• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Boosting the proton conduction in a magnetic dysprosium-organic framework by introducing conjugate NH4+-NH3 pairs

    2024-04-06 06:21:14YiPingQuQianZouSongSongBaoLiMinZheng
    Chinese Chemical Letters 2024年1期

    Yi-Ping Qu ,Qian Zou ,Song-Song Bao,Li-Min Zheng

    State Key Laboratory of Coordination Chemistry,School of Chemistry and Chemical Engineering,Collaborative Innovation Center of Advanced Microstructures,Nanjing University,Nanjing 210023,China

    Keywords: Metal-organic framework Proton conduction Ammonia adsorption Metal phosphonate Single molecule magnet

    ABSTRACT Metal-organic frameworks (MOFs) with inherent porosity and suspended acidic groups are promising proton conducting materials in water or aqua-ammonia media.Herein we report a new lanthanide phosphonate,namely,Dy2(amp2H2)2(mal)(H2O)2·5H2O (MDAF-6).It possesses a 3D open-framework structure,and shows a high NH3 adsorption capacity of 142.4 cm3/g at P/P0=0.98 at 298 K due to acid-base interaction.Interestingly,the proton conductivity of MDAF-6-NH3 is enhanced by five orders of magnitude compared to MDAF-6 after 8.5 h exposure in saturated NH3-H2O vapor,indicating the importance of coexistent conjugate acid-base pairs of H3O+-H2O and NH4+-NH3 in promoting proton conduction.Magnetic studies of MDAF-6 revealed slow magnetization relaxation under zero dc field,characteristic of singlemolecule magnet behavior.This work provides not only a new multifunctional MOF material,but also a new strategy to improve proton conduction in aqua-ammonia medium.

    Metal-organic frameworks (MOFs) with intrinsic porosity and tailorable surface chemistry are an emerging class of protonconducting materials for clean-energy related applications [1,2].In order to improve proton conductivity of the material,the proton carrier concentration and mobility must be increased.To this end,great efforts have been made in developing water-mediated proton conducting MOFs because water can offer conjugated acid-base pair of H3O+-H2O and contributes to the construction of efficient proton-conducting pathway [3–7].While the concentration of proton carriers can be increased by introducing acidic groups in the framework and/or acidic counterions and guests [8–12].Besides water,NH3is also considered as a promising medium for proton conduction because of its similarity to water [13].Recent reports have shown that exposing the material in NH3-H2O vapor can significantly increase the proton conductivity by 1–2 orders of magnitude [14–19].However,it is unclear whether the coexistence of conjugate NH4+-NH3and H3O+-H2O pairs can further enhance the proton conductivity.To answer this question,MOFs with good ability to adsorb ammonia and possessing structural stability in basic media are highly desired.

    Metal phosphonates are known to exhibit high thermal and chemical stability because each phosphonate group can afford three oxygen atoms to bind metal ions [20].The water stability of trivalent and tetravalent metal phosphonates is higher compared to monovalent and divalent metal compounds [21].By selecting suitable metal ions and phosphonate ligands,porous metal phosphonates containing P-OH acidic groups can be designed and synthesized for ammonia adsorption and proton conduction [22–26].Herein,we report a mixed-ligand dysprosium framework Dy2(amp2H2)2(mal)(H2O)2·5H2O (MDAF-6),where amp2H4is a pre-photodimerized 9-anthrylmethylphosphonic acid and malH2is malonic acid.The amp2H4was chosen because it contains a large and flexible dianthracene group,which facilitates the formation of a 3D framework structure [27–29].DyIIIion was chosen because its trivalent state can improve the framework stability and its unique magnetic properties lead to multifunctional materials[30–36].Indeed,MDAF-6shows a 3D open framework structure in which the uncoordinated P-OH group dangles over the channel surface.It exhibits excellent NH3adsorption capacity due to the acid-base reaction between NH3and P-OH groups.The resulted material,MDAF-6-NH3,shows five orders of magnitude enhancement in proton conductivity compared toMDAF-6in saturated NH3-H2O vapor,indicating the importance of the coexistence of NH4+-NH3and H3O+-H2O conjugate acid-base pairs for proton conduction (Scheme 1).The magnetic properties ofMDAF-6were also studied.

    Scheme 1.The framework of MDAF-6 containing P-OH for NH3 and H2O adsorption.

    CompoundMDAF-6was obtained as pale-yellow rhombus crystals after solvothermal reaction of DyCl3·6H2O,amp2H4and malonic acid in CH3OH/H2O at 90°C for 48 h,and was characterized by PXRD,TG and IR measurements (Figs.S1–S3 in Supporting information).Single crystal structural analysis revealed that it crystallizes in the orthorhombic system,polar space groupPmn21(No.31) (Table S1 in Supporting information).The asymmetric unit contains two kinds of Dy atoms (each with half occupancy),one amp2H22-ligand,half an occupied malonate,one coordinated and 2.5 lattice water molecules (Fig.S4 in Supporting information).The lattice water molecules were treated with PLATON/SQUEEZE program because of heavy disorder,and the number was determined by elemental and thermal analyses (Fig.S2 in Supporting information).Both Dy atoms reside on the mirror plane,and each is seven-coordinated by four O atoms from four amp2H22-ligands(O1,O1A,O5B and O5C for Dy1;O2,O2A,O4D and O4E for Dy2),two O atoms from the chelated malonate anion (O7 and O9 for Dy1;O7 and O8 for Dy2),and one from water molecule (O1W for Dy1;O2W for Dy2) (Fig.1a).The Dy-O bond lengths and ODy-O angles are 2.218(9)–2.465(16) ?A and 69.2(2)°–156.4(4)° for Dy1,and 2.232(9)–2.749(9) ?A and 50.5(3)°–167.0(4)° for Dy2 (Table S2 in Supporting information).The {DyO7} core has a distorted capped trigonal prism geometry (CShM=0.755 for Dy1 and 1.434 for Dy2,Table S3 in Supporting information) [37].The adjacent Dy1 and Dy2 atoms are connected alternatively by triple bridges of two O-P-O and oneμ-O and double bridges of O-P-O units (Dy1…Dy2 distance: 4.558,5.389 ?A),forming an infinite polar chain running along theb-axis,where the disordered malonate ligands locate on the same side (Fig.1b).Each amp2H22-serves as a tetradentate ligand binding to four Dy atoms,whereas each mal2-also acts as a tetradentate ligand chelating and bridging the Dy1 and Dy2 atoms (Fig.S5 in Supporting information).The neighboring chains are cross-linked by the amp2H22-ligands forming a 3D framework structure (Fig.1c).A 1D channel is generated along theb-axis with the window dimension ofca.7.0×6.2 ?A2(van der Waals radii not accounted).It is noted that one of the two protonated phosphonate oxygen atom (O6) forms intrachain H-bond with the malonate oxygen atom O8,while the other (O3) points towards the channel center,and should form H-bond with lattice water molecule.Thus,the channel wall is hydrophobic on the dianthracene side,but hydrophilic on the chain side with pendent P-OH,malonate oxygen atom,and coordination water molecules.

    Fig.1.(a) Building unit of MDAF-6.Part of the disordered malonate and the organic group of amp2H22- ligand are omitted for clarity.(b) The infinite chain in MDAF-6 running along the b-axis.(c) The open framework structure of MDAF-6 viewed along the b-axis.All H atoms except for those attached to phosphonate oxygen atoms are omitted for clarity.(d) The adsorption (filled) and desorption (open) isotherms for solvent-free MDAF-6: N2 (77 K),CO2 (298 K),NH3 (298 K) and water vapor (298 K).

    To examine the stability ofMDAF-6,the crystalline sample was immersed in water with different pH (1–14) for 24 h at room temperature.The PXRD measurements confirmed the stability of the material at pH 2–12 (Fig.S6 in Supporting information).Thermal analysis revealed thatMDAF-6lost seven water molecules below 170°C (obs.7.2%,calcd.7.7%).The weight loss above 170°C is due to the decomposition of organic components and the collapse of the framework structure (Fig.S2).

    We next investigated the adsorption/desorption performance ofMDAF-6,activated under vacuum at 100°C for 4 h (weight loss: obs.7.8%,calcd.7.7%),toward N2,CO2,NH3and H2O gasses(Fig.1d).The N2adsorption/desorption isotherm at 77 K is a Type II isotherm with a small loading of 4.1 cm3/g atP/P0=0.98,indicating a very weak interaction between nitrogen and pore walls.The adsorption was increased for CO2at 298 K with a maximum uptake of 23.6 cm3/g (1.6 mol/mol) atP/P0=0.98.A quick and dramatically enhanced adsorption was found for NH3with uptakes of 92.0 cm3/g (6.1 mol/mol) atP/P0=0.04 and 142.4 cm3/g (9.4 mol/mol,6.35 mmol/g) atP/P0=0.98 at 298 K,attributed to the favourable acid-base interaction between P-OH and NH3.The capacity is higher than MIL-53 (4.40 mmol/g) but lower than NH2-MIL-53 and MIL-100 (8.00 mmol/g) [38].After desorption,there remained 75.0 cm3/g (4.9 mol/mol) of ammonia atP/P0=0.001,which is higher than the expected value of 4.0 mol-1when all four P–OH groups per molecular formula interacted with NH3to form non-volatile PO32--NH4+pairs.This result suggests that NH3may also occupy the vacancy left by the Dy atom after removing the coordination water.The formation of PO32--NH4+pair breaks the intrachain H-bond between P-OH and malonate oxygen and weakens the O(P)-H bond,and thus should increase the proton concentration for conduction in the framework channel.The sample after adsorption/desorption of NH3at 298 K is named asMDAF-6-NH3.Interestingly,the re-activated sample,after heatingMDAF-6-NH3at 150°C under vacuum for 10 min (weight loss: obs.5.8%,calcd.5.6%),showed similar capacity of NH3adsorption atP/P0=1.0 (Fig.S7 in Supporting information).

    The water adsorption isotherm of the fully dehydrated sample ofMDAF-6showed a quick uptake of water vapor,and the value reached 118.7 cm3/g (7.8 mol/mol) atP/P0=0.08 and 226 cm3/g(15 mol/mol) atP/P0=0.99 at 298 K (Fig.S8 in Supporting information).When desorbed,there were still about 100.3 cm3/g(7 mol/mol) H2O in the structure atP/P0=0.03,in agreement with the presence of two coordinated and five lattice water molecules.We also measured the water adsorption capacity ofMDAF-6-NH3at 298 K and observed an uptake of 78.4 cm3/g (5.3 mol/mol)atP/P0=0.96,which is much lower than that forMDAF-6(14.5 mol/mol).This is reasonable because the channel space inMDAF-6-NH3is partially filled with the loaded NH3molecules.In addition,the hysteresis of water adsorption/desorption isotherm is more significant forMDAF-6-NH3than forMDAF-6,indicating a strong interaction between water and NH4+/NH3.Notably,the water adsorption capacity ofMDAF-6andMDAF-6-NH3drops significantly upon slight increase of temperature.At 308 K,the capacities became 179.8 cm3/g (11.8 mol/mol) forMDAF-6atP/P0=0.98 and 67.1 cm3/g (4.4 mol/mol) forMDAF-6-NH3atP/P0=1.00,respectively (Fig.S9 in Supporting information).

    The proton conductivity (σ) ofMDAF-6andMDAF-6-NH3was evaluated by impedance spectroscopy measurements using a pellet sample placed in a temperature and humidity-controlled chamber for 12 h.ForMDAF-6,the conductivity at 298 K was 1.8×10-12S/cm at 40% RH and increased to 1.5×10-9S/cm at 95% RH (Fig.2a and Fig.S10 in Supporting information).The values are very low compared to other proton conductive metal phosphonates with protonated phosphonate groups [22].From the structure ofMDAF-6,we can see that hydrophobic dianthracene moieties are present in the channel which is unfavorable for the formation of continuous hydrogen bond network.Besides,half of the protonated P-OH groups participate in strong intrachain hydrogen bonds,which may‘freeze’the protons,prevent them from migration,and thus affect their conduction.The adsorption of ammonia lifted the freeze of protons due to the acid-base interaction between P-OH and NH3to form NH4+inMDAF-6-NH3.Proton conductivity measurements at 298 K revealed a remarkably improved conductivity of 1.0×10-10S/cm at 40% RH and 6.8×10-6S/cm at 95% RH (Fig.2a and Fig.S11 in Supporting information).The latter is three orders of magnitude higher than that forMDAF-6.This value is comparable to some metal-triphosphonates [22,39],but lower than a few 3D metaltetraphosphonates (ca.10-2–10-4S/cm) [26,40,41].Obviously,the NH4+ions formedin-situpromote the water-mediated proton conduction.

    Fig.2.(a) Proton conductivities of MDAF-6 and MDAF-6-NH3 from 40% to 95% RH at 298 K (pink for increasing RH and blue for decreasing RH).(b) Arrhenius plot of the temperature dependence at 95% RH for MDAF-6 (green) and MDAF-6-NH3(black).(c) Proton conductivities of MDAF-6-NH3 in ammonia vapor, MDAF-6 in water vapor and MDAF-6 in ammonia vapor.(d) Nyquist plots of MDAF-6-NH3 in ammonia vapor for 6–8.5 h.

    The temperature-dependent proton conductivities ofMDAF-6andMDAF-6-NH3were measured at 95% RH.The proton conductivities were almost unchanged for both compounds when the temperature went up to 35°C and further reduced above 35°C(Fig.S12 in Supporting information),in consistence with the partial release of water molecules at this temperature.Based on the data in the temperature decreasing process,the activation energies (Ea)were estimated to be 0.35 eV forMDAF-6and 0.61 eV forMDAF-6-NH3(Fig.2b).The largerEa(>0.6 eV) suggests that NH4+may migrate directly as a proton attached to a vehicle inMDAF-6-NH3.

    The above results showed that the water-mediated proton productivity ofMDAF-6was significantly enhanced after the incorporation of NH4+.In this case,there exist two acid-base pairs,e.g.,H3O+-H2O and NH4+-H2O,which participate in the proton conduction pathway.We postulate that the presence of conjugate acid-base pair of NH4+-NH3would facilitate the proton mobility.

    To confirm this,we first evaluated the proton conductivity ofMDAF-6-NH3under a dry NH3gas atmosphere at 100 kPa.The sample pellet was dried at 100°C under vacuum for activation using a hot stage with electrical probes and then filled with dry NH3gas after cooling to room temperature.After being exposed to NH3gas for about 7 h,the gas adsorption of the sample pellet reached equilibrium and exhibited a conductivity of 3.4×10-9S/cm at 304 K (Fig.S13 in Supporting information).This value is higher than that obtained at 298 K and 40% RH (1.0×10-10S/cm),but much lower than that obtained at 298 K and 95% RH.The result indicates that the filling of NH3gas is not sufficient to form a continuous hydrogen bond network for efficient proton conduction.We then exposed the same pellet ofMDAF-6-NH3to saturated NH3-H2O vapor.Interestingly,the proton conductivity drastically increased along with prolonged time and reached a maximum value ofca.4.2×10-4S/cm after 8.5 h (Figs.2c and d,Fig.S14 in Supporting information).Controlled experiments were carried out under the same conditions forMDAF-6in water or NH3-H2O vapor.As shown in Fig.2c,the proton conductivity ofMDAF-6wasca.10-9S/cm after exposure to water or NH3-H2O vapor for 8.5 h,which is 5 orders of magnitude lower than that forMDAF-6-NH3.The conductivity ofMDAF-6reached the equilibrium value of 2.1×10-8S/cm after 32 h exposure to water vapor,and 6.9×10-5S/cm after 172 h exposure to NH3-H2O vapor (Fig.S15 in Supporting information).Notably,the framework structure ofMDAF-6remained the same after thermal treatment,the NH3gas adsorption/desorption process,and exposure to saturated NH3-H2O vapor(Fig.S16 in Supporting information).

    To understand the mechanism of enhanced proton conductivity ofMDAF-6-NH3in NH3-H2O vapor,we measured the solidstate IR and1H MAS NMR spectra of the samples.Fig.S3 shows the IR spectra ofMDAF-6andMDAF-6-NH3.Compared toMDAF-6(3619,3522 and 3441 cm-1),the O-H stretching vibrations ofMDAF-6-NH3are red-shifted to 3603,3499 and 3418 cm-1,indicating the weakening of the O-H stretching vibration.In addition,there appears a new broad peak at 3196 cm-1,attributed to the NH stretching vibration.The P-O stretching vibrations are very different for the two samples with additional strong peaks appearing at 1042 and 1001 cm-1forMDAF-6-NH3.These results corroborate with the fact that the P-OH acidic group reacted with NH3base forming PO32--NH4+pair inMDAF-6-NH3.

    After exposure to NH3-H2O vapor for 8.5 h,bothMDAF-6andMDAF-6-NH3show broad bands at 3680–3280 cm-1,ascribed to the presence of extensive hydrogen bonding networks (Fig.S17 in Supporting information).Compared toMDAF-6,MDAF-6-NH3shows an enhanced stretching vibration atca.3435 cm-1and additional bands at 3207,1402 and 1207 cm-1.The latter three peaks are attributed to the N-H vibrations of NH4+and NH3[42,43].The broad N-H stretching peak at 3207 cm-1may be related to the formation of hydrogen bonds between NH3and NH4+[44].The observation of these N-H vibrations forMDAF-6-NH3but not forMDAF-6indicates thatMDAF-6-NH3adsorbs NH3-H2O vapor quickly and reaches equilibrium within 8.5 h.By contrast,MDAF-6adsorbs NH3-H2O vapor slowly and needs much longer time(ca.172 h) to reach equilibrium.This fact gives us an opportunity to distinguish the role of the NH4+-NH3conjugate pair in proton conduction.ForMDAF-6exposed to NH3-H2O or pure water vapor,there was negligible or no NH4+-NH3conjugate pair generated within 8.5 h,and their conductivities were extremely low (ca.10-9S/cm2).Therefore,the significantly enhanced proton conductivity ofMDAF-6-NH3in saturated NH3-H2O vapor (ca.10-4S/cm2) has to contribute to the coexistence of the NH4+-NH3and H3O+-H2O conjugate pairs.

    We also measured the solid-state1H MAS NMR spectra of the above three samples.As shown in Fig.S18 (Supporting information),a resonance signal appears at 4.2 ppm forMDAF-6exposed to H2O and NH3-H2O vapor for 8.5 h,corresponding to physisorbed water moving freely in the pore system of the material [45].ForMDAF-6-NH3exposed to NH3-H2O vapor for 8.5 h,the signal is slightly shifted to 5 ppm,which could be related to the presence of NH4+(NH3) and H2O interactions.

    Based on the above results,we propose the mechanism of proton conduction ofMDAF-6-NH3in NH3-H2O vapor as below: (1)The formation of PO32--NH4+pair breaks the intrachain H-bond between P-OH and malonate oxygen and weakens the O(P)-H interaction,thus increasing the proton concentration for conduction;(2) The NH4+ion forms H-bonds with neutral NH3and transfers proton with low energy barrier [44];(3) Saturated NH3-H2O atmosphere provides a continuous network of H-bonds for efficient proton conduction (Scheme 2).

    Scheme 2.Proposed proton transfer pathways of MDAF-6-NH3 in (a) water,(b) NH3 and (c) NH3-H2O atmosphere.

    In order to explore the possibility of usingMDAF-6as a magnetic proton conductor [46,47],we also investigated its magnetic properties.As shown in Fig.S19 (Supporting information),theχMTvalue ofMDAF-6(28.17 cm3K/mol per Dy2) at room temperature agrees well with the spin-only value of 28.34 cm3K/mol for two isolated DyIIIions (6H15/2,S=5/2,L=5,gJ=4/3).TheχMTdecreases progressively upon cooling,attributed to the thermal depopulation of DyIIIStark sublevels and possible weak antiferromagnetic interactions.Field-dependent magnetization measured from 2 K to 10 K showed unsaturation up to 70 kOe (Fig.S19,inset),suggesting the presence of magnetic anisotropy and/or lower lying excited states.The alternating current (ac) susceptibility data ofMDAF-6revealed a frequency dependence of the out-of-phase (χ’’)signals under zero or 1 kOe dc field (Fig.S20 in Supporting information),characteristic of single-molecule magnet (SMM) behavior.But no maximum was observed,thus excluding the possibility to derive the energy barrier of the material.

    In summary,we report a new porous dysprosium phosphonate framework Dy2(amp2H2)2(mal)(H2O)2·5H2O (MDAF-6) which shows a high adsorption capacity toward NH3due to the presence of P-OH acidic groups.Impressively,we observed a dramatic enhancement of proton conductivity after exposingMDAF-6-NH3in saturated NH3-H2O vapor,demonstrating the importance of coexistent conjugate acid-base pairs of H3O+-H2O and NH4+-NH3in promoting proton conduction.In addition,MDAF-6shows SMM behavior at low temperature.This work not only provides a new example of proton conductive magnetic materials,but also a new approach to boost the proton conduction of MOFs by introducing conjugated acid-base pairs of H3O+-H2O and NH4+-NH3in NH3-H2O media.

    Declaration of competing interest

    The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

    Acknowledgments

    This work was supported by grant from the National Natural Science Foundation of China (No.21731003).

    Supplementary materials

    Supplementary material associated with this article can be found,in the online version,at doi:10.1016/j.cclet.2023.108320.

    精品人妻偷拍中文字幕| 777米奇影视久久| 综合色丁香网| 天堂俺去俺来也www色官网| 精品视频人人做人人爽| 女性生殖器流出的白浆| 69精品国产乱码久久久| 日本av手机在线免费观看| 国产乱来视频区| 成年女人在线观看亚洲视频| a级毛片在线看网站| 色婷婷av一区二区三区视频| 日韩欧美精品免费久久| 一个人免费看片子| 国产成人精品在线电影| 亚洲av成人精品一二三区| xxxhd国产人妻xxx| 国产精品久久久久久久久免| 亚洲精品美女久久av网站| 亚洲精品久久久久久婷婷小说| av又黄又爽大尺度在线免费看| 亚洲欧美一区二区三区久久| 免费黄频网站在线观看国产| 免费观看av网站的网址| 国产亚洲欧美精品永久| 一本久久精品| 男女午夜视频在线观看| 永久网站在线| 国产亚洲午夜精品一区二区久久| 亚洲精品第二区| 一个人免费看片子| 国产免费福利视频在线观看| 欧美中文综合在线视频| 精品少妇一区二区三区视频日本电影 | 亚洲精品国产一区二区精华液| 亚洲综合精品二区| 久久久久久久亚洲中文字幕| 中文字幕另类日韩欧美亚洲嫩草| 一级片'在线观看视频| 亚洲欧美清纯卡通| 久久精品熟女亚洲av麻豆精品| 永久网站在线| 欧美国产精品一级二级三级| 激情视频va一区二区三区| kizo精华| 最黄视频免费看| xxxhd国产人妻xxx| av线在线观看网站| 成年美女黄网站色视频大全免费| 十分钟在线观看高清视频www| 王馨瑶露胸无遮挡在线观看| 国产精品麻豆人妻色哟哟久久| 黑丝袜美女国产一区| 一区二区av电影网| 亚洲婷婷狠狠爱综合网| 亚洲国产毛片av蜜桃av| 免费观看在线日韩| 国产精品免费大片| 国产日韩欧美视频二区| 人妻一区二区av| 91国产中文字幕| 黑人欧美特级aaaaaa片| 18禁观看日本| 国产熟女欧美一区二区| 亚洲国产av新网站| 亚洲欧美一区二区三区久久| 国产精品麻豆人妻色哟哟久久| 免费观看av网站的网址| 精品久久久精品久久久| tube8黄色片| 中文字幕另类日韩欧美亚洲嫩草| 国产亚洲午夜精品一区二区久久| 久久人人爽人人片av| 赤兔流量卡办理| 日韩人妻精品一区2区三区| 欧美中文综合在线视频| 免费看av在线观看网站| 国产成人精品在线电影| 国产成人精品婷婷| 国产精品国产三级国产专区5o| 午夜免费男女啪啪视频观看| 国产精品无大码| 精品少妇久久久久久888优播| 久久久久久久大尺度免费视频| 国产一区二区三区综合在线观看| 亚洲欧美成人综合另类久久久| 王馨瑶露胸无遮挡在线观看| 在线观看一区二区三区激情| 成人毛片60女人毛片免费| 日韩av免费高清视频| 黄色视频在线播放观看不卡| 亚洲精品一二三| 久久99蜜桃精品久久| 天堂8中文在线网| 飞空精品影院首页| 色94色欧美一区二区| 99香蕉大伊视频| www.熟女人妻精品国产| 国语对白做爰xxxⅹ性视频网站| 亚洲精品中文字幕在线视频| 国产精品不卡视频一区二区| 午夜日本视频在线| 中文精品一卡2卡3卡4更新| av国产久精品久网站免费入址| 国产爽快片一区二区三区| 精品人妻熟女毛片av久久网站| 婷婷色麻豆天堂久久| 免费久久久久久久精品成人欧美视频| 亚洲精品久久午夜乱码| 狂野欧美激情性bbbbbb| 亚洲第一av免费看| 人人妻人人澡人人爽人人夜夜| 天天躁夜夜躁狠狠久久av| 久久精品久久久久久噜噜老黄| 男女边吃奶边做爰视频| videossex国产| 一区二区三区激情视频| 亚洲三级黄色毛片| 国产男女超爽视频在线观看| 成人手机av| 精品午夜福利在线看| 久久久久久久精品精品| 在线 av 中文字幕| 精品亚洲乱码少妇综合久久| 亚洲视频免费观看视频| 亚洲欧美精品自产自拍| 中文欧美无线码| 国产成人精品婷婷| av国产久精品久网站免费入址| 妹子高潮喷水视频| 精品一品国产午夜福利视频| 久久久国产精品麻豆| 中文欧美无线码| 91久久精品国产一区二区三区| a 毛片基地| 久久精品熟女亚洲av麻豆精品| 午夜福利,免费看| 国产精品久久久久成人av| 999精品在线视频| 精品人妻熟女毛片av久久网站| 国产成人精品久久久久久| 亚洲欧洲国产日韩| 国精品久久久久久国模美| 狠狠精品人妻久久久久久综合| 捣出白浆h1v1| 99热国产这里只有精品6| 啦啦啦在线免费观看视频4| 老汉色∧v一级毛片| 高清视频免费观看一区二区| 男女免费视频国产| 国产成人免费观看mmmm| 9色porny在线观看| 国产精品嫩草影院av在线观看| 精品99又大又爽又粗少妇毛片| 宅男免费午夜| 天天操日日干夜夜撸| 国产成人91sexporn| 国精品久久久久久国模美| 韩国高清视频一区二区三区| 成人午夜精彩视频在线观看| 最近最新中文字幕大全免费视频 | 久久精品国产亚洲av天美| 亚洲成av片中文字幕在线观看 | 国产亚洲一区二区精品| 女性生殖器流出的白浆| www.熟女人妻精品国产| videos熟女内射| 久久免费观看电影| 中文字幕av电影在线播放| 午夜精品国产一区二区电影| 国产在线视频一区二区| 成人午夜精彩视频在线观看| 性高湖久久久久久久久免费观看| 国产男女内射视频| 国产免费现黄频在线看| 亚洲av中文av极速乱| 中文字幕最新亚洲高清| 热re99久久精品国产66热6| 久久av网站| 日本午夜av视频| 嫩草影院入口| 精品人妻一区二区三区麻豆| 大香蕉久久网| 久久免费观看电影| 亚洲av福利一区| 一本久久精品| 精品亚洲成a人片在线观看| 看十八女毛片水多多多| 一区在线观看完整版| 成人漫画全彩无遮挡| 日韩中文字幕欧美一区二区 | 日本wwww免费看| 9色porny在线观看| 亚洲欧美精品综合一区二区三区 | 天天躁夜夜躁狠狠久久av| 最近中文字幕高清免费大全6| 精品亚洲成国产av| 日本色播在线视频| 亚洲欧美日韩另类电影网站| 国产av码专区亚洲av| 国产高清国产精品国产三级| 午夜影院在线不卡| 一区二区av电影网| 免费看av在线观看网站| 久久久久久久久久久久大奶| 欧美日韩国产mv在线观看视频| 少妇的逼水好多| 久久精品久久久久久噜噜老黄| 亚洲国产精品成人久久小说| 大香蕉久久网| 国产一区二区 视频在线| 精品亚洲乱码少妇综合久久| 免费观看a级毛片全部| 2021少妇久久久久久久久久久| 99国产精品免费福利视频| 最近最新中文字幕免费大全7| 日韩一区二区三区影片| 国产女主播在线喷水免费视频网站| 日本av手机在线免费观看| 免费少妇av软件| 一区在线观看完整版| www日本在线高清视频| 亚洲久久久国产精品| 亚洲精品乱久久久久久| 黑人巨大精品欧美一区二区蜜桃| 男女边摸边吃奶| 丰满少妇做爰视频| 亚洲男人天堂网一区| 久久久久国产一级毛片高清牌| 久热久热在线精品观看| freevideosex欧美| 亚洲国产色片| 久久久久久久久久久免费av| 黄片播放在线免费| 少妇的逼水好多| 女人精品久久久久毛片| 纯流量卡能插随身wifi吗| 国产女主播在线喷水免费视频网站| 国精品久久久久久国模美| 久热这里只有精品99| 久久精品国产自在天天线| 曰老女人黄片| 肉色欧美久久久久久久蜜桃| 亚洲成人手机| 欧美激情极品国产一区二区三区| 成人18禁高潮啪啪吃奶动态图| 天天躁狠狠躁夜夜躁狠狠躁| 日韩不卡一区二区三区视频在线| 成人二区视频| 国产精品国产三级专区第一集| 亚洲欧美清纯卡通| 看十八女毛片水多多多| 久久精品久久精品一区二区三区| 亚洲欧美成人精品一区二区| 多毛熟女@视频| 男女午夜视频在线观看| 日韩不卡一区二区三区视频在线| 久热久热在线精品观看| 国产精品成人在线| 欧美成人午夜精品| 男女啪啪激烈高潮av片| 成年人午夜在线观看视频| 久久久国产精品麻豆| 中文字幕最新亚洲高清| 日韩一区二区视频免费看| 亚洲伊人久久精品综合| 熟妇人妻不卡中文字幕| 日韩中字成人| 国产精品久久久久久精品古装| 国产福利在线免费观看视频| 超碰成人久久| 人人妻人人澡人人爽人人夜夜| 丰满迷人的少妇在线观看| 欧美av亚洲av综合av国产av | 精品少妇内射三级| 国产成人精品福利久久| 中文字幕最新亚洲高清| 国产精品国产av在线观看| 国产一区亚洲一区在线观看| videos熟女内射| 欧美日韩一级在线毛片| 欧美亚洲日本最大视频资源| 两性夫妻黄色片| a级毛片黄视频| 精品国产一区二区三区久久久樱花| 日韩成人av中文字幕在线观看| 赤兔流量卡办理| av又黄又爽大尺度在线免费看| 丝瓜视频免费看黄片| 成人手机av| 亚洲欧美精品综合一区二区三区 | 亚洲成人手机| 精品少妇黑人巨大在线播放| 在线观看国产h片| 国产淫语在线视频| 国产亚洲欧美精品永久| 久久国产精品男人的天堂亚洲| 日本wwww免费看| 国产精品久久久久久久久免| 哪个播放器可以免费观看大片| 免费黄色在线免费观看| 国产成人精品久久二区二区91 | 亚洲欧美精品综合一区二区三区 | 好男人视频免费观看在线| 亚洲久久久国产精品| 亚洲精品国产色婷婷电影| 日韩视频在线欧美| 一级片'在线观看视频| 丁香六月天网| av免费在线看不卡| 久久久国产欧美日韩av| 亚洲精品乱久久久久久| 丝袜喷水一区| 日韩三级伦理在线观看| 国产日韩欧美在线精品| 亚洲综合色网址| 亚洲国产精品国产精品| 精品一区二区免费观看| 精品人妻一区二区三区麻豆| 七月丁香在线播放| 日本91视频免费播放| 极品人妻少妇av视频| 婷婷成人精品国产| 欧美日韩成人在线一区二区| 国产成人aa在线观看| 男女下面插进去视频免费观看| 婷婷色综合www| 亚洲av电影在线进入| 啦啦啦在线免费观看视频4| 伦精品一区二区三区| 在线观看国产h片| 少妇的逼水好多| 欧美中文综合在线视频| 亚洲人成网站在线观看播放| 国产人伦9x9x在线观看 | av国产精品久久久久影院| 国产成人一区二区在线| 天美传媒精品一区二区| 亚洲精品美女久久av网站| 青青草视频在线视频观看| 另类亚洲欧美激情| 精品一区在线观看国产| 18禁国产床啪视频网站| 在线观看美女被高潮喷水网站| 久久亚洲国产成人精品v| 国产亚洲最大av| 成人午夜精彩视频在线观看| 国产人伦9x9x在线观看 | 91精品国产国语对白视频| 欧美人与善性xxx| 国产一区二区 视频在线| 亚洲精华国产精华液的使用体验| 亚洲国产精品一区三区| 中文字幕人妻丝袜一区二区 | 婷婷色av中文字幕| 成人黄色视频免费在线看| 啦啦啦啦在线视频资源| 观看av在线不卡| 香蕉精品网在线| 久热这里只有精品99| 久久久久国产一级毛片高清牌| 久久久a久久爽久久v久久| 日本vs欧美在线观看视频| 国产在线一区二区三区精| 久久久精品国产亚洲av高清涩受| 老熟女久久久| 色吧在线观看| 免费少妇av软件| 777米奇影视久久| 国产色婷婷99| 男女高潮啪啪啪动态图| 久久亚洲国产成人精品v| 成人18禁高潮啪啪吃奶动态图| 欧美老熟妇乱子伦牲交| 精品少妇久久久久久888优播| 91精品三级在线观看| xxxhd国产人妻xxx| 久久久国产精品麻豆| 丝袜美足系列| 肉色欧美久久久久久久蜜桃| 亚洲国产色片| 丝袜人妻中文字幕| 亚洲成人一二三区av| 成人黄色视频免费在线看| 如何舔出高潮| 亚洲美女视频黄频| 91成人精品电影| 日韩中文字幕视频在线看片| 久久婷婷青草| 国产高清国产精品国产三级| 久久精品国产亚洲av涩爱| 一区二区三区四区激情视频| 欧美最新免费一区二区三区| 夜夜骑夜夜射夜夜干| 国产成人精品久久久久久| 国产片特级美女逼逼视频| 中文天堂在线官网| 国产精品一二三区在线看| 黄片无遮挡物在线观看| 久久人人97超碰香蕉20202| 最新中文字幕久久久久| videos熟女内射| 日韩三级伦理在线观看| 成人午夜精彩视频在线观看| 青青草视频在线视频观看| 久久久久精品人妻al黑| 午夜福利视频精品| 国产av码专区亚洲av| 欧美国产精品va在线观看不卡| 天天操日日干夜夜撸| 久久久久国产精品人妻一区二区| 黄片无遮挡物在线观看| 日韩制服丝袜自拍偷拍| av又黄又爽大尺度在线免费看| 久久精品熟女亚洲av麻豆精品| 欧美另类一区| 91精品三级在线观看| 啦啦啦在线免费观看视频4| 90打野战视频偷拍视频| 欧美国产精品va在线观看不卡| av网站免费在线观看视频| 亚洲欧美一区二区三区国产| 欧美日韩视频精品一区| 久久精品国产鲁丝片午夜精品| 一本色道久久久久久精品综合| 精品一区二区三卡| 亚洲av电影在线观看一区二区三区| 亚洲男人天堂网一区| 亚洲精品av麻豆狂野| 国产男女超爽视频在线观看| 成年人午夜在线观看视频| 男女边摸边吃奶| 亚洲成人一二三区av| 成人国产麻豆网| 午夜福利视频在线观看免费| 国产男女内射视频| 伦精品一区二区三区| 少妇猛男粗大的猛烈进出视频| 少妇人妻 视频| a 毛片基地| 亚洲精品,欧美精品| 香蕉精品网在线| 日本vs欧美在线观看视频| 狠狠精品人妻久久久久久综合| 国产精品秋霞免费鲁丝片| 国产精品麻豆人妻色哟哟久久| 欧美中文综合在线视频| 精品少妇黑人巨大在线播放| 亚洲欧美一区二区三区久久| 男的添女的下面高潮视频| 一级黄片播放器| 美女主播在线视频| 亚洲国产毛片av蜜桃av| 成人影院久久| 看十八女毛片水多多多| 中文乱码字字幕精品一区二区三区| 亚洲精品日韩在线中文字幕| 999久久久国产精品视频| 国产精品亚洲av一区麻豆 | 中文天堂在线官网| 999精品在线视频| 精品久久久久久电影网| 精品国产一区二区三区四区第35| 亚洲情色 制服丝袜| 亚洲经典国产精华液单| 9热在线视频观看99| 青草久久国产| 国产日韩欧美亚洲二区| av一本久久久久| 不卡视频在线观看欧美| 一级毛片我不卡| av网站免费在线观看视频| 国产无遮挡羞羞视频在线观看| 日韩不卡一区二区三区视频在线| 青春草视频在线免费观看| 亚洲情色 制服丝袜| 成人亚洲精品一区在线观看| 国产精品久久久久久精品电影小说| 超色免费av| 韩国精品一区二区三区| 国产男女内射视频| 欧美日本中文国产一区发布| 2021少妇久久久久久久久久久| 18在线观看网站| 成年av动漫网址| 啦啦啦在线观看免费高清www| 欧美黄色片欧美黄色片| 欧美日韩国产mv在线观看视频| av网站免费在线观看视频| 亚洲精品中文字幕在线视频| 成人国语在线视频| 国产精品不卡视频一区二区| 好男人视频免费观看在线| 中文天堂在线官网| 久久久久久人人人人人| 日韩三级伦理在线观看| 人妻一区二区av| 精品国产国语对白av| 欧美精品人与动牲交sv欧美| 美女视频免费永久观看网站| 久久久久视频综合| 欧美人与善性xxx| 人妻人人澡人人爽人人| 超色免费av| 高清在线视频一区二区三区| 国产亚洲最大av| 看十八女毛片水多多多| 777久久人妻少妇嫩草av网站| 哪个播放器可以免费观看大片| 一个人免费看片子| 久久人人爽av亚洲精品天堂| 国产av精品麻豆| 一级黄片播放器| 亚洲国产av新网站| 日韩欧美一区视频在线观看| 久久 成人 亚洲| 天天操日日干夜夜撸| 香蕉精品网在线| 在线观看三级黄色| 十八禁网站网址无遮挡| 女性被躁到高潮视频| 日本色播在线视频| 国产免费又黄又爽又色| 亚洲 欧美一区二区三区| 亚洲欧美精品自产自拍| 美女视频免费永久观看网站| 777米奇影视久久| 老汉色av国产亚洲站长工具| 亚洲综合精品二区| 国产精品成人在线| 久久久久久久亚洲中文字幕| 校园人妻丝袜中文字幕| 大话2 男鬼变身卡| 18禁动态无遮挡网站| 熟女少妇亚洲综合色aaa.| 黄色配什么色好看| 美女国产高潮福利片在线看| 看非洲黑人一级黄片| 久久婷婷青草| 美女福利国产在线| 天天躁夜夜躁狠狠久久av| 日韩制服丝袜自拍偷拍| 亚洲欧洲精品一区二区精品久久久 | 少妇精品久久久久久久| 国产一区二区 视频在线| 中文字幕另类日韩欧美亚洲嫩草| 另类精品久久| 午夜激情久久久久久久| 伦理电影大哥的女人| 最近2019中文字幕mv第一页| 日韩一卡2卡3卡4卡2021年| 1024香蕉在线观看| 春色校园在线视频观看| 黄片无遮挡物在线观看| 久久国产精品男人的天堂亚洲| 久久精品久久精品一区二区三区| 人成视频在线观看免费观看| 亚洲国产成人一精品久久久| 免费久久久久久久精品成人欧美视频| 国产精品久久久av美女十八| 欧美日韩视频高清一区二区三区二| 欧美xxⅹ黑人| 国产欧美日韩一区二区三区在线| 亚洲内射少妇av| 国产成人精品福利久久| 少妇人妻精品综合一区二区| 日日撸夜夜添| 中文字幕人妻丝袜一区二区 | 一区福利在线观看| 大片免费播放器 马上看| 国产精品国产三级专区第一集| 免费黄频网站在线观看国产| 看免费av毛片| 久久久久久久久久久久大奶| 久久精品国产鲁丝片午夜精品| 两个人看的免费小视频| 最近最新中文字幕大全免费视频 | 久久精品久久久久久久性| av又黄又爽大尺度在线免费看| 黄色配什么色好看| 免费黄色在线免费观看| 成人国语在线视频| 免费大片黄手机在线观看| 国产精品免费视频内射| 一级毛片 在线播放| 不卡视频在线观看欧美| 亚洲欧美一区二区三区国产| 一级毛片 在线播放| 精品人妻熟女毛片av久久网站| a 毛片基地| 日日撸夜夜添| 老汉色av国产亚洲站长工具| 国产黄色视频一区二区在线观看| 色婷婷av一区二区三区视频| 亚洲久久久国产精品| a 毛片基地| 一级毛片 在线播放| 国产一区二区三区综合在线观看| 亚洲欧美一区二区三区国产| 成人国产av品久久久| 久久99一区二区三区| 久久久久久人妻| 亚洲欧洲精品一区二区精品久久久 | 伦精品一区二区三区| 久久久久精品性色| av片东京热男人的天堂| 国产一区二区三区综合在线观看| 最近的中文字幕免费完整| 免费不卡的大黄色大毛片视频在线观看| 岛国毛片在线播放| 在线免费观看不下载黄p国产| 国产成人免费观看mmmm| 看免费成人av毛片| 在线免费观看不下载黄p国产| 可以免费在线观看a视频的电影网站 |