguished IR-NLO chalcogenides,such as SnI4·(S8)2(16.4×AGS),Ga2Se3(16.7×AGS),and Na2Ga2GeS6(18.1×AGS) [35–37].Such an ultrahigh LIDT indicates that CIPS may undergo high-power laser radiation and may offer potential application prospects in the laser frequency conversion system.Overall,comparison among NLO thiophosphates (Fig.3b) indicates that CIPS is a promising IR NLO candidate.

    Table 1 Thermal expansion coefficients αL (× 10–5 K-1) of the a, b,and c axis,and the thermal expansion anisotropy.

    Fig.3.(a) Comparison of LIDT among NLO thiophosphates.(b) Temperature-dependent lattice parameters of CIPS.

    To better understanding the relationships between structure and property of CIPS,first-principles theoretical calculations,including electronic structure,density of states (DOSs),and optical property were performed.CIPS is an indirect band gap semiconductor with a band gap of 2.01 eV based on theoretical calculation result (Fig.4a).The simulated value is slightly smaller than that of the measured value (3.0 eV) originating from the intrinsic drawbacks of the PBE functional.Fig.4b exhibits the total density of state (TDOS) and the partial density of state (PDOS) curves.The upper region of valence bands (VBs) is primarily derived from P 3p,S 3p,and In 4p orbitals,while the bottom part of conduction bands (CBs) mainly consists of P 3s3p,S 3p,and In 4s orbitals.It indicates the existence of strong covalent interactions among In,P,and S atoms.This result reveals that the electronic states close to the Fermi level are mainly contributed by [InS6]9-and [P2S7]4-units.The optical property of a crystal principally arises from the electron transition across the forbidden bands,as a result,the SHG efficiency mainly originates from synergistic interactions between[InS6]9-and disordered [P2S7]4-units.

    Fig.4.Theoretical calculation results for CIPS.(a) Band structure.(b) The TDOS and PDOS of CIPS.(c) SHG-density maps of CIPS.(d) Calculated birefringence curve.

    CIPS crystallizes in theC2 space group and exhibits four (χ14,χ21,χ22,andχ23) independent non-zero SHG tensors according to the Kleinman’s symmetry rule.The SHG tensorsχ14,χ21,χ22andχ23were calculated to be 16.43,20.19,16.89,and -4.74 pm/V,respectively,which agree well with the results of SHG measurement.To unveil the main contribution in generating the SHG effect,the SHG-density analysis was conducted.Fig.4c and Fig.S6 (Supporting information) exhibit that SHG-weighted electronic clouds are mostly localized on [InS6]9-and [P2S7]4-units,while no SHG density occurs around Cs+cations.It confirms that the SHG response originates from the [InS6]9-and [P2S7]4-units,matching the conclusion of electronic structure analysis.The birefringence indexΔnof CIPS are 0.10@1064 nm and 0.094@2100 nm (Fig.4d),which meets the requirements of moderate birefringenceΔn(~0.03–0.10) [39].Noteworthy,this moderateΔncould achieve its phase matching capacity in the mid-IR region,which is consistent with the experimental results.

    Simultaneously,the structure of CIPS (1.1×AGS) is comparable with that of Rb2Ga2P2S9(0.1×AGS),which also contains [P2S7]4-dimers,thus it can be used to better comprehend the role of geometry distortion of [InS6]9-and [P2S7]4-dimers to improve NLO properties.Herein,it is observed that the basic unit of Rb2Ga2P2S9is a derivative adamantane-like [Ga2P2S10]4-cluster,which is the combination of two [GaS4]5-tetrahedron and [P2S7]4-dimer (Fig.S7 in Supporting information).It is found that [P2S7]4-dimers adopt a highly twisted conformation in the CIPS (29.347°) due to the increase in coordination of In3+inducing the torsion of [PS4]3-unit (Fig.S8 in Supporting information).The large calculated dipole moments of [InS6]9-octahedra and [PS4]3-tetrahedral in CIPS also prove the strong geometry distortion (Table S6 in Supporting information).Combination of theoretical calculations and structure analysis shows that the coupling of strong distortion [InS6]9-octahedron and highly twisted [P2S7]4-dimers in CIPS significantly contributes to SHG response.It is similar with the situation that the more distorted [P2O7]4-dimers in the high-temperature phase of RbNaMgP2O7exhibit larger SHG response than that in the lowtemperature phase [40].

    In summary,CIPS was obtained through high-temperature solid-state method.CIPS is a potential NLO material with balanced performance in the MIR region,which is well verified by the experimental results,including a strong phase-matchable SHG response of 1.1×AGS,and large laser-induced damage threshold of 20.8×AGS.Structural analysis and theoretical calculations results show that the coupling of [InS6]9-octahedra and [P2S7]4-dimers make a synergistic contribution to the superior NLO performance.Alkali-metal ion Cs+enlarge the band gap and the interaction between [InS6]9-and [P2S7]4-reduce the TEA,which leads to the large LIDTs.This study coupled multiple strategies and design a potential high-performance thiophosphates CIPS,which provide new means for the design of NLO-LIDT compatible materials.

    Declaration of competing interest

    The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

    Acknowledgment

    This work was financially supported by the Natural Science Foundation of China (No.22105218).

    Supplementary materials

    Supplementary material associated with this article can be found,in the online version,at doi:10.1016/j.cclet.2023.109108.

    大片电影免费在线观看免费| 制服丝袜香蕉在线| 人妻一区二区av| 999精品在线视频| 欧美3d第一页| 一级毛片电影观看| 国产黄色免费在线视频| 在线观看一区二区三区激情| 欧美性感艳星| 国产在线免费精品| a级毛色黄片| 黄色怎么调成土黄色| .国产精品久久| 99热6这里只有精品| 久久久精品94久久精品| 天天操日日干夜夜撸| 婷婷成人精品国产| 简卡轻食公司| 一本色道久久久久久精品综合| 大又大粗又爽又黄少妇毛片口| 亚洲精品国产av成人精品| 我的女老师完整版在线观看| 五月开心婷婷网| 久久精品国产亚洲av天美| 久久久久久久精品精品| 国产精品免费大片| 免费观看av网站的网址| 欧美xxxx性猛交bbbb| 久久韩国三级中文字幕| 曰老女人黄片| 下体分泌物呈黄色| 男人爽女人下面视频在线观看| 精品久久久精品久久久| 国产av国产精品国产| 国产男女超爽视频在线观看| 亚洲国产日韩一区二区| 久久国产精品男人的天堂亚洲 | 精品人妻一区二区三区麻豆| 国产成人精品在线电影| 久久久久久久久大av| 亚洲,一卡二卡三卡| 久久久精品区二区三区| 精品人妻熟女毛片av久久网站| 最新的欧美精品一区二区| 国产精品三级大全| 亚洲国产色片| 考比视频在线观看| 国产黄色免费在线视频| 免费观看性生交大片5| 韩国av在线不卡| 精品人妻在线不人妻| 久久人妻熟女aⅴ| 亚洲av.av天堂| 热re99久久国产66热| 纯流量卡能插随身wifi吗| 日日摸夜夜添夜夜添av毛片| 国产精品无大码| 狂野欧美激情性xxxx在线观看| 丝袜脚勾引网站| 男女无遮挡免费网站观看| 免费观看av网站的网址| 免费久久久久久久精品成人欧美视频 | av播播在线观看一区| 激情五月婷婷亚洲| 韩国高清视频一区二区三区| 精品少妇黑人巨大在线播放| 婷婷色综合大香蕉| 一区二区三区乱码不卡18| 蜜桃久久精品国产亚洲av| 国产欧美亚洲国产| 美女国产视频在线观看| 国产老妇伦熟女老妇高清| 丝袜喷水一区| 亚洲精品aⅴ在线观看| 国产精品人妻久久久影院| 高清欧美精品videossex| 午夜福利视频在线观看免费| 人妻夜夜爽99麻豆av| 又粗又硬又长又爽又黄的视频| 一本大道久久a久久精品| 18禁动态无遮挡网站| 伊人久久国产一区二区| 国产有黄有色有爽视频| 久久99蜜桃精品久久| 日本猛色少妇xxxxx猛交久久| 久久久久网色| 亚洲无线观看免费| 精品国产乱码久久久久久小说| 最近中文字幕高清免费大全6| 日本黄色片子视频| 性高湖久久久久久久久免费观看| 美女国产视频在线观看| 久久久久网色| 在线播放无遮挡| 日本与韩国留学比较| 黄色怎么调成土黄色| 特大巨黑吊av在线直播| 人体艺术视频欧美日本| 一边亲一边摸免费视频| 狂野欧美激情性bbbbbb| 欧美老熟妇乱子伦牲交| 日韩精品有码人妻一区| 亚洲欧美清纯卡通| 少妇的逼水好多| 久久99精品国语久久久| 18禁在线播放成人免费| 中文字幕制服av| 欧美激情极品国产一区二区三区 | 亚洲精品av麻豆狂野| 自线自在国产av| 欧美日韩综合久久久久久| 亚洲av.av天堂| 一本大道久久a久久精品| 久久狼人影院| 日韩av不卡免费在线播放| 久久久久人妻精品一区果冻| 飞空精品影院首页| 欧美三级亚洲精品| 男女高潮啪啪啪动态图| 亚洲成人一二三区av| 黄色一级大片看看| xxx大片免费视频| 日韩 亚洲 欧美在线| 国产又色又爽无遮挡免| 日本wwww免费看| 欧美日韩国产mv在线观看视频| 日本欧美视频一区| 日本与韩国留学比较| 国产av国产精品国产| 久久精品国产a三级三级三级| 中文字幕人妻丝袜制服| 日韩成人av中文字幕在线观看| 九九爱精品视频在线观看| 你懂的网址亚洲精品在线观看| 九色成人免费人妻av| 最近的中文字幕免费完整| 久久久久久久久久成人| 我的女老师完整版在线观看| 精品人妻熟女av久视频| 在线精品无人区一区二区三| 精品午夜福利在线看| 精品人妻熟女av久视频| 人人妻人人澡人人爽人人夜夜| 亚洲精品色激情综合| 水蜜桃什么品种好| 人人妻人人澡人人爽人人夜夜| 五月玫瑰六月丁香| 国产日韩欧美视频二区| 亚洲人成77777在线视频| 大码成人一级视频| 国产精品蜜桃在线观看| 三级国产精品欧美在线观看| 国产精品一区二区在线不卡| 老女人水多毛片| 美女大奶头黄色视频| 欧美性感艳星| 在线观看一区二区三区激情| 国产精品国产三级专区第一集| 啦啦啦视频在线资源免费观看| 丝袜喷水一区| 一区在线观看完整版| 丰满少妇做爰视频| a级片在线免费高清观看视频| 少妇丰满av| 春色校园在线视频观看| 午夜免费男女啪啪视频观看| 国产极品粉嫩免费观看在线 | 亚洲中文av在线| 成人国产麻豆网| 在线 av 中文字幕| 免费大片黄手机在线观看| 爱豆传媒免费全集在线观看| 国产一级毛片在线| 亚洲第一区二区三区不卡| 国产高清国产精品国产三级| 成年av动漫网址| 制服丝袜香蕉在线| 黄色毛片三级朝国网站| 日韩欧美一区视频在线观看| 亚洲美女视频黄频| 国产精品熟女久久久久浪| 亚洲精品一二三| 又大又黄又爽视频免费| 亚洲精品成人av观看孕妇| 日本黄色日本黄色录像| 国产精品欧美亚洲77777| 亚洲精品456在线播放app| 成人免费观看视频高清| 啦啦啦在线观看免费高清www| 九色亚洲精品在线播放| 久久精品人人爽人人爽视色| 亚洲欧洲精品一区二区精品久久久 | 中国美白少妇内射xxxbb| 久久久久精品久久久久真实原创| a 毛片基地| 日本黄色日本黄色录像| av一本久久久久| 中文字幕免费在线视频6| 国产免费福利视频在线观看| 亚洲精品av麻豆狂野| 精品视频人人做人人爽| 人人妻人人澡人人看| 亚洲欧美中文字幕日韩二区| 国产探花极品一区二区| 自拍欧美九色日韩亚洲蝌蚪91| 日本黄色片子视频| 成人毛片60女人毛片免费| 天美传媒精品一区二区| 国产淫语在线视频| 亚洲综合色惰| 日本黄色片子视频| 久久免费观看电影| 日日摸夜夜添夜夜爱| 男人添女人高潮全过程视频| 最新中文字幕久久久久| 曰老女人黄片| 国产av码专区亚洲av| 黑人猛操日本美女一级片| 亚洲图色成人| 国产精品偷伦视频观看了| 精品久久久精品久久久| 日日摸夜夜添夜夜添av毛片| 日韩中文字幕视频在线看片| 亚洲人成网站在线播| 男女免费视频国产| av国产久精品久网站免费入址| 欧美变态另类bdsm刘玥| 搡女人真爽免费视频火全软件| 美女国产高潮福利片在线看| 大又大粗又爽又黄少妇毛片口| 亚洲一区二区三区欧美精品| 91精品国产国语对白视频| 欧美丝袜亚洲另类| 欧美精品一区二区大全| av卡一久久| 国产午夜精品一二区理论片| 爱豆传媒免费全集在线观看| 亚洲美女搞黄在线观看| 一区在线观看完整版| 亚洲精品日本国产第一区| 国产一区二区三区综合在线观看 | 亚洲av免费高清在线观看| 99re6热这里在线精品视频| 18禁裸乳无遮挡动漫免费视频| 国产69精品久久久久777片| 欧美日韩一区二区视频在线观看视频在线| 免费观看性生交大片5| 99久久精品一区二区三区| 搡女人真爽免费视频火全软件| 在线免费观看不下载黄p国产| 久久久国产精品麻豆| 丰满乱子伦码专区| 黄色欧美视频在线观看| 99热网站在线观看| 中文字幕亚洲精品专区| 亚洲av中文av极速乱| 99久久精品国产国产毛片| 国产探花极品一区二区| 18禁在线播放成人免费| 午夜影院在线不卡| 国产伦精品一区二区三区视频9| 秋霞在线观看毛片| 国产男女超爽视频在线观看| 国产成人av激情在线播放 | 国产精品秋霞免费鲁丝片| 国产成人aa在线观看| 欧美日韩综合久久久久久| 精品少妇久久久久久888优播| 一个人免费看片子| 69精品国产乱码久久久| 超碰97精品在线观看| 夜夜看夜夜爽夜夜摸| av国产精品久久久久影院| 午夜免费观看性视频| 少妇人妻久久综合中文| 久久久久久久国产电影| 午夜av观看不卡| 黄色视频在线播放观看不卡| 熟女电影av网| 好男人视频免费观看在线| 亚洲欧美成人精品一区二区| 免费久久久久久久精品成人欧美视频 | 建设人人有责人人尽责人人享有的| 国产av码专区亚洲av| 国精品久久久久久国模美| 国产午夜精品一二区理论片| 亚洲综合色网址| 亚洲精品乱码久久久v下载方式| 国产午夜精品久久久久久一区二区三区| 春色校园在线视频观看| 亚洲成人av在线免费| 欧美国产精品一级二级三级| 亚洲三级黄色毛片| 啦啦啦在线观看免费高清www| 九九爱精品视频在线观看| 欧美日韩视频精品一区| 秋霞在线观看毛片| 2022亚洲国产成人精品| 曰老女人黄片| 91久久精品电影网| 国产亚洲精品久久久com| 国产精品.久久久| 在线观看国产h片| 亚洲三级黄色毛片| 精品午夜福利在线看| 97在线人人人人妻| 亚洲美女视频黄频| 18禁观看日本| 日本午夜av视频| 久久久久国产精品人妻一区二区| 免费观看av网站的网址| 国产精品久久久久成人av| 成年人免费黄色播放视频| 成人影院久久| 蜜桃在线观看..| 少妇的逼好多水| 亚洲av成人精品一区久久| 一区二区av电影网| 九九爱精品视频在线观看| 亚洲美女黄色视频免费看| 亚洲欧美一区二区三区国产| 欧美精品人与动牲交sv欧美| a级毛片黄视频| 99精国产麻豆久久婷婷| av国产久精品久网站免费入址| 国产在线免费精品| 国精品久久久久久国模美| 欧美激情国产日韩精品一区| 91久久精品国产一区二区三区| 欧美97在线视频| 久久久久久伊人网av| .国产精品久久| 天堂8中文在线网| 亚洲欧美成人精品一区二区| 成人漫画全彩无遮挡| 亚洲av在线观看美女高潮| 99热国产这里只有精品6| 热re99久久精品国产66热6| 交换朋友夫妻互换小说| 在现免费观看毛片| 午夜福利在线观看免费完整高清在| 亚洲国产最新在线播放| 国产精品一区二区在线观看99| 黄色毛片三级朝国网站| av有码第一页| av卡一久久| 国产欧美亚洲国产| 国产av国产精品国产| 伊人久久精品亚洲午夜| 欧美日韩视频高清一区二区三区二| kizo精华| 欧美性感艳星| 欧美日本中文国产一区发布| 亚洲精品久久午夜乱码| 免费大片黄手机在线观看| 校园人妻丝袜中文字幕| 国产成人精品福利久久| 久久国产亚洲av麻豆专区| 精品人妻熟女毛片av久久网站| 99九九线精品视频在线观看视频| 精品少妇黑人巨大在线播放| 免费观看性生交大片5| 国产成人freesex在线| 成人漫画全彩无遮挡| 中国美白少妇内射xxxbb| 亚洲精品国产色婷婷电影| 一级毛片aaaaaa免费看小| 久久人人爽人人爽人人片va| av专区在线播放| 国产精品免费大片| 午夜视频国产福利| av天堂久久9| 国产精品国产av在线观看| 夫妻午夜视频| 热99久久久久精品小说推荐| 青春草亚洲视频在线观看| 赤兔流量卡办理| 日本猛色少妇xxxxx猛交久久| 日韩精品免费视频一区二区三区 | 日本av手机在线免费观看| 亚洲性久久影院| 国产成人av激情在线播放 | 国产精品三级大全| 国产午夜精品一二区理论片| 久久午夜综合久久蜜桃| 国产成人freesex在线| 亚洲精品久久午夜乱码| 国产成人精品在线电影| 午夜老司机福利剧场| 中文字幕人妻丝袜制服| 日韩亚洲欧美综合| 国产永久视频网站| 日韩一区二区三区影片| 美女主播在线视频| 十八禁高潮呻吟视频| 少妇人妻久久综合中文| 欧美一级a爱片免费观看看| 国产男人的电影天堂91| 国产精品国产av在线观看| 激情五月婷婷亚洲| 亚洲国产精品999| 国产日韩一区二区三区精品不卡 | 国国产精品蜜臀av免费| 蜜桃在线观看..| 制服人妻中文乱码| 一本一本久久a久久精品综合妖精 国产伦在线观看视频一区 | 男的添女的下面高潮视频| 简卡轻食公司| 超色免费av| 在线观看www视频免费| 亚洲精品日韩av片在线观看| 18禁观看日本| 亚洲av.av天堂| av在线老鸭窝| a级毛片免费高清观看在线播放| 国产精品不卡视频一区二区| 久久久久久久精品精品| 欧美最新免费一区二区三区| 免费观看的影片在线观看| 三级国产精品欧美在线观看| 最近2019中文字幕mv第一页| 中文欧美无线码| 如何舔出高潮| 国产成人免费观看mmmm| 欧美97在线视频| 国产片内射在线| 中国美白少妇内射xxxbb| 日本爱情动作片www.在线观看| 人妻制服诱惑在线中文字幕| 精品国产国语对白av| 午夜福利在线观看免费完整高清在| 免费日韩欧美在线观看| 日韩av在线免费看完整版不卡| 99热6这里只有精品| 国产精品一国产av| 国产深夜福利视频在线观看| 亚州av有码| 久久婷婷青草| 亚洲国产精品一区三区| 国产成人精品福利久久| 亚洲综合精品二区| 男女边摸边吃奶| 国产亚洲一区二区精品| 免费播放大片免费观看视频在线观看| 精品亚洲成国产av| 男女高潮啪啪啪动态图| 免费观看的影片在线观看| 久久亚洲国产成人精品v| 中国国产av一级| h视频一区二区三区| 精品午夜福利在线看| av在线app专区| 亚洲欧美成人综合另类久久久| 秋霞在线观看毛片| 日韩一本色道免费dvd| 日本欧美国产在线视频| 国产免费现黄频在线看| 在线观看美女被高潮喷水网站| 欧美变态另类bdsm刘玥| 亚州av有码| 涩涩av久久男人的天堂| 国产 一区精品| 亚洲精品成人av观看孕妇| 精品熟女少妇av免费看| 黄色毛片三级朝国网站| 日日摸夜夜添夜夜添av毛片| 国产精品欧美亚洲77777| 亚洲av成人精品一区久久| 草草在线视频免费看| 婷婷色av中文字幕| 欧美精品一区二区大全| 久久久久网色| 全区人妻精品视频| 亚洲婷婷狠狠爱综合网| 岛国毛片在线播放| 国产成人av激情在线播放 | 22中文网久久字幕| 国语对白做爰xxxⅹ性视频网站| 九草在线视频观看| 日韩免费高清中文字幕av| 欧美精品一区二区大全| 飞空精品影院首页| 成人国语在线视频| 国产精品人妻久久久久久| 午夜免费鲁丝| 人妻制服诱惑在线中文字幕| 青青草视频在线视频观看| 秋霞伦理黄片| √禁漫天堂资源中文www| 免费人成在线观看视频色| av又黄又爽大尺度在线免费看| 成年av动漫网址| 少妇被粗大猛烈的视频| 成人二区视频| 日韩伦理黄色片| 免费黄频网站在线观看国产| 久久ye,这里只有精品| 日本黄色日本黄色录像| 中文字幕精品免费在线观看视频 | 久久久久人妻精品一区果冻| 国产在线免费精品| 亚洲国产精品成人久久小说| 成人午夜精彩视频在线观看| 校园人妻丝袜中文字幕| 亚洲欧美精品自产自拍| 韩国高清视频一区二区三区| 国产伦精品一区二区三区视频9| 亚洲丝袜综合中文字幕| 久久青草综合色| 国产av码专区亚洲av| 狂野欧美激情性bbbbbb| 亚洲美女视频黄频| 亚洲精品久久成人aⅴ小说 | 蜜桃在线观看..| 一二三四中文在线观看免费高清| 亚洲第一区二区三区不卡| 国产精品国产三级国产专区5o| 日韩不卡一区二区三区视频在线| 国产色婷婷99| 国产黄片视频在线免费观看| 日本免费在线观看一区| 国产无遮挡羞羞视频在线观看| 美女国产视频在线观看| 午夜免费男女啪啪视频观看| 亚洲成人手机| 男女啪啪激烈高潮av片| 欧美成人午夜免费资源| 免费久久久久久久精品成人欧美视频 | 欧美精品高潮呻吟av久久| 国产精品三级大全| av有码第一页| 亚洲人与动物交配视频| av福利片在线| 一级毛片aaaaaa免费看小| 日本爱情动作片www.在线观看| 夜夜看夜夜爽夜夜摸| 日本黄色片子视频| 我的女老师完整版在线观看| 欧美激情 高清一区二区三区| 热re99久久国产66热| av网站免费在线观看视频| 久久久久久久国产电影| 精品久久久久久久久av| 国产探花极品一区二区| 成年人午夜在线观看视频| 亚洲熟女精品中文字幕| 男人添女人高潮全过程视频| 亚洲精品久久午夜乱码| 日本黄大片高清| 欧美亚洲日本最大视频资源| 国产欧美另类精品又又久久亚洲欧美| 精品少妇黑人巨大在线播放| 亚洲四区av| 街头女战士在线观看网站| 在线观看人妻少妇| 久久人人爽av亚洲精品天堂| 免费观看av网站的网址| 超碰97精品在线观看| 各种免费的搞黄视频| 在线精品无人区一区二区三| av不卡在线播放| 欧美日韩精品成人综合77777| 日韩视频在线欧美| 国产成人免费无遮挡视频| av网站免费在线观看视频| 黑人巨大精品欧美一区二区蜜桃 | 韩国av在线不卡| 久久久久久久久大av| 欧美激情 高清一区二区三区| 婷婷色综合www| 黄片无遮挡物在线观看| 天天影视国产精品| 啦啦啦中文免费视频观看日本| 亚洲av日韩在线播放| 中文字幕亚洲精品专区| 多毛熟女@视频| 最近中文字幕2019免费版| 99热这里只有是精品在线观看| 国产欧美另类精品又又久久亚洲欧美| 国产探花极品一区二区| 国产精品久久久久久精品电影小说| 3wmmmm亚洲av在线观看| 久久这里有精品视频免费| av国产久精品久网站免费入址| 国产极品天堂在线| 亚洲第一av免费看| 国精品久久久久久国模美| 亚洲精品自拍成人| 精品人妻一区二区三区麻豆| 黄色怎么调成土黄色| 高清黄色对白视频在线免费看| 中文字幕制服av| 狂野欧美激情性xxxx在线观看| 九九在线视频观看精品| 亚洲av综合色区一区| av又黄又爽大尺度在线免费看| 亚洲中文av在线| 亚洲五月色婷婷综合| 色吧在线观看| 一个人看视频在线观看www免费| 精品一区二区三区视频在线| 精品久久久久久电影网| 尾随美女入室| 亚洲欧美中文字幕日韩二区| 日本wwww免费看| 亚洲久久久国产精品| 亚洲国产色片| 精品久久久久久电影网| 国产探花极品一区二区| 国产精品一区www在线观看| 精品一区二区免费观看| 十八禁网站网址无遮挡| 欧美精品亚洲一区二区| 99久久中文字幕三级久久日本| 99国产精品免费福利视频|