• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Precisely manipulation of core composition of core-shell-type cobalt polyoxoniobates and proton conduction study

    2024-04-06 06:21:12ZhengWeiGuoYiChenZheHongChenXinXiongLiShouTianZheng
    Chinese Chemical Letters 2024年1期

    Zheng-Wei Guo,Yi Chen,Zhe-Hong Chen,Xin-Xiong Li ,Shou-Tian Zheng

    State Key Laboratory of Photocatalysis on Energy and Environment,School of Chemistry,Fuzhou University,Fuzhou 350108,China

    Keywords: Polyoxoniobate Core-shell Nanocluster Atomic-level modulation Proton conduction

    ABSTRACT The development of core-shell nanoclusters with controllable composition is of utmost importance as the material properties depend on their constituent elements.However,precisely tuning their compositions at the atomic scale is not easily achieved because of the difficulty of using limited macroscopic synthetic methods for atomic-level modulation.In this work,we report an interesting example of precisely regulating the core composition of an inorganic core-shell-type cobalt polyoxoniobate [Co26Nb36O140]32- by controlling reaction conditions,in which the inner Co-core composition could be tune while retaining the outer Nb-shell composition of resulting product,leading to a series of isostructural species with a general formula of {Co26-nNb36+nO140} (n=0–2).These rare species not only can display good powder and single-crystal proton conductivities,but also might provide helpful and atomic-level insights into the syntheses,structures and composition modifications of inorganic amorphous core-shell heterometal oxide nanoparticles.?Corresponding authors.

    Core-shell nanostructures have attracted significant interest due to their charming configurations and intercomponent synergistic effects that might enhance their expected functions or launch exotic properties [1–21].These have rendered the core-shell nanostructures one of prime targets in the development of advanced composite materials.Of them,intensive synthetic efforts have been invested into the development of inorganic core-shell metal nanoparticles during the past decade [1–13].Precise construction of core-shell species with well-defined molecular structures and compositions is of significance to atomic-level understanding and regulation of their properties.However,although some effective approaches have been explored to precisely control the size,shape,thickness and composition of core-shell metal nanoparticles,it is still an enormous challenge to achieve their atomic-level bonding geometry and structural characterization.

    Crystalline inorganic core-shell metal oxide nanoclusters with atomically and geometrically precise structural information are of great interest not only due to their fascinating structural features with unusual physical and chemical properties [22–29],but also important roles as the molecular models for the structures and physicochemical properties of inorganic core-shell metal oxide nanoparticles.Particularly,precisely tuning material compositions at the atomic scale remains an attractive target and scientifically interesting not only for developing novel composite materials with controllable composition but also providing atomic-level insights into the structures and physicochemical properties of amorphous core-shell heterometal nanoparticles.

    Nevertheless,the targeted growth of inorganic core-shell heterometal oxide nanoclusters with atomic precision is still beyond our capacity owing to the difficulty of atomic-level design of both core and shell and the complexity of self-assembly reactions.And thus,the development of such species is still being sought,lagged far behind that of inorganic core-shell metal nanoparticles.At present,known such nanoclusters are limited and some representative examples are Cu20@W48[24],V6@W48[25],M16@W48(M=Fe [26],Al or Ga [27]),Bi6@U24and Pb8@U24[28].

    Recently,we reported the synthesis of an allinorganic core-shell-type cobalt polyoxoniobate (PONb)Na8K14H10[Co26@Nb36]·nH2O (1,Co26@Nb36=[Co26Nb36O140]32-),in which a large 36-nuclearity PONb shell {Nb36O124} (Nb36) encloses a 26-nuclearity mixed-valence cobalt oxide core {Co26O32}(Co26) (Fig.1) [30].Interestingly,the core composition of Co26@Nb36is sensitive to the reaction conditions,allowing to precisely tune its inner Co-core content without affecting its outer Nb-shell composition and structure,resulting in a series of isostructures {Co26-nNb36+nO140} (n=0–2).Proton conduction experiments reveal that these materials have good proton conducting properties.

    Fig.1.The polyhedral representation of 1.CoO6 octahedra or CoO4 tetrahedra:green;NbO6: red.

    Solid1crystallized in a highly symmetric cubic space groupFm-3m.The 36-nuclearity Nb36shell structure can be described as a nanosizedTd-symmetry tetrahedral nanocage comprising four{Nb3O13} triangles positioned at its four vertices and four {Nb6O24}hexagonal rings laid flat on its four faces (Fig.2a),which are interlinked with each otherviacorner-sharing.The 26-nuclearity Co26core,also withTd-symmetry,contains a tetrahedral {CoIII16O20}core and ten CoIIO4tetrahedra.The {CoIII16O20} core can be seen as consisting of five CoIII4O4cubanes,wherein the innermost CoIII4O4cubane joins four tetrahedrally arranged CoIII4O4cubanes by sharing four CoIIIatoms (Fig.2b).Further,the ten CoIIO4tetrahedra occupy the six edge positions (in blue) and the four face-centered positions (in yellow) of the tetrahedral {CoIII16O20} coreviacornersharing with CoIIIO6octahedra,giving the overall mixed-valence Co26cluster.

    Fig.2.(a) Polyhedral representation of the sphere-like Nb36 nanocage and its two kinds of building units of {Nb3O13} triangle and {Nb6O24} hexagonal ring.(b) An illustration of the structure of the 26-nuclearity Co26 core.NbO6: red or purple;CoO6 octahedra: green;CoO4 tetrahedra: yellow or blue.

    Interestingly,the core composition of 1 is markedly affected by the reactants,allowing us to precisely manipulate its Cocore composition with atomic-level precision while keeping the same Nb-shell composition and topology.To begin with,we found that the starting phosphates of Na3PO4and KH2PO4in the reaction of1play a key role in determining the resulting core-shell nanocluster with an ordered or disordered core structure though they do not present in the products.Specifically,the reaction of1without the addition of phosphates yields an isomorph Na10K15H5[NbCo25@Nb36]·nH2O (2)(NbCo25@Nb36=[Co25Nb37O140]30-).As shown in Fig.3,the difference between Co26@Nb36and NbCo25@Nb36lies in that the four equivalent Co3+sites (related by aS4axis) of the innermost CoIII4O4cubane in the former are found to be occupied either by Nb5+or Co3+ions in the latter.The disordered site is refined freely to give a Co/Nb occupancy factor of 0.758/0.242,followed by fixing it to 0.75/0.25,and thus the core composition of Co25Nb@Nb36is NbCo25O32.

    Fig.3.A comparison of core compositions of Co26,NbCo25 and Nb2Co24 in 1, 2 and 3,respectively.Ordered CoO6 octahedra or CoO4 tetrahedra: green;Disordered MO6 octahedra: rose.

    The observed Nb/Co disorder in Co25Nb@Nb36reveals that Nb and Co ions compete to form the innermost cubane unit in the solution,and the addition of Na3PO4and KH2PO4favors the formation of ordered Co26@Nb36.Attempts to obtain analogs of Co26@Nb36proved fruitless by the replacment of the phosphates with nitrate,carbonate,sulfate,acetate or silicate.Considering that core-shell structures are usually grown from inside out,the distinct innermost cubanes of Co4O4and NbCo3O4indicate that the starting phosphates Na3PO4and KH2PO4should have a unique influence on the initial nucleation of the core-shell nanocluster.Unfortunately,the detailed role of the phosphates still remains unclear.Potentially,they can affect the competitive relationship between Nb5+and Co3+ions for the initial nucleation of core-shell nanoclustersviahydrogen bond interactions or affect the pH value of the reaction solution and thus the reaction and crystallization processes.

    Given that Nb and Co ions can compete to form the innermost metal cubane,we set out to explore the molecular growth of the core-shell Co-Nb clusters by adjusting the starting Co/Nb ratio to see if it can affect the core composition of resulting cluster.We studied the Co/Nb ratio influence over the range from 1:9 to 1:1,with the amount of K7HNb6O19·13H2O fixed at 0.33 mmol.When the Co/Nb ratios are in the range of 1:9~1:5 (noted that the Co/Nb ratio in the reaction of2is about 1:8),the obtained core-shell nanoclusters are all the same as NbCo25@Nb36found in2,as confirmed by single-crystal X-ray diffraction analyses of four single crystals from the four same reactions as2but with different initial Co/Nb ratios of 1:9,1:7,1:6 and 1:5,respectively.Increasing the Co/Nb ratio to 1:4 results in the formation of a new isostructural compound Na10K15H3[Nb2Co24@Nb36]·nH2O (3)(Nb2Co24@Nb36=[Co24Nb38O140]28-),in which all trivalent Co3+sites,that is,all Co sites of the whole tetrahedral {CoIII16O20}core in Co26@Nb36,are found as disordered Co/Nb sites in Nb2Co24@Nb36(Fig.3).The asymmetric unit of the {M16O20} (M stands for disordered Co/Nb sites) core in Nb2Co24@Nb36contains two crystallographic independent M sites of M1 and M2,which are refined freely to give Co/Nb occupancy factors of 0.789/0.211 and 0.892/0.108,respectively,followed by fixing them to 0.8/0.2 and 0.9/0.1.Since the {M16O20} consists of four M1 and twelve M2,its composition exactly is {Nb2Co14}.Similar to the bivalent Co2+sites in Co26@Nb36and NbCo25@Nb36,all Co2+sites in Nb2Co24@Nb36are found to be full occupancy.And thus,the overall core composition is Nb2Co24.We further increased the Co/Nb ratios from 1:3 to 1:1 with attempt to get new isostructres and to check if these tetrahedrally coordinated Co2+sites can be disordered as Co/Nb sites,however,no isostructural species but amorphous phases were obtained.

    The distinct inner core compositions make NbCo25@Nb36and Nb2Co24@Nb36nanoclusters have different cluster charges of -30 and -28,respectively.Considering that the only difference in the syntheses of them is the starting amount of CoCl2,we attribute the formation of the distinct isostructures NbCo25@Nb36and Nb2Co24@Nb36to the role of the Co2+ions on the mediation of solution pHviahydrolysis.It is known that,in basic solution,a higher solution pH will stabilize a higher-charge polyoxoanion.With different starting Co/Nb ratios from 1:9 to 1:5,the pH values after reactions are about 12.5±0.1 (Table S1 in Supporting information),suggesting the Co/Nb ratios in the range from 1:9 to 1:5 have little effect on the pH values of reactions.Accordingly,all these reactions yield the same nanocluster of NbCo25@Nb36with a net charge of -30.While,when the Co/Nb ratio increases to 1:4,the pH value after reaction decreases to 11.9,suggesting that this ratio has an obvious effect on the pH value of reaction.Accordingly,the reaction gives Nb2Co24@Nb36with a lower net charge(-28) compared to NbCo25@Nb36.We can therefore speculate that the hydrolysis of different Co2+concentrations lead to reaction solutions with different pH values,which makein-situgenerating intermediates adjust their inner core compositions to form isostructural clusters with different negative charges that could be adapted to different pH values of reaction solutions.

    The above results reveal that the atomic-level modulation of core-shell Co26@Nb36cluster with order/disorder core structure and programmable core composition can be achieved by controlling the starting reagents.The obtainment of the series of coreshell Co-Nb bimetallic clusters constitutes a family with a general formula of {Co26-nNb36+nO140} (n=0–2 in this work).These nanoclusters might provide atomic-level insights into the influence of the starting chemicals on the structures and compositions of amorphous bimetallic core-shell nanoparticles.Additionally,the observed disordered core structure evolution from {Co4O4}to {NbCo3O4},and to {Nb2Co14O20} provides a case to reveal an inside-out molecular growth of core-shell bimetal nanoclusters at atomic level.

    The metal contents of2–3were determined by ICP analyses,which are in good agreement with the calculated values based on single-crystal X-ray diffraction analyses (Table S2 in Supporting information).Further,XPS were performed to confirm their ratios in2–3(Fig.S1 in supporting information).Curve-fitting of the highresolution Co 2p spectra reveals that the Co3+/Co2+ratios in2–3are 1.48 and 1.38,respectively,perfectly matching their corresponding Co3+/Co2+ratios of 1.50 and 1.40 identified by the BVS calculations [31].

    High chemical stabilities,the presence of counter cations (H+,Na+,and K+) and oxo-rich surface point to the possible utility of1as proton conducting material.The conductivity of1was investigated by ac impedance measurements using a two-electrode configuration between 107and 1 Hz.The humidity-dependent conductivity was first measured at room temperature (RT) (25°C).As dipicted in Fig.4a,the conductivity is 2.68×10-4S/cm at 55% relative humidity (RH),and it incerases to 1.74×10-3S/cm when RH maintianed at 98%.Next,the temperature-dependent proton conductivity was measured over the temperature range of 25–85°C under 98% RH.The result reveal that the conductivity of1reaches 2.64×10-2S/cm at 85°C (Fig.4b),which is among the highest conductivity reported for POMs (Table S3 in Supporting information).According to the Arrhenius equationσ T=σ0exp(-Ea/kBT),the activation energy,determined by linear regression analysis,is estimated to 0.304 eV (Fig.4c),indicating that conduction is mainly carried out by the “Grotthus” mechanism (Ea<0.4).We attribute the excellent proton conductivity to the presence of rich proton carriers within the structure of1,including water molecules and terminal oxygen atoms,which help to form hydrogen-bonded proton “hopping” networks [32–35].Additionally,the PXRD patterns showed that the sample remain consistent before and after conduction tests,revealing the integrity of sample1(Fig.4d).

    Fig.4.(a) Nyquist plot for 1 under different relative humidity.(b) Nyquist plot for 1 under different temperatures with 98% RH.(c) Plot of ln(σ T) vs. 1000/T for 1.(d)PXRD patterns of 1 before and after tests.

    Although extensive research efforts have been devoted to studying the proton-conducting performances of POMs [36–40],most of them are based on compacted crystalline powder samples.The research on the conductivities of single-crystal POMs remains largely unexplored.Given that1–3contain different amounts of cations and might exhibit distinct conductivities,the single crystal proton conductivities of1–3were further investigated by ac impedance measurements using single crystals over the temperature range of 35–75°C under 98% RH.Ag wires were carefully attached to a cubic crystal (0.20 mm×0.20 mm×0.20 mm) by using conductive silver paste along opposite faces.The temperature-dependent conductivity measurements reveal that the singel crystal conductivity of1at 35°C is 2.2×10-6S/cm,which is comparable to those of some reported single-crystal POMs [39,40].As the temperature increases,the conductivity increases gradually and reaches a maximum of 1.08×10-5S/cm at 75°C (Fig.5a).The conductivities of2and3at 35°C,75°C with 98% RH are 1.54×10-6S/cm,6.84×10-6S/cm and 1.92×10-6S/cm,5.89×10-6S/cm,respectively (Figs.5b and c).The results show that the conductivities of1–3are almost at the same level.Nevertheless,crystal1with the most cations shows relatively high conductivity compared to crystals2and3.According to the Arrhenius equationσ T=σ0exp(-Ea/kBT),the activation energy of single crystals1–3,determined by linear regression analysis,are 0.354,0.346 and 0.260 eV,respectively,indicating that their conduction processes are mainly dominated by the“Grotthus” mechanism (Fig.5d).

    Fig.5.(a–c) Nyquist plots for single crystals of 1–3 under different temperatures with 98% RH,respectively (inset: proton conduction device).(d) Plots of ln(σ T) vs.1000/T for single crystals 1–3.

    In summary,we demonstrate that the inner core structure (in order/disorder) and composition (with different Co/Nb distributions) of a unique all-inorganic core-shell-type Co-Nb heteropolyoxoniobate Co26@Nb36can be precisely modulated by simple control of initial reaction reagents,leading to a family of isostructural core-shell nanoclusters {Co26-nNb36+nO140} (n=0–2) with precise atoms and structures.Further,their proton conductivities have been examined to showcase them as promising candidates for proton-conducting materials.These bimetallic core-shell structures with tunable core structures allow studies in rich host-guest chemistry to be envisaged.Furthermore,we anticipate that other novel transition metal clusters can be captured,resulting in new discoveries in metal oxo cluster chemistry.Finally,this series of rare all-inorganic and atomically precise Co-Nb core-shell nanoclusters might provide a foundation to understand and investigate the chemical processes of Co-Nb-based non-molecular counterparts including inorganic core-shell nanoparticles and bulk materials.

    Declaration of competing interest

    The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

    Acknowledgments

    We gratefully acknowledge the financial support from the National Natural Science Foundation of China (Nos.21971039 and 22171045) and the Key Program of Natural Science Foundation of Fujian Province (No.2021J02007).

    Supplementary materials

    Supplementary material associated with this article can be found,in the online version,at doi:10.1016/j.cclet.2023.109124.

    久久久精品94久久精品| 国产精品99久久久久久久久| 国产爱豆传媒在线观看| 变态另类丝袜制服| 在线免费十八禁| 亚洲国产精品国产精品| 大香蕉久久网| 久久亚洲精品不卡| 99国产精品一区二区蜜桃av| 国产精品久久久久久久久免| 天天一区二区日本电影三级| eeuss影院久久| 我要看日韩黄色一级片| 国产日本99.免费观看| 欧美潮喷喷水| 免费在线观看影片大全网站| 亚洲国产欧美人成| 日韩 亚洲 欧美在线| 久久久久久久久久久丰满| 91狼人影院| 小说图片视频综合网站| 婷婷色综合大香蕉| 99久久无色码亚洲精品果冻| 别揉我奶头 嗯啊视频| 婷婷亚洲欧美| www.色视频.com| 亚洲aⅴ乱码一区二区在线播放| 国产69精品久久久久777片| 天堂影院成人在线观看| 18+在线观看网站| 免费无遮挡裸体视频| 国产精品美女特级片免费视频播放器| av在线老鸭窝| 1000部很黄的大片| 露出奶头的视频| 国产精品嫩草影院av在线观看| 成年女人毛片免费观看观看9| 免费人成在线观看视频色| 精品一区二区三区人妻视频| 成年女人永久免费观看视频| 麻豆精品久久久久久蜜桃| 国产激情偷乱视频一区二区| 亚洲精品在线观看二区| 男女之事视频高清在线观看| 亚洲图色成人| 变态另类成人亚洲欧美熟女| 亚洲欧美日韩无卡精品| 美女xxoo啪啪120秒动态图| 在线免费观看不下载黄p国产| 日韩一区二区视频免费看| 两个人的视频大全免费| 久久久精品欧美日韩精品| 99热6这里只有精品| 波多野结衣巨乳人妻| 午夜福利高清视频| 91久久精品国产一区二区三区| 国产黄色视频一区二区在线观看 | 精品欧美国产一区二区三| 久久人妻av系列| 国产熟女欧美一区二区| 99在线人妻在线中文字幕| 老司机影院成人| 天堂网av新在线| 国产成人精品久久久久久| www.色视频.com| 18禁裸乳无遮挡免费网站照片| 校园春色视频在线观看| 18+在线观看网站| 亚洲中文字幕一区二区三区有码在线看| 丰满人妻一区二区三区视频av| 免费观看的影片在线观看| 毛片女人毛片| 免费黄网站久久成人精品| 青春草视频在线免费观看| 婷婷亚洲欧美| 久久精品影院6| 国产片特级美女逼逼视频| 青春草视频在线免费观看| 一进一出抽搐gif免费好疼| 国产成人福利小说| 一级黄片播放器| 亚洲欧美成人精品一区二区| 少妇丰满av| 久久韩国三级中文字幕| 淫妇啪啪啪对白视频| 在线a可以看的网站| 搡老岳熟女国产| 日本a在线网址| 欧美成人免费av一区二区三区| 亚洲国产精品合色在线| 亚洲成人精品中文字幕电影| 国产欧美日韩精品亚洲av| 精品久久久久久久末码| 欧美最黄视频在线播放免费| 最好的美女福利视频网| 18禁在线无遮挡免费观看视频 | 欧美一区二区国产精品久久精品| 久久人人爽人人片av| 国产高清三级在线| 亚洲精品日韩在线中文字幕 | 女人被狂操c到高潮| 天天一区二区日本电影三级| 日韩制服骚丝袜av| 老司机影院成人| 国产激情偷乱视频一区二区| 成人三级黄色视频| 免费搜索国产男女视频| 青春草视频在线免费观看| 日韩精品青青久久久久久| 99九九线精品视频在线观看视频| 欧美国产日韩亚洲一区| 成人毛片a级毛片在线播放| 国国产精品蜜臀av免费| 成熟少妇高潮喷水视频| 午夜福利在线观看免费完整高清在 | 三级国产精品欧美在线观看| 亚洲国产欧美人成| 午夜精品国产一区二区电影 | 91午夜精品亚洲一区二区三区| 噜噜噜噜噜久久久久久91| 简卡轻食公司| 国产伦精品一区二区三区四那| 欧美又色又爽又黄视频| 男女之事视频高清在线观看| 又爽又黄a免费视频| 永久网站在线| 日本爱情动作片www.在线观看 | 国产精品三级大全| 精品午夜福利视频在线观看一区| 精品一区二区三区视频在线观看免费| 国产精品精品国产色婷婷| 一级av片app| 精品福利观看| 亚洲精品粉嫩美女一区| 国产单亲对白刺激| 成人特级黄色片久久久久久久| 精品久久国产蜜桃| 欧美另类亚洲清纯唯美| 1000部很黄的大片| 欧美激情在线99| 国产综合懂色| 午夜福利高清视频| 亚洲最大成人av| 毛片女人毛片| 麻豆av噜噜一区二区三区| 精品久久久噜噜| 波野结衣二区三区在线| 91av网一区二区| 最近视频中文字幕2019在线8| 极品教师在线视频| 精品一区二区三区人妻视频| 我要搜黄色片| 中文在线观看免费www的网站| 国产老妇女一区| 97超视频在线观看视频| 国产单亲对白刺激| 午夜福利在线观看免费完整高清在 | 综合色丁香网| 尤物成人国产欧美一区二区三区| 又粗又爽又猛毛片免费看| 国产黄色小视频在线观看| 精品欧美国产一区二区三| 搡老岳熟女国产| 黑人高潮一二区| 国产黄色视频一区二区在线观看 | 成人精品一区二区免费| 九九久久精品国产亚洲av麻豆| 99久国产av精品国产电影| 老师上课跳d突然被开到最大视频| av天堂中文字幕网| 久久久久久久久大av| 别揉我奶头~嗯~啊~动态视频| 中国美白少妇内射xxxbb| 村上凉子中文字幕在线| 麻豆国产av国片精品| 欧美绝顶高潮抽搐喷水| 长腿黑丝高跟| 国产精品久久电影中文字幕| 嫩草影视91久久| av视频在线观看入口| 久久久久久久亚洲中文字幕| 99国产极品粉嫩在线观看| 男女视频在线观看网站免费| 午夜日韩欧美国产| 丰满人妻一区二区三区视频av| 国产中年淑女户外野战色| 色综合色国产| av在线天堂中文字幕| 亚洲国产精品久久男人天堂| 2021天堂中文幕一二区在线观| av卡一久久| 啦啦啦韩国在线观看视频| 国产一区二区三区av在线 | 精品久久久久久久久久免费视频| 国产一区二区在线观看日韩| 99热全是精品| 成人亚洲欧美一区二区av| 亚洲最大成人av| 国产乱人偷精品视频| 亚洲欧美精品自产自拍| 亚洲18禁久久av| 久久久国产成人精品二区| 99视频精品全部免费 在线| 91久久精品国产一区二区三区| 欧美高清性xxxxhd video| 老熟妇仑乱视频hdxx| 欧美zozozo另类| 一级毛片aaaaaa免费看小| av国产免费在线观看| 久久九九热精品免费| 久久精品国产亚洲av涩爱 | 欧美色视频一区免费| 搞女人的毛片| 欧美性猛交黑人性爽| 直男gayav资源| 男人舔奶头视频| 嫩草影院入口| 亚洲国产日韩欧美精品在线观看| 国产精品免费一区二区三区在线| 亚洲av电影不卡..在线观看| 午夜福利在线在线| 麻豆成人午夜福利视频| 高清午夜精品一区二区三区 | 免费看av在线观看网站| 日韩一本色道免费dvd| 性插视频无遮挡在线免费观看| 少妇的逼水好多| 久久婷婷人人爽人人干人人爱| 熟女人妻精品中文字幕| 免费无遮挡裸体视频| 日韩强制内射视频| 久久精品国产99精品国产亚洲性色| 国产白丝娇喘喷水9色精品| 国产成人福利小说| 日本一本二区三区精品| 亚洲成人精品中文字幕电影| 最近2019中文字幕mv第一页| 亚洲欧美精品自产自拍| 在线观看午夜福利视频| 婷婷亚洲欧美| 男女之事视频高清在线观看| 99久久精品一区二区三区| 草草在线视频免费看| 热99re8久久精品国产| 女同久久另类99精品国产91| 嫩草影院新地址| 成人欧美大片| 国产一区亚洲一区在线观看| 久久精品国产鲁丝片午夜精品| 久久久午夜欧美精品| 99riav亚洲国产免费| 国产一区二区在线av高清观看| 午夜精品国产一区二区电影 | 亚洲美女视频黄频| 91精品国产九色| 久久久久久九九精品二区国产| 天天躁日日操中文字幕| 不卡视频在线观看欧美| a级毛片免费高清观看在线播放| 国产大屁股一区二区在线视频| 亚洲成人精品中文字幕电影| 久久久久性生活片| av.在线天堂| 亚洲av第一区精品v没综合| 99精品在免费线老司机午夜| 日韩中字成人| 99久国产av精品国产电影| 婷婷亚洲欧美| av在线播放精品| 18+在线观看网站| 日韩三级伦理在线观看| 国产aⅴ精品一区二区三区波| 日韩精品青青久久久久久| 两个人视频免费观看高清| 真人做人爱边吃奶动态| 日韩欧美精品v在线| 日韩高清综合在线| 网址你懂的国产日韩在线| 久久综合国产亚洲精品| 国产精品不卡视频一区二区| 久久精品综合一区二区三区| 啦啦啦韩国在线观看视频| 亚洲av.av天堂| 成年女人毛片免费观看观看9| 日韩一本色道免费dvd| 国产亚洲av嫩草精品影院| 黄色一级大片看看| 五月玫瑰六月丁香| 亚洲久久久久久中文字幕| 2021天堂中文幕一二区在线观| 在线免费十八禁| 亚洲中文字幕日韩| 午夜福利在线观看吧| 国产精品99久久久久久久久| 俄罗斯特黄特色一大片| 尾随美女入室| 国产一区二区激情短视频| 午夜久久久久精精品| 日韩中字成人| 色av中文字幕| 国产爱豆传媒在线观看| 日本免费a在线| 国产精品一区二区免费欧美| 婷婷六月久久综合丁香| 国产久久久一区二区三区| 欧美日本亚洲视频在线播放| 日本撒尿小便嘘嘘汇集6| 麻豆久久精品国产亚洲av| 一边摸一边抽搐一进一小说| 欧美日韩综合久久久久久| 亚洲aⅴ乱码一区二区在线播放| 午夜免费男女啪啪视频观看 | 丝袜喷水一区| 久久国产乱子免费精品| 黄色一级大片看看| 99国产精品一区二区蜜桃av| 国产精品一区二区三区四区免费观看 | 欧美成人精品欧美一级黄| 99久久久亚洲精品蜜臀av| 国产精华一区二区三区| 国产视频一区二区在线看| 欧美成人a在线观看| 日韩国内少妇激情av| 97在线视频观看| 极品教师在线视频| 女同久久另类99精品国产91| 久久6这里有精品| 日韩成人伦理影院| 色哟哟·www| 亚洲在线自拍视频| 深夜精品福利| 免费观看精品视频网站| 黑人高潮一二区| 九九爱精品视频在线观看| 午夜福利在线在线| 麻豆国产av国片精品| 久久精品91蜜桃| 一边摸一边抽搐一进一小说| 在线天堂最新版资源| 性插视频无遮挡在线免费观看| 日韩精品中文字幕看吧| av视频在线观看入口| 日韩国内少妇激情av| 在线观看美女被高潮喷水网站| 91在线观看av| 成人漫画全彩无遮挡| 黄色欧美视频在线观看| 男人舔女人下体高潮全视频| 亚洲av电影不卡..在线观看| 久久这里只有精品中国| 直男gayav资源| 久久这里只有精品中国| 级片在线观看| 国产一区亚洲一区在线观看| 99热精品在线国产| 成人特级av手机在线观看| 99精品在免费线老司机午夜| 一级毛片电影观看 | 久久久久久久午夜电影| 久久久久久久久中文| 成人特级av手机在线观看| 亚洲av中文字字幕乱码综合| 亚洲精品国产成人久久av| av专区在线播放| 变态另类丝袜制服| 久久久久久久久中文| 亚洲无线在线观看| 亚洲成av人片在线播放无| 久久久久久久午夜电影| 日韩成人伦理影院| 嫩草影院精品99| 成人综合一区亚洲| 亚洲av免费在线观看| 国产综合懂色| 国产av不卡久久| 中文字幕久久专区| 九九热线精品视视频播放| 国产激情偷乱视频一区二区| 我要看日韩黄色一级片| 日本熟妇午夜| 91久久精品国产一区二区成人| 国内精品一区二区在线观看| 国产成人a∨麻豆精品| 波野结衣二区三区在线| 国产亚洲精品久久久com| 亚洲一区二区三区色噜噜| 国产片特级美女逼逼视频| 国产精品综合久久久久久久免费| 99热全是精品| 亚洲精品成人久久久久久| 国产v大片淫在线免费观看| 少妇被粗大猛烈的视频| 欧美国产日韩亚洲一区| 亚洲精品色激情综合| 女的被弄到高潮叫床怎么办| 国产精品无大码| 女的被弄到高潮叫床怎么办| 国产成人91sexporn| 久久久a久久爽久久v久久| 亚洲国产欧洲综合997久久,| 亚洲人成网站在线观看播放| 偷拍熟女少妇极品色| 欧美人与善性xxx| 最近中文字幕高清免费大全6| 婷婷亚洲欧美| 亚洲欧美清纯卡通| 成人av一区二区三区在线看| 亚洲人与动物交配视频| 色在线成人网| 亚洲图色成人| 亚洲熟妇中文字幕五十中出| 精品久久久久久久人妻蜜臀av| 中国国产av一级| 国产成人freesex在线 | ponron亚洲| 欧美xxxx性猛交bbbb| 国产精品综合久久久久久久免费| 久久国内精品自在自线图片| 全区人妻精品视频| 麻豆成人午夜福利视频| 最好的美女福利视频网| 精品99又大又爽又粗少妇毛片| 久久久成人免费电影| 天堂影院成人在线观看| 亚洲精品粉嫩美女一区| 国产伦一二天堂av在线观看| 性插视频无遮挡在线免费观看| 在线天堂最新版资源| 麻豆成人午夜福利视频| 2021天堂中文幕一二区在线观| 国产精品久久久久久久久免| 日日撸夜夜添| 真人做人爱边吃奶动态| 精品免费久久久久久久清纯| 国产精品亚洲一级av第二区| 乱系列少妇在线播放| 国产av在哪里看| 晚上一个人看的免费电影| 菩萨蛮人人尽说江南好唐韦庄 | av女优亚洲男人天堂| 国内少妇人妻偷人精品xxx网站| 国产日本99.免费观看| 自拍偷自拍亚洲精品老妇| 最近的中文字幕免费完整| 精品人妻偷拍中文字幕| 中出人妻视频一区二区| 亚洲综合色惰| 天堂av国产一区二区熟女人妻| 中文字幕熟女人妻在线| 少妇高潮的动态图| 日本欧美国产在线视频| av中文乱码字幕在线| 女人被狂操c到高潮| 亚洲美女视频黄频| 联通29元200g的流量卡| 在线观看美女被高潮喷水网站| 国产白丝娇喘喷水9色精品| 国产亚洲av嫩草精品影院| 91午夜精品亚洲一区二区三区| 男人狂女人下面高潮的视频| www.色视频.com| 99热精品在线国产| 天美传媒精品一区二区| 在线天堂最新版资源| 日韩 亚洲 欧美在线| 亚洲成a人片在线一区二区| 人人妻人人澡欧美一区二区| 狂野欧美白嫩少妇大欣赏| 男女啪啪激烈高潮av片| 精品午夜福利视频在线观看一区| 在线免费观看的www视频| 成人精品一区二区免费| 丝袜美腿在线中文| 国产一级毛片七仙女欲春2| 一级黄片播放器| 男人舔女人下体高潮全视频| 国产色婷婷99| 美女xxoo啪啪120秒动态图| 亚洲经典国产精华液单| 午夜爱爱视频在线播放| 亚洲成人中文字幕在线播放| 亚洲av成人精品一区久久| 九九热线精品视视频播放| 久久久久国产精品人妻aⅴ院| 日本一二三区视频观看| 人人妻人人澡欧美一区二区| 久久久久精品国产欧美久久久| 精品久久国产蜜桃| 久久久久国产网址| 国产亚洲精品久久久com| 蜜臀久久99精品久久宅男| 一卡2卡三卡四卡精品乱码亚洲| 我的女老师完整版在线观看| 赤兔流量卡办理| 69av精品久久久久久| 亚洲第一区二区三区不卡| 国产日本99.免费观看| 男女做爰动态图高潮gif福利片| 亚洲在线观看片| 免费大片18禁| 欧美激情国产日韩精品一区| 我要搜黄色片| 女同久久另类99精品国产91| 非洲黑人性xxxx精品又粗又长| 日韩精品有码人妻一区| 美女被艹到高潮喷水动态| 亚洲av第一区精品v没综合| 亚洲电影在线观看av| av国产免费在线观看| 久久久a久久爽久久v久久| 我要看日韩黄色一级片| 九九在线视频观看精品| 精品无人区乱码1区二区| 国产精品av视频在线免费观看| 成人欧美大片| 免费人成视频x8x8入口观看| 国产爱豆传媒在线观看| 成年av动漫网址| 欧美精品国产亚洲| 久久久久国产网址| 亚洲欧美中文字幕日韩二区| eeuss影院久久| 大又大粗又爽又黄少妇毛片口| 亚洲av一区综合| 日本-黄色视频高清免费观看| 啦啦啦啦在线视频资源| 亚州av有码| 特级一级黄色大片| 午夜精品在线福利| 18禁黄网站禁片免费观看直播| 国产色爽女视频免费观看| 超碰av人人做人人爽久久| 欧美日韩一区二区视频在线观看视频在线 | 最后的刺客免费高清国语| 99国产极品粉嫩在线观看| 精品久久久久久久久久久久久| 97在线视频观看| 亚洲精品一卡2卡三卡4卡5卡| 一进一出抽搐动态| 久久亚洲精品不卡| 中文字幕av在线有码专区| 一夜夜www| 免费无遮挡裸体视频| 禁无遮挡网站| 亚洲自拍偷在线| 精品久久久久久久久久免费视频| 天美传媒精品一区二区| 我的老师免费观看完整版| 成人亚洲精品av一区二区| 国产精品三级大全| 欧美最新免费一区二区三区| 欧美色欧美亚洲另类二区| 美女黄网站色视频| 国产探花极品一区二区| 亚洲欧美日韩高清专用| 少妇丰满av| 少妇的逼水好多| 午夜老司机福利剧场| 午夜福利在线在线| 久久久a久久爽久久v久久| 日韩成人av中文字幕在线观看 | 日本黄色片子视频| 日本精品一区二区三区蜜桃| 少妇熟女aⅴ在线视频| 99在线视频只有这里精品首页| av国产免费在线观看| 国产精品野战在线观看| 一区二区三区免费毛片| 亚洲美女黄片视频| 亚洲三级黄色毛片| 欧美成人a在线观看| 蜜臀久久99精品久久宅男| 日本一本二区三区精品| 成人午夜高清在线视频| 一区二区三区高清视频在线| 欧美高清性xxxxhd video| or卡值多少钱| 国产极品精品免费视频能看的| 欧美成人免费av一区二区三区| 97在线视频观看| 插逼视频在线观看| 久久草成人影院| 久久久久久国产a免费观看| 波野结衣二区三区在线| 最新在线观看一区二区三区| 国产av不卡久久| 亚洲专区国产一区二区| 久久久国产成人精品二区| 九色成人免费人妻av| 在线观看66精品国产| 久久久国产成人精品二区| 亚洲精品粉嫩美女一区| 女同久久另类99精品国产91| 91精品国产九色| 久久久精品94久久精品| av.在线天堂| 精品99又大又爽又粗少妇毛片| 久久久精品欧美日韩精品| 日本黄大片高清| 精品久久久久久成人av| 91久久精品国产一区二区三区| 免费观看在线日韩| 亚洲久久久久久中文字幕| 国产精品精品国产色婷婷| 人妻夜夜爽99麻豆av| 别揉我奶头 嗯啊视频| 少妇裸体淫交视频免费看高清| 日本免费一区二区三区高清不卡| 亚洲天堂国产精品一区在线| 成人午夜高清在线视频| 免费在线观看影片大全网站| 成人二区视频| 深夜精品福利| 两性午夜刺激爽爽歪歪视频在线观看| videossex国产|