• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    How ligand coordination and superatomic-states accommodate the structure and property of a metal cluster: Cu4(dppy)4Cl2 vs.Cu21(dppy)10 with altered photoluminescence

    2024-04-06 06:21:14HimingWuGyAndrewRjiniAnumulZhixunLuo
    Chinese Chemical Letters 2024年1期

    Himing Wu ,Gy N.Andrew ,Rjini Anumul ,Zhixun Luo,b,?

    a Beijing National Laboratory for Molecular Sciences (BNLMS),State Key Laboratory for Structural Chemistry of Unstable and Stable Species,Institute of Chemistry,Chinese Academy of Sciences,Beijing 100190,China

    b School of Chemistry,University of Chinese Academy of Sciences,Beijing 100049,China

    Keywords: Copper nanocluster Yellow emission Dual emission Superatomic states Ligand dppy

    ABSTRACT We have synthesized two copper nanoclusters (NCs) with a protection of the same ligand diphenylphosphino-2-pyridine (C17H14NP,dppy for short),formulated as Cu4(dppy)4Cl2 and Cu21(dppy)10,respectively.The former one bears a distorted tetrahedron Cu4 core with its six edges fully protected by chlorine and dppy ligands,while the latter presents a symmetric Cu21 core on which ten dppy molecules function as monolayer protection via well-organized monodentate or bidentate coordination.Interestingly,the Cu4(dppy)4Cl2 cluster exhibits a strong yellow emission at ~577 nm,while Cu21(dppy)10 displays dual emissions in purple (~368 nm) and green (~516 nm) regions respectively.In combination with TD-DFT calculations,we demonstrate the origin of altered emissions and unique stability of the two copper nanoclusters pertaining to the ligand coordination and metallic superatomic states.

    Ligand-protected metal nanoclusters (NCs for short) allow for tuneable charge distribution and energy transfer between the metallic core and organic ligands,giving rise to a diversity of structures,compositions and crystalline forms [1–4].Due to the unique electron configuration (n-1)d10ns1[5],coinage metal NCs have shown their advantages of facile synthesis and distinctive optical,electrical and chemical properties with promising applications in chemo-sensing,bio-labelling and catalysis [6–9].The Cu NCs are of special interest because they usually exhibit earth-abundant,costefficient and luminesce properties due to weak spin-orbit coupling interaction and high reorganization energy under photoexcitation[10–12].However,the single crystal synthesis of Cu NCs is challenging due to the lower MI/M0half-cell potential of Cu (0.52 V)compared with that of Ag (0.80 V) and Au (1.68 V) [13–15].Difficult as was the work,significant advances have been made to synthesize the ligand-protected Cu NCs,such as those of thiolate[16,17],phosphine [18],selenate [19],alkynyl [20] and halogen ligands [21–23],shedding light on the powerful ligand engineering which causes a diversity of cluster structures.

    Along with the significant advances in synthesizing atomically precise metal NCs,it is recognized that superatomic electron configuration profits to thermal stability of metal NCs [24,25];also,both ligand accommodation and superatomic states are sensitive to cluster sizes [26–29].Some stable metal NCs are rationalized with a magic number of valence electrons simply by considering that the highly electrophilic ligands capture electrons of the metallic core.This has been applied for 2e-superatomic [Cu13(S2CNnBu2)6(acetylide)4]+[30],8e-superatomic [Ag21{S2P(OiPr)2}12]+[31],18e-superatomic Au44(DMBT)26[32],20e-superatomic Pd55(PiPr3)12(CO)20[33],34esuperatomic [Ag78(iPrPhS)30(dppm)10Cl10]4+[34],58e-superatomic[Au69(PR3)20Cl12]–and Au102(p-MBA)44NCs [35,36].Apart from the successful synthesis of diverse metal NCs,ongoing efforts have been devoted to understanding how ligand coordination and metal superatomic-states accommodate the structure and property of a metal cluster,thus beneficial to rational design of cluster-based functional materials.

    A versatile ligand,diphenylphosphino-2-pyridine (dppy for short),has been widely applied in the synthesis of luminescent metal NCs [37–39],and the flexibility of its bidentate or monodentate coordination enables for tuneable accommodation [40–43].Here we report a comparative study on the contributions of both superatomic stability and ligand coordination to the copper NCs by utilizing the dppy as ligand.With reduction of [Cu(OAc)2]in the presence of NaBH4,we have synthesized the single-crystals of two luminescent clusters,Cu4(dppy)4Cl2and Cu21(dppy)10NCs.Amongst them,the Cu21(dppy)10cluster shows a superatomic metallic core but allow for well-organized monodentate and bidentate coordination of the dppy ligands.Interestingly,the Cu21NCs exhibit dual emissions in purple and green regions;in comparison,the Cu4(dppy)4Cl2cluster has a tetrahedron Cu4coreviafull protection by bridged sulfur of the monodentate dppy ligands,giving rise to a broad band of yellow emission at ~577 nm.

    Fig.1a displays the single-crystal structure of the Cu4(dppy)4Cl2NCs (Figs.S1 and S2,Table S1 in Supporting information).Singlecrystal parsing results at 110 K show that the Cu4(dppy)4Cl2NCs are crystallized in a monoclinic crystal system with a space group of I2/a.The single-crystal composition is determined to be Cu4P4N4C70H60Cl9,with two additional non-coordination moieties CH2Cl2and Cl3being involved in the single crystals [44–50].Interestingly,the metallic core displays a slightly distorted tetrahedron Cu4of which each Cu atom is coordinated with its adjacent three Cu atoms with average Cu-Cu distance at 2.821 ?A (2.651–2.956 ?A).Meanwhile,four dppy ligands form bidentate coordination on four edges of the tetrahedron Cu4core of which the other two edges are linked with chlorine bridges,giving rise to full protection of the six edges of the Cu4core.Also,each Cu atom binds to its adjacent three Cu atoms,and is simultaneously coordinated with N,P and Cl atoms.Natural population analysis (NPA) shows that the charge distribution on each Cu and Cl atom is 0.20e and -0.60e respectively (Fig.S15 and Table S2 in Supporting information),indicative of electron attraction of chlorine rendering a 2e-superatomic Cu4core (4e -0.6e×2 -0.2e×4=2e).The saturated hexa-coordinate of copper,and the well-organized charge transfer interactions account for the prominent stability of such a 2e-superatomic copper cluster [51–54].

    Fig.1.Single-crystal structures of (a) Cu4(dppy)4Cl2,with a CH2Cl2 and a Cl3 involved and (b) Cu21(dppy)10.The insets include the natural population analysis (NPA) of charge distribution of Cu21 nanocluster.Cu in orange,P pink,N blue,Cl green,and C grey.For clarity,H atoms are omitted.Capped sticks and ball-stick styles (instead of thermal ellipsoids) are displayed for the two kinds of Cu clusters.

    We have synthesized a larger copper cluster Cu21(dppy)10with the same ligand and similar procedure,but find there is a different case of the structure and coordination modes.Fig.1b dissects the single crystal structure of the as-prepared Cu21NCs (Figs.S3–S5 and Table S1 in Supporting information).The single-crystal parsing reveals that the Cu21(dppy)10is crystallized in a trigonal space group with a precise composition of Cu21C170H140N10P10.Thequasi C 3-symmetric Cu21core can be viewed as the connection of a gyroscopic-like Cu8and a bottom bowl-like Cu13along the line through the atoms of Cu9,Cu2 and Cu8.In the Cu13moiety,the Cu-Cu average distance is 2.652 ?A (2.477–2.994 ?A),which is almost equal to the Cu-Cu bond length (averaged at 2.651 ?A) in the Cu8moiety (Fig.S16 and Table S3 in Supporting information),but smaller than the average Cu-Cu bond length in Cu4(dppy)4Cl2.The varied Cu-Cu bond lengths are also consistent with the previously reported Cu NCs [55–58],due to flexible Cu coordination.Different from Cu4(dppy)4Cl2,the Cu21core is stabilized by ten dppy ligands which form two types of coordination bonds.Four of the ten dppy ligands bind to four Cu atoms through Cu-P bonds,while the other six ligands bind to twelve Cu atoms by six Cu-P bonds and six Cu-N bonds,and additional five Cu atoms do not link to the ligand(including the central atom Cu8).This is different from the other Cu NCs protected by the dppy ligands [59].The average Cu-P bond length in Cu21(dppy)10is similar to that of the Cu(I) phosphine complex [60] and the [Cu25H22(PPh3)12]Cl cluster [61].The calculated NPA charge distribution (based on the single crystal structure) reveals that there are different types of Cu atoms involved in the Cu21(dppy)10.Specifically,the body-centred Cu atom (Cu2)and bottom-centred Cu atom (Cu8) are largely negative (-0.36 and-0.20|e|);the three vertex atoms of the gyroscopic-like Cu8moiety (i.e.,Cu1,Cu10,Cu19) are positively charged (0.24,0.23 and 0.25|e|);the three face-centred (Cu5,Cu13,Cu19) and three vertex Cu atoms (Cu3,Cu11,Cu17) of the three heptagons are slightly negative,while the other Cu atoms are slightly positive or close to zero.Note that,the total NPA charge of the capping gyroscopic-like Cu8region is 0.29|e|,while the total NPA of bottom bowl-like Cu13is -0.19|e|.Although a diversity of the NPA charge distribution on the coper atoms,the total NPA charge on the Cu21core is close to zero (Fig.S17 and Tables S4–S6 in Supporting information),which is in sharp contrast to that of the Cu4core at 0.80|e|,showing a different mechanism of stability.

    Fig.2 presents the typical mass spectra of the two copper NCs,collected in a positive modeviaan electrospray ionization mass spectrometer (ESI-MS).Notably,there are two prominent peaks for the Cu4(dppy)4Cl2NCs atm/z1379.01 and 1422.96,corresponding to [Cu4(dppy)4Cl2+H]+and [Cu4(dppy)4Cl2+2Na]+.Besides,the peak atm/z1466.93 could be assigned to[Cu4(dppy)4Cl2·CH2Cl2+5H]+.The absence of other strong abundance peaks suggests high chemical purity and stability of the Cu4(dppy)4Cl2NCs.Note that the experimental isotopic pattern and simulated mass distribution match well with each other(insets in Fig.2a).Similarly,Fig.2b shows the ESI-MS spectrum of Cu21NCs,where a small peak atm/z1991.76 is assigned to[Cu21(DPPY)10+17H]2+,of which the isotopic patterns match with the simulated mass distribution (insets in Fig.2b).A few fragment peaks are also seen atm/z1707.64,1838.28 and 1903.24,corresponding to dissociation and hydrogenation of the copper core as well as the loss of a few dppy ligands.This also agrees with the phosphine-protected Ag clusters due to weak bonding interactions[62].

    Fig.2.ESI-MS of (a) Cu4(dppy)4Cl2 and (b) Cu21(dppy)10 NCs in the positive ion mode,respectively.Insets display the experimental spectrum in a comparison with the simulated isotopic patterns.

    We have studied the absorption and photoluminescence properties of the two copper NCs.Fig.3a shows the absorption spectrum of Cu4(dppy)4Cl2NCs in DCM,where a characteristic peak at 260 nm and a weak broad band at 472 nm are observed.For this small cluster,we have conducted TD-DFT calculations and check out all the likely electronic excitation transitions at the optimized S0minima of Cu4(dppy)4Cl2(Table S7 in Supporting information).As a result,the 260 nm peak is primarily caused by somequasi-degenerate electronic transitions (e.g.,HOMO →LUMO+30/31).Considering that the HOMO is mainly located on the Cu4metal core,while the LUMO+30/31 are contributed by the ligands,the electronic transition at ~260 nm corresponds to metal-to-ligand charge transfer (MLCT) transition.This is consistent with the previous reported study [63].Besides,the TD-DFT calculations also find electronic transitions at 436,518 and 546 nm,associated with the frontier molecular orbitals,which interprets the experimental observation of a broad weak band at 400–600 nm.Fig.3b shows the photoluminescence spectrum of the Cu4(dppy)4Cl2NCs in DCM,where a remarkable yellow emission band at 577 nm is displayed.The quantum yield of the copper NC at room temperature is estimated to be ~1.83%.This is consistent with the previously reported halogen-protected copper NCs which also exhibit yellow emission at ~600 nm [64,65].Timeresolved decay measurements were also carried out for the Cu4NC in DCM (Fig.3c),where the yellow emission is associated with a relatively long lifetime of 121.87 ns.Furthermore,we measured the emission spectra of the Cu4(dppy)4Cl2NCs in altered low temperatures (Fig.3d),and found that the luminescence shows enhanced intensity with decreasing temperature from 298 K to 150 K,while minor attenuation of intensity from 125 K to 78 K.Notably,the emission at 78 K shows a much longer lifetime up to microsecond (with fitted values at 46.03 μs and 95.50 μs).This is different from the monotonic increase tendency of low temperature phosphorus emission of small organic molecules.It is inferred that the dramatic changes of emission intensity and lifetime of such copper NCs could be associated with both electronic transitions between singlet and triplet states,as well as vibrational relaxation of the structure.

    Fig.3.(a,b) The absorption and photoluminescence spectra of the Cu4(dppy)4Cl2 NCs in DCM.(c) Time-resolved emission decay at 298 K (λex=330 nm).(d) Temperaturedependant emission spectra at 78–298 K in DCM.(e,f) The absorption and photoluminescence spectra of the Cu21(dppy)10 NCs in DCM.(g,h) Time-resolved emission decay at 298 K (λex=270 nm).

    Similarly,Fig.3e shows a typical UV–vis absorption spectrum of the Cu21(dppy)10NCs in DCM,where a characteristic peak appears at 258 nm.This is consistent with the excitation spectrum(Fig.S12 in Supporting information),and similar to the absorption spectrum of the aforementioned Cu4(dppy)4Cl2NCs because their frontier orbitals are mainly contributed by copper.Further,we examined the luminescent property (Fig.3f),where dual emissions at two bands are observed,namely,the purple at 368 nm and green at 516 nm regions.By changing the excitation wavelength to 290 nm (Fig.S13 in Supporting information),the two-band emissions retain and display minor redshifts.Notably,the green emission at 516 nm is much stronger than the purple emission,contributed by the dppy ligand which has an emission at 500 nm (Fig.S11 in Supporting information).It is worth mentioning that the FWHM of the 516 nm emission of Cu21(dppy)10NCs is relatively narrower than that of the Cu4(dppy)4Cl2NCs (143 nmvs.160 nm).The fluorescence variation of the two copper NCs could be related to the symmetry of the protective ligands and the different copper core.Time-resolved fluorescence decay measurements were also carried out for the Cu21(dppy)10NCs.As shown in Figs.3g and h,the purple and green emissions are associated with short lifetime,with fitted values for purple emission at 3.37 ns and green emission at 0.08 ns and 2.81 ns.This short lifetime of copper NCs is consistent with previous studies [66].For the purple and green emissions,we have also measured the quantum yield in DCM but found very small values (ca.0.2% and 2%,respectively).

    To elucidate the origin of the stability and optical properties of the two copper NCs,by DFT-calculations we have performed an analysis on the canonical molecular orbitals (CMOs),Kohn-Sham molecular orbital energy levels,total and partial density of states(DOSs) of both Cu4(dppy)4Cl2and Cu21(dppy)10NCs (Fig.4).It is noteworthy that the Cu atoms significantly contribute to the orbitals ranging from HOMO to HOMO-19 (>50%) at optimized S0minima of Cu4(dppy)4Cl2,with a large HOMO-LUMO energy gap up to 2.34 eV,which is consistent with the DOS patterns shown in Fig.4a (Table S8 in Supporting information).Notably,the HOMO of Cu4(dppy)4Cl2exhibits superatomic S orbital pattern,shedding light on the 2e-superatomic feature.In comparison,the CMOs of Cu21(dppy)10reflect more superatomic states,as shown in Fig.4b (Figs.S18–S21 and Table S9 in Supporting information),where the superatomic 1S,1P and 1D orbitals can be recognized,indicative of 18e-superatomic stability.As a comparison,we have also conducted a calculation on the cationic [Cu21(dppy)10]+and find similar superatomic orbitals (1S|1P|1D||) along with an enlarged HOMO-LUMO gap.The inherent superatomic states in such metal NCs,embodied by partly itinerant (/delocalized) electrons,enable to balance the nuclear-electron interactions and thus optimal accommodation on the metal-metal bonding and metal-ligand interactions [67,68].

    Fig.4.Total and partial density of states (DOSs) and orbital energy levels of (a) Cu4(dppy)4Cl2 based on the single-crystal structure and DFT-optimized S0 minima,and (b)Cu21(dppy)10 based on the single crystal structure.Each orbital is drawn with colour labels to indicate the relative contributions of the atomic orbitals.The isosurface value of molecular orbitals is ±0.03 au H atoms are omitted for clarity.

    Considering the moderate luminescence and relatively stable emission of the Cu4(dppy)4Cl2NCs,we have evaluated its chemo sensing for ions detection.As shown in Fig.5,a few common ions including Cu2+,Fe3+,K+,Mg2+,HCO3-,CO32-,I-,Cl-(1.0 mmol/L for all) have been tested.It is found that the presence of Clions results in apparent increase of the emission intensity,which contrasts with all the other tested cationic and anionic ions.The chemo sensing toward Cl-ions is likely associated with the distinct coordination interactions between Cl-and the Cu4(dppy)4Cl2NCs.

    Fig.5.The varied relative intensities of Cu4(dppy)4Cl2 NCs (1 mg/mL,λex=330 nm)in the presence of typical testing ions (1.0 mmol/L).All the anions are sodium salts,while the cations are sulphates.The insets display the emission spectra of the Cu4(dppy)4Cl2 nanoclusters in DMSO.

    In summary,we report here a comparative study of two phosphine-protected Cu NCs,Cu4(dppy)4Cl2and Cu21(dppy)10.The former has a tetrahedral Cu4core of which the six edges are fully protected by bridged chlorine and bidentate dppy ligands,while the latter has a Cu21core pertaining to vivid superatomic states.The full passivation of the 2e-superatomic Cu4core accounts for its enhanced stability;in comparison,the stability of the larger cluster Cu21(dppy)10is associated with its superatomic states of the Cu21core,as well as well-organized ligand coordination and surface charge distribution.The ten dppy ligands form two types of coordination on the symetric Cu21core,with four monodentate dppy ligands on the top one and bottom three Cu atoms through PCu bonds,while the other six dppy molecules as bidentate ligands to link 12 outside Cu atoms through both P-Cu bonds and N-Cu bonds.Interestingly,the Cu4(dppy)4Cl2NCs find an interesting yellow emission,while the Cu21(dppy)10NCs exhibit dual emissions in the purple and green regions.We have conducted a chemo-sensing experiment by utilizing the red emission of Cu4(dppy)4Cl2NCs and find distinctive response to the chlorine anions.

    Declaration of competing interest

    The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

    Acknowledgments

    The authors thank Prof.Chunxi Zhang for friendly discussion.This work was financially supported by the National Natural Science Foundation of China (Nos.22003072 and 21722308),the Ministry of Science and Technology of the People’s Republic of China(No.2020YFA0714602).

    欧美日韩一级在线毛片| 国产一级毛片七仙女欲春2| 亚洲一区二区三区不卡视频| 成人18禁高潮啪啪吃奶动态图| 精品久久蜜臀av无| 欧美色欧美亚洲另类二区| 后天国语完整版免费观看| 在线观看美女被高潮喷水网站 | 亚洲人成网站高清观看| 国产97色在线日韩免费| 久9热在线精品视频| 日本一二三区视频观看| 精品久久久久久久末码| 99久久无色码亚洲精品果冻| 亚洲九九香蕉| 九九热线精品视视频播放| 在线免费观看的www视频| 国产精品,欧美在线| 黄色女人牲交| 亚洲美女黄片视频| 最好的美女福利视频网| 日韩欧美精品v在线| 日韩欧美国产一区二区入口| 人妻夜夜爽99麻豆av| 夜夜看夜夜爽夜夜摸| 黄色成人免费大全| 在线十欧美十亚洲十日本专区| 免费在线观看日本一区| 正在播放国产对白刺激| 精品久久久久久久久久久久久| 亚洲欧美精品综合久久99| 狂野欧美激情性xxxx| 两人在一起打扑克的视频| 很黄的视频免费| 国产视频内射| 精品久久蜜臀av无| 亚洲精品国产一区二区精华液| 欧美一级毛片孕妇| 亚洲专区字幕在线| 亚洲国产精品合色在线| 国产精品99久久99久久久不卡| 我的老师免费观看完整版| 亚洲成人免费电影在线观看| 白带黄色成豆腐渣| 少妇熟女aⅴ在线视频| 成年版毛片免费区| 国产黄片美女视频| 国产精品久久久久久久电影 | 禁无遮挡网站| 国产成人影院久久av| 麻豆国产av国片精品| 三级毛片av免费| 国产麻豆成人av免费视频| 国内精品久久久久久久电影| 欧美丝袜亚洲另类 | 香蕉av资源在线| 天堂动漫精品| 一二三四社区在线视频社区8| 十八禁网站免费在线| 亚洲国产欧美人成| 在线观看美女被高潮喷水网站 | 亚洲激情在线av| 深夜精品福利| 国产精品九九99| 欧美性猛交╳xxx乱大交人| 狠狠狠狠99中文字幕| 高清毛片免费观看视频网站| 黄片大片在线免费观看| 成人av在线播放网站| 国产日本99.免费观看| 成人国语在线视频| 一卡2卡三卡四卡精品乱码亚洲| 午夜成年电影在线免费观看| 中文字幕最新亚洲高清| 日日摸夜夜添夜夜添小说| 99久久综合精品五月天人人| 欧美一级毛片孕妇| 国产亚洲av嫩草精品影院| 欧美日韩一级在线毛片| 最新在线观看一区二区三区| xxxwww97欧美| 可以免费在线观看a视频的电影网站| 精品午夜福利视频在线观看一区| 久久久久国产一级毛片高清牌| 久久草成人影院| 老司机午夜福利在线观看视频| √禁漫天堂资源中文www| 亚洲欧洲精品一区二区精品久久久| 亚洲天堂国产精品一区在线| 正在播放国产对白刺激| 亚洲人成网站高清观看| 怎么达到女性高潮| 欧美高清成人免费视频www| 超碰成人久久| 在线a可以看的网站| 一进一出抽搐gif免费好疼| 99国产极品粉嫩在线观看| 伊人久久大香线蕉亚洲五| 国产真人三级小视频在线观看| av在线播放免费不卡| 国产欧美日韩一区二区三| 美女黄网站色视频| 国产午夜精品久久久久久| 国产精品日韩av在线免费观看| 亚洲狠狠婷婷综合久久图片| 日本a在线网址| 这个男人来自地球电影免费观看| 亚洲av电影不卡..在线观看| 亚洲成a人片在线一区二区| 成年女人毛片免费观看观看9| 国产人伦9x9x在线观看| 看免费av毛片| 欧美 亚洲 国产 日韩一| 国产视频一区二区在线看| 成人国产一区最新在线观看| 无遮挡黄片免费观看| 99久久精品热视频| 波多野结衣高清作品| 欧美性猛交╳xxx乱大交人| 夜夜爽天天搞| 好男人在线观看高清免费视频| 国产视频内射| 可以在线观看毛片的网站| 日韩国内少妇激情av| 成人一区二区视频在线观看| xxxwww97欧美| 欧美黄色片欧美黄色片| 波多野结衣高清作品| 90打野战视频偷拍视频| 久久久久久久精品吃奶| 后天国语完整版免费观看| 亚洲免费av在线视频| 久久伊人香网站| 亚洲 欧美一区二区三区| 亚洲欧美日韩东京热| 麻豆成人av在线观看| 欧美又色又爽又黄视频| 色噜噜av男人的天堂激情| 午夜免费观看网址| 黄色视频,在线免费观看| 国产精品久久视频播放| 国产成人aa在线观看| 婷婷丁香在线五月| 高潮久久久久久久久久久不卡| 不卡av一区二区三区| 亚洲一区二区三区色噜噜| 精品久久久久久,| 美女黄网站色视频| 俄罗斯特黄特色一大片| 一级片免费观看大全| 青草久久国产| 91麻豆av在线| 日本一本二区三区精品| 欧美乱色亚洲激情| 精品国产亚洲在线| 久久亚洲精品不卡| 国产黄a三级三级三级人| 欧美成人性av电影在线观看| 在线观看免费日韩欧美大片| 热99re8久久精品国产| 亚洲精品国产一区二区精华液| 亚洲 欧美一区二区三区| 亚洲欧美日韩东京热| 亚洲成人免费电影在线观看| 天天躁狠狠躁夜夜躁狠狠躁| 波多野结衣高清作品| 亚洲av熟女| 在线观看日韩欧美| 成人18禁在线播放| 欧美日本视频| 999久久久精品免费观看国产| 一a级毛片在线观看| 舔av片在线| 午夜精品在线福利| 校园春色视频在线观看| 成人一区二区视频在线观看| 国产精品99久久99久久久不卡| 国产av在哪里看| 丰满人妻一区二区三区视频av | 十八禁人妻一区二区| 两人在一起打扑克的视频| 高清在线国产一区| 特级一级黄色大片| 午夜福利高清视频| 精品国产美女av久久久久小说| 久久中文字幕人妻熟女| 欧美乱妇无乱码| 精品欧美一区二区三区在线| 午夜精品一区二区三区免费看| 日韩精品中文字幕看吧| 日韩免费av在线播放| 国产精品久久久久久精品电影| 亚洲狠狠婷婷综合久久图片| 两性夫妻黄色片| 熟女少妇亚洲综合色aaa.| 国产1区2区3区精品| 麻豆成人av在线观看| 欧美在线黄色| 久久久久久久午夜电影| 久久精品91无色码中文字幕| 国产成人欧美在线观看| 国产成人欧美在线观看| 一级作爱视频免费观看| 亚洲男人的天堂狠狠| 国产成人精品久久二区二区免费| 色老头精品视频在线观看| 亚洲自拍偷在线| 中文字幕人妻丝袜一区二区| 夜夜爽天天搞| www国产在线视频色| 成人欧美大片| 日本成人三级电影网站| 18禁黄网站禁片免费观看直播| 波多野结衣高清作品| cao死你这个sao货| 美女 人体艺术 gogo| 精品久久久久久久久久久久久| 亚洲成av人片在线播放无| 国产99白浆流出| 国内揄拍国产精品人妻在线| 露出奶头的视频| 欧美色视频一区免费| 日韩欧美在线二视频| 亚洲一区二区三区不卡视频| 999精品在线视频| 精品乱码久久久久久99久播| 午夜亚洲福利在线播放| 麻豆成人午夜福利视频| 日本一本二区三区精品| 小说图片视频综合网站| 日韩 欧美 亚洲 中文字幕| 亚洲av日韩精品久久久久久密| 男插女下体视频免费在线播放| 欧美成人免费av一区二区三区| 一区二区三区国产精品乱码| 精品国产亚洲在线| 巨乳人妻的诱惑在线观看| 听说在线观看完整版免费高清| 在线观看免费日韩欧美大片| 国产精品 欧美亚洲| 久久久久国产精品人妻aⅴ院| 身体一侧抽搐| 精品乱码久久久久久99久播| 久久精品91无色码中文字幕| 日韩欧美在线二视频| 在线十欧美十亚洲十日本专区| 欧美一区二区精品小视频在线| 国产成年人精品一区二区| 中国美女看黄片| 正在播放国产对白刺激| 亚洲国产精品合色在线| 国产亚洲精品第一综合不卡| 麻豆国产97在线/欧美 | 熟女少妇亚洲综合色aaa.| netflix在线观看网站| 欧美一区二区精品小视频在线| 亚洲成人国产一区在线观看| 国产精品久久久久久人妻精品电影| 欧美黄色淫秽网站| 日日爽夜夜爽网站| 少妇粗大呻吟视频| 免费高清视频大片| 两性夫妻黄色片| 久久久久精品国产欧美久久久| 天天一区二区日本电影三级| 国产亚洲精品第一综合不卡| 久久精品综合一区二区三区| 亚洲成av人片免费观看| 久久人妻av系列| 熟女电影av网| 国产91精品成人一区二区三区| 1024视频免费在线观看| 日本在线视频免费播放| 激情在线观看视频在线高清| 亚洲美女视频黄频| 久久精品成人免费网站| √禁漫天堂资源中文www| 曰老女人黄片| av国产免费在线观看| or卡值多少钱| xxxwww97欧美| 天堂av国产一区二区熟女人妻 | 美女高潮喷水抽搐中文字幕| 久久久久九九精品影院| 国产又黄又爽又无遮挡在线| 国产视频一区二区在线看| 丰满的人妻完整版| 一级片免费观看大全| 人妻久久中文字幕网| 一本大道久久a久久精品| 两个人的视频大全免费| 一进一出好大好爽视频| 夜夜爽天天搞| 高清在线国产一区| 国产乱人伦免费视频| 亚洲国产看品久久| 日韩欧美免费精品| 欧美色欧美亚洲另类二区| 韩国av一区二区三区四区| 欧美又色又爽又黄视频| 51午夜福利影视在线观看| 少妇的丰满在线观看| 又黄又爽又免费观看的视频| 日本 av在线| 麻豆av在线久日| 欧美久久黑人一区二区| 身体一侧抽搐| videosex国产| 成人国语在线视频| 亚洲欧美日韩东京热| 日韩 欧美 亚洲 中文字幕| 母亲3免费完整高清在线观看| 日本三级黄在线观看| 国产黄片美女视频| 国产欧美日韩一区二区三| 国产精华一区二区三区| 91老司机精品| 999久久久精品免费观看国产| www.999成人在线观看| 久久久国产成人免费| 午夜日韩欧美国产| 亚洲精品一区av在线观看| 亚洲av熟女| 欧美久久黑人一区二区| 午夜视频精品福利| 色综合站精品国产| 久久久国产欧美日韩av| 丰满人妻一区二区三区视频av | 国产久久久一区二区三区| 国产视频一区二区在线看| 免费高清视频大片| 午夜老司机福利片| 女人爽到高潮嗷嗷叫在线视频| 欧美在线黄色| 欧美黑人巨大hd| 久久人妻av系列| 日韩中文字幕欧美一区二区| 亚洲18禁久久av| 三级毛片av免费| 搞女人的毛片| 久久99热这里只有精品18| 一级片免费观看大全| 成人18禁高潮啪啪吃奶动态图| 老司机靠b影院| 日韩欧美免费精品| 天堂影院成人在线观看| 国产一区二区三区视频了| www.999成人在线观看| 两性夫妻黄色片| 亚洲中文日韩欧美视频| 亚洲成人精品中文字幕电影| 久久精品国产亚洲av高清一级| 黄色丝袜av网址大全| 妹子高潮喷水视频| 国产一区二区激情短视频| 国产精品亚洲av一区麻豆| 免费无遮挡裸体视频| 天堂动漫精品| 在线看三级毛片| 亚洲精品一卡2卡三卡4卡5卡| 99热只有精品国产| 亚洲人成伊人成综合网2020| 欧美日韩国产亚洲二区| 国产高清激情床上av| 久久九九热精品免费| 在线国产一区二区在线| 99久久精品热视频| 亚洲一码二码三码区别大吗| 欧美人与性动交α欧美精品济南到| 夜夜爽天天搞| 久久久精品欧美日韩精品| 国产精品久久久久久精品电影| 午夜视频精品福利| 熟妇人妻久久中文字幕3abv| 婷婷亚洲欧美| 久久99热这里只有精品18| 欧美日韩一级在线毛片| 一本综合久久免费| 精品国产美女av久久久久小说| 久久香蕉激情| 特级一级黄色大片| 午夜免费观看网址| 国产成人aa在线观看| 天天一区二区日本电影三级| 18禁国产床啪视频网站| 一级作爱视频免费观看| 亚洲自偷自拍图片 自拍| 日本五十路高清| 久久香蕉国产精品| 又爽又黄无遮挡网站| 精品久久久久久久久久免费视频| 三级男女做爰猛烈吃奶摸视频| 哪里可以看免费的av片| 两人在一起打扑克的视频| 在线观看66精品国产| 久久久久久国产a免费观看| 成年女人毛片免费观看观看9| 日韩中文字幕欧美一区二区| 欧美日韩中文字幕国产精品一区二区三区| 精品欧美一区二区三区在线| 在线观看www视频免费| 我要搜黄色片| 亚洲第一电影网av| 午夜免费成人在线视频| 国产精品久久视频播放| 看片在线看免费视频| 丁香欧美五月| 香蕉国产在线看| 亚洲自偷自拍图片 自拍| 中文字幕人妻丝袜一区二区| 欧美3d第一页| 日韩中文字幕欧美一区二区| 听说在线观看完整版免费高清| 中文字幕最新亚洲高清| 午夜免费成人在线视频| 久久久久国内视频| 国产熟女xx| 久久久久久久久久黄片| 国产亚洲欧美98| 婷婷精品国产亚洲av| 久久久久久久午夜电影| 丰满人妻熟妇乱又伦精品不卡| 悠悠久久av| 黄频高清免费视频| 午夜精品一区二区三区免费看| 少妇人妻一区二区三区视频| 18禁裸乳无遮挡免费网站照片| 好看av亚洲va欧美ⅴa在| 久久久久久久久久黄片| 欧美黄色淫秽网站| 每晚都被弄得嗷嗷叫到高潮| 欧美性猛交╳xxx乱大交人| 欧美久久黑人一区二区| 国产成人系列免费观看| 麻豆国产av国片精品| av免费在线观看网站| 国产精品精品国产色婷婷| 最新美女视频免费是黄的| 少妇人妻一区二区三区视频| 欧美人与性动交α欧美精品济南到| 亚洲va日本ⅴa欧美va伊人久久| 老汉色av国产亚洲站长工具| 欧美中文综合在线视频| 日韩欧美国产一区二区入口| 免费看十八禁软件| 又黄又粗又硬又大视频| 天堂√8在线中文| 国产片内射在线| 美女大奶头视频| 在线观看日韩欧美| 国产一区二区激情短视频| 一进一出抽搐gif免费好疼| 日本a在线网址| 日日爽夜夜爽网站| 在线观看一区二区三区| 两人在一起打扑克的视频| 久久婷婷成人综合色麻豆| 人成视频在线观看免费观看| 搡老熟女国产l中国老女人| 免费在线观看完整版高清| 校园春色视频在线观看| ponron亚洲| 一边摸一边抽搐一进一小说| 亚洲av片天天在线观看| 在线永久观看黄色视频| 国产成人一区二区三区免费视频网站| 中文亚洲av片在线观看爽| 最近视频中文字幕2019在线8| 久久午夜综合久久蜜桃| 五月伊人婷婷丁香| 午夜老司机福利片| 亚洲国产高清在线一区二区三| 亚洲欧美一区二区三区黑人| 看黄色毛片网站| 美女高潮喷水抽搐中文字幕| 一卡2卡三卡四卡精品乱码亚洲| 波多野结衣高清无吗| 亚洲色图 男人天堂 中文字幕| 激情在线观看视频在线高清| 黄色视频,在线免费观看| 国产探花在线观看一区二区| 久久精品国产清高在天天线| 久久久久国产一级毛片高清牌| 欧美又色又爽又黄视频| 真人一进一出gif抽搐免费| 白带黄色成豆腐渣| 我要搜黄色片| 中文资源天堂在线| 国产三级黄色录像| 久久久精品大字幕| 香蕉av资源在线| 成熟少妇高潮喷水视频| 精品久久久久久,| 两人在一起打扑克的视频| 两个人的视频大全免费| a在线观看视频网站| 日韩精品中文字幕看吧| 成在线人永久免费视频| 国产精品野战在线观看| 99精品欧美一区二区三区四区| 欧美另类亚洲清纯唯美| 2021天堂中文幕一二区在线观| 可以在线观看的亚洲视频| 欧美日韩黄片免| 日韩高清综合在线| 亚洲欧美精品综合一区二区三区| 国产伦人伦偷精品视频| 99国产精品99久久久久| 黄色视频不卡| 国产探花在线观看一区二区| 国产蜜桃级精品一区二区三区| 成熟少妇高潮喷水视频| 18禁黄网站禁片免费观看直播| 国产69精品久久久久777片 | 亚洲全国av大片| 欧美成狂野欧美在线观看| 亚洲熟女毛片儿| 十八禁人妻一区二区| 国产黄片美女视频| 69av精品久久久久久| 日本熟妇午夜| 欧美日韩乱码在线| 一本综合久久免费| 久久久精品欧美日韩精品| 久久久久久久久中文| 亚洲中文av在线| 精品国内亚洲2022精品成人| 国产成年人精品一区二区| 级片在线观看| 精品乱码久久久久久99久播| 天堂影院成人在线观看| 两个人免费观看高清视频| 亚洲av电影不卡..在线观看| 午夜影院日韩av| 国产单亲对白刺激| av国产免费在线观看| 性欧美人与动物交配| av中文乱码字幕在线| aaaaa片日本免费| 成人国产一区最新在线观看| 99久久国产精品久久久| 欧美+亚洲+日韩+国产| 国产成人aa在线观看| 天天躁夜夜躁狠狠躁躁| 最近在线观看免费完整版| 国产一级毛片七仙女欲春2| 国产精品 国内视频| 小说图片视频综合网站| 男插女下体视频免费在线播放| 在线观看www视频免费| 国产精华一区二区三区| 成人特级黄色片久久久久久久| 嫁个100分男人电影在线观看| 亚洲 欧美 日韩 在线 免费| 丝袜人妻中文字幕| 欧美成人午夜精品| 香蕉国产在线看| 老司机靠b影院| 日本一区二区免费在线视频| 久久久久久九九精品二区国产 | 亚洲国产高清在线一区二区三| 男女视频在线观看网站免费 | 国产成人精品无人区| 国产精品一区二区三区四区免费观看 | 日韩欧美国产一区二区入口| 国产精品美女特级片免费视频播放器 | 中文在线观看免费www的网站 | 校园春色视频在线观看| 亚洲欧美日韩无卡精品| 精品午夜福利视频在线观看一区| 国产在线观看jvid| 色av中文字幕| 久久精品夜夜夜夜夜久久蜜豆 | 特级一级黄色大片| 精品免费久久久久久久清纯| 岛国在线观看网站| 亚洲国产精品成人综合色| av福利片在线观看| 男人的好看免费观看在线视频 | 一本一本综合久久| 两个人的视频大全免费| 国产成人aa在线观看| 欧美又色又爽又黄视频| 国产视频内射| 午夜福利18| 欧美另类亚洲清纯唯美| 国产av一区二区精品久久| 中文字幕最新亚洲高清| 日韩欧美三级三区| 久久久精品大字幕| 哪里可以看免费的av片| 一级毛片高清免费大全| 日韩欧美免费精品| 色老头精品视频在线观看| 亚洲人成网站在线播放欧美日韩| 国产精品自产拍在线观看55亚洲| 91在线观看av| 精品国产乱码久久久久久男人| 欧美激情久久久久久爽电影| 岛国在线免费视频观看| 国产精品免费视频内射| 男插女下体视频免费在线播放| 人妻夜夜爽99麻豆av| 黄色片一级片一级黄色片| 久久人人精品亚洲av| 午夜福利成人在线免费观看| 国产高清激情床上av| 久久久精品大字幕| 亚洲熟妇熟女久久| 亚洲成av人片在线播放无| 狠狠狠狠99中文字幕| 欧美精品亚洲一区二区| 香蕉国产在线看| 大型黄色视频在线免费观看| 国产69精品久久久久777片 |