• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    A novel method for atomization energy prediction based on natural-parameter network

    2024-04-06 06:21:12ChoqinChuQinkunXioChozhengHeChenChenLuLiJunynZhoJinzhouZhengYinhunZhng
    Chinese Chemical Letters 2024年1期

    Choqin Chu ,Qinkun Xio,,?? ,Chozheng He ,Chen Chen ,Lu Li ,Junyn Zho ,Jinzhou Zheng,Yinhun Zhng

    a School of Mechanical and Electrical Engineering,Xi’an Technological University,Xi’an 710021,China

    b School of Electrical and Information Engineering,Xi’an Technological University,Xi’an 710021,China

    c School of Materials Science and Chemical Engineering,Xi’an Technological University,Xi’an 710021,China

    Keywords: Structure prediction Atomization energy Deep learning Coulomb matrix NPN End-to-end

    ABSTRACT Atomization energy (AE) is an important indicator for measuring material stability and reactivity,which refers to the energy change when a polyatomic molecule decomposes into its constituent atoms.Predicting AE based on the structural information of molecules has been a focus of researchers,but existing methods have limitations such as being time-consuming or requiring complex preprocessing and large amounts of training data.Deep learning (DL),a new branch of machine learning (ML),has shown promise in learning internal rules and hierarchical representations of sample data,making it a potential solution for AE prediction.To address this problem,we propose a natural-parameter network (NPN) approach for AE prediction.This method establishes a clearer statistical interpretation of the relationship between the network’s output and the given data.We use the Coulomb matrix (CM) method to represent each compound as a structural information matrix.Furthermore,we also designed an end-to-end predictive model.Experimental results demonstrate that our method achieves excellent performance on the QM7 and BC2P datasets,and the mean absolute error (MAE) obtained on the QM7 test set ranges from 0.2 kcal/mol to 3 kcal/mol.The optimal result of our method is approximately an order of magnitude higher than the accuracy of 3 kcal/mol in published works.Additionally,our approach significantly accelerates the prediction time.Overall,this study presents a promising approach to accelerate the process of predicting structures using DL,and provides a valuable contribution to the field of chemical energy prediction.

    Accurate prediction of structures in chemical compound space(CCS) is crucial for the design and synthesis of novel materials[1].Although theoretical structure prediction methods have been widely adopted in material research [2,3],the computational cost associated with large-scale structural systems remains a challenge.A CALYPSO software based on swarm intelligence has been developed to accelerate structure prediction [4,5].The existing firstprinciples-based (DFT) methods are time-consuming and economically expensive when applied to predict large-scale structures.Consequently,there is an urgent need to accelerate the process of material structure prediction [6].

    Typically,structure prediction methods involve several steps[6]: (1) Randomly generating an initial population of structures under symmetry constraints;(2) Assessing the similarity among generated structures and eliminating duplicates;(3) Performing local optimization and energy calculations using the DFT on generated structures;(4) Constructing the next generation of structures using swarm intelligence algorithms,where low-energy structures evolve into new structures while high-energy structures are replaced by randomly generated ones.However,for large-scale structures containing hundreds or thousands of atoms,the computational time required for energy calculations is significant.Furthermore,performing energy calculations and optimizations for multiple randomly generated structures further compounds the time cost.This limitation significantly impedes the prediction of large-scale material structures in most structure prediction software.Deep learning(DL) methods have gained substantial success in computer vision,pattern recognition,and other fields [7,8].However,their application in predicting and generating new structures in computational chemistry remains limited [9].

    In conclusion,the acceleration of material structure prediction is a critical problem that needs to be addressed.While traditional methods face challenges in dealing with large-scale structures,DL methods offer a potential solution.By leveraging DL techniques,it may be possible to overcome the time constraints associated with energy calculations and optimize the prediction process.This application of DL in computational chemistry holds promise for advancing the field of structure prediction and generating new structures.

    In recent years,the rapid development of artificial intelligence has made ML a new method that researchers are eager to explore.ML has become popular in various application scenarios that require prediction,classification,and decision-making [4,10].With the availability of large-scale quantum mechanical data [11–13],researchers have established ML models and used them to predict material properties such as formation energies,defect energies,elasticity,and other mechanical properties [4].For instance,Hansenet al.[14] employed a linear regression (LR) algorithm to learn the relationship between structural information and cluster energy and predicted the energy of new clusters based on atomic Cartesian coordinates and nuclear charge.Meanwhile,neural network (NN) methods [15,16] have been leveraged to accelerate the construction of potential energy surfaces.Ruppet al.[17] introduced a machine learning model that predicts the AEs of different organic molecules.Guptaet al.[18,19] utilized the DL method to establish the correlation between molecular topological features and accurate AE predictions,achieving an impressive MAE.

    In addition,some DL methods were used to replace the DFT calculation process to reduce the computational complexity of the system and accelerate structure prediction in an end-to-end way[20].Due to the strong feature extraction and feature learning abilities of the DL methods,we have introduced a new NPN [21] model that predicts the AE of different molecules in an end-to-end manner based solely on nuclear charge and atomic position.To address this task,an end-to-end energy prediction model was constructed,and its schematic diagram is shown in Fig.1.

    Fig.1.Schematic diagram of an end-to-end chemical energy prediction process.

    LetΦbe an AE prediction model,and the modelΦNPNutilizes a neural network architecture for probabilistic modeling.The model leverages the properties of exponential family distributions to transform the neural network output into the natural parameters of the exponential family distribution.This allows NPN to conveniently parameterize the probabilistic model and maximize the log-likelihood function using gradient-based optimization algorithms during training.NPN transforms the conditional probabilityp(Y/X)between the input variable and the output variable into the form of an exponential family distribution.According to all the molecular structure information,we extract the coordinate information of all atoms of each molecule as the input ofΦNPN,which is represented by X.The AE of each molecule is represented by Y.Here we have:

    To model distributions over weights and neurons,the natural parameters must be learned.The NPN is designed to take a vector random distribution as input,such as a multivariate Gaussian distribution.It then multiplies this input by a matrix random distribution and applies a nonlinear transformation before outputting another distribution.Since all three distributions in this process can be characterized by their natural parameters,learning and prediction of the network can be performed in the space of natural parameters.During back-propagation,for distributions characterized by two natural parameters,the gradient is composed of two terms.For instance,in the equation?E/?z q=(?E/?x m )⊙(?x m /?z c )+(?E/?x s )⊙(?x s /?z q ),whereErepresents the error term of the network.Naturally,nonlinear NPN layers can be stacked to form deep NPN,as shown in Algorithm 1.NPN does not need expensive reasoning algorithms,such as variational reasoning or Markov chain Monte Carlo (MCMC).Moreover,in terms of flexibility,it can choose different types of exponential family distributions for weights and neurons.

    Algorithm 1 Deep NPN’s algorithm.

    We know thatχcan be converted using a previous study[22] with Coulomb matrices (CM).The CM are matrices that contain information about the atomic charges and atomic coordinates.The CM can be calculated using the following formula:

    among them,1 ≤i,j≤23,Z iis the nuclear charge of atomi,andRiis its Cartesian coordinate.

    Specifically,QM7 is a dataset consisting of 7165 molecules taken from the larger GDB-13 database,which comprises nearly one billion synthetic organic molecules.QM7 has information about the molecule that consists of the atoms H,C,N,O,and S.The maximum number of atoms in a molecule is 23.The molecules in QM7 exhibit a diverse range of chemical structures,such as double and triple bonds,cycles,carboxylic acids,cyanides,amides,alcohols,and epoxides [23].The CM representation is used to describe the molecular structures,and this approach is invariant to translations and rotations of the molecule.In addition to the CM,the dataset includes AEs ranging from -800 kcal/mol to-2000 kcal/mol [14].

    The main focus of this article is on theχandLcomponents in the QM7 dataset.Due to the varying number of atoms in each molecule,the sizes of their true CMs are also different.To make all CMs with the same size of 23×23,we extended the size of the original CM and filled the expanded space in the CM with 0.

    For NPN,GCN,CNN,and LSTM models,we use the rectified linear unit (ReLU) activation function in the hidden layer.We used the ADAM optimizer [24] with a learning rate of 0.0001 and a decay rate of 0.00001,and based on our experience and knowledge,we have selected different combinations of network hyperparameters for model training and fine-tuning.We set the learning rate to [0.01 0.001 0.0001],the number of training rounds[100 200 300],the batch size [32 64 128],and the hidden layer nodes [100 200 300].Then,we combined the values of different network hyper-parameters.The experimental results showed that when the learning rate was 0.0001,the batch size was 64,the hidden layer nodes were 200,and the number of training rounds was200,the model performance was optimal.The proposed models have been implemented in the Pytorch library.As for the hardware system configuration,the processor is an Intel (R) Xeon (R)Silver 4110 CPU@2.10 GHz,the RAM has a capacity of 32.0 GB,and the graphics card is an NVIDIA RTX 2080 Ti [25].We randomly divided the dataset into a training dataset and a test dataset in the ratio of 8:2.

    We used the proposed method to train the AE prediction models on training data and validated the performance of the models using testing data,and the losses of the proposed models during the training are shown in Fig.2.

    Fig.2.The results of training losses of different DL models.

    By training on a large set of different molecules in QM7,we use MAE and root mean square error (RMSE) as evaluation indicators to evaluate the prediction performance of various algorithms under different molecule presentation methods.The comparison results between our method and other methods [22] are shown in Table 1.Our results indicate that the proposed method exhibits a lower prediction error,indicating excellent prediction performance.Based on this,we trained and tested different DL models we designed on the QM7 dataset [26],and obtained some information that reflects the performance of the models,such as model parameters,testing time,and testing errors.Experiments on real-world datasets [26] show that NPN can achieve state-of-the-art performance on regression tasks.The performance of different methods are compared in Table 2.

    Table 1 Comparison of prediction errors across multiple algorithms under different representation types using MAE and RMSE metrics.

    Table 2 Comparison results of performance evaluation of different networks.

    In previous experiments [14],researchers often merged feature values/vectors and feature centers with flattened CM to form a 7165-sample dataset withN-dimensional features.However,the integration of new molecular property information has brought about a new problem: the concatenation of old and new features may lead to unwanted “heterogeneity” in the feature vectors,and including more features may actually increase noise in the dataset[30].It should be noted that some traditional ML techniques may not be able to identify meaningful patterns from these newly added features,so merging new features may result in poorer results [31].

    We present the results analysis of AEs prediction for four different molecules and their isomers,it can be shown in Fig.3.Based on the structural information,our proposed method achieved good AE prediction results by using the extended CM method to characterize molecules.However,we also found that the model has a significant prediction error for molecules [32] with fewer atoms,which may be due to the interference of additional information supplemented in the extended CM to the model’s learning of structural information features.For some molecules with compact structures relative to sparse spatial structures,the prediction errors were relatively larger.We analyzed that this may be due to the high density distribution of a large number of identical atoms in the molecule,which led to the model’s unsatisfactory extraction of the CM features.

    Fig.3.Visualization of different conformations of four molecules and comparison of their AE prediction results.Corresponding predicted AEs by our model are shown in parentheses,all AEs are in kcal/mol.Our model has a prediction error of about 0.2–3 kcal/mol for AE.The data marked in blue indicates an error between 5 and 10 kcal/mol,while the data marked in red indicates an error over 10 kcal/mol.

    To validate the robustness and effectiveness of our proposed method,we randomly divided the BC2P data from Fuet al.[33] into a train dataset and a test dataset with an 8:2 ratio.We use our proposed method to train a model on train data,and the trained model accurately predicts the corresponding energy [33].The training loss curve can be seen in Fig.4.Moreover,we tested the model on test data,and the results showed that our model had an average prediction time of 0.391 ms for the energy of each molecular conformation and an average test loss of 0.236 eV/atom.The results of performance evaluation of NPN model on BC2P is shown in Table 2.

    Fig.4.The results of training loss curve of our model on BC2P data.

    The study aims to propose and validate a method for predicting atomic energy.Initially,we introduce the extended CM representation of molecular structure along with its inherent characteristics.Subsequently,we compare the performance of various ML and DL models for predicting AEs.These models not only enable fast AE prediction but also expedite the structure prediction process.Furthermore,to overcome the limitations of our current method,we plan to incorporate the three-dimensional spatial pattern of material structure information in future research.We intend to employ the graph convolutional network (GCN) method to mathematically represent atoms in chemical molecules.In addition to model development,we informally discuss the results of numerical experiments conducted in this study.Through extensive comparative experiments and analyses,we gain valuable insights into the performance and potential applications of the proposed method.Some potential applications include catalyst design,materials discovery,optimization of energy storage and conversion,as well as material performance prediction.In the future,we envision conducting further in-depth research on material performance prediction and material discovery.By leveraging the power of machine learning and data mining techniques on large datasets,we can uncover hidden correlations within complex data structures.This will allow us to predict new material structures and their corresponding properties.Ultimately,this research contributes to the advancement of materials science and opens up new possibilities for designing innovative materials with tailored properties.

    Declaration of competing interest

    The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

    Acknowledgment

    This work was supported by the Nature Science Foundation of China (Nos.61671362 and 62071366).

    亚洲最大成人中文| 精品乱码久久久久久99久播| 麻豆一二三区av精品| 国产欧美日韩一区二区精品| 天天添夜夜摸| 美女大奶头视频| 亚洲在线自拍视频| 亚洲欧美日韩高清专用| 哪里可以看免费的av片| 精华霜和精华液先用哪个| 网址你懂的国产日韩在线| 91老司机精品| 亚洲人成电影免费在线| 精品久久久久久久末码| 欧美黑人欧美精品刺激| 亚洲中文字幕一区二区三区有码在线看 | 丰满人妻一区二区三区视频av | 欧美色视频一区免费| 90打野战视频偷拍视频| 男女下面进入的视频免费午夜| 国产精品影院久久| 亚洲人成网站高清观看| 亚洲欧美日韩高清专用| 国产精品精品国产色婷婷| av欧美777| 欧美一区二区精品小视频在线| 两性午夜刺激爽爽歪歪视频在线观看| 国产精品 欧美亚洲| 男人的好看免费观看在线视频| 欧美在线一区亚洲| 变态另类丝袜制服| 欧美黄色片欧美黄色片| 丁香欧美五月| 999久久久精品免费观看国产| 亚洲无线观看免费| 亚洲午夜理论影院| 国产人伦9x9x在线观看| 青草久久国产| 久久香蕉国产精品| 1024香蕉在线观看| 最好的美女福利视频网| 亚洲国产高清在线一区二区三| 欧美乱码精品一区二区三区| 亚洲在线自拍视频| 又爽又黄无遮挡网站| 操出白浆在线播放| 熟女人妻精品中文字幕| 中亚洲国语对白在线视频| 国产精品日韩av在线免费观看| 国产91精品成人一区二区三区| 国产精品久久久av美女十八| 亚洲人成网站在线播放欧美日韩| 国产熟女xx| 脱女人内裤的视频| 99热这里只有精品一区 | 狂野欧美白嫩少妇大欣赏| 18美女黄网站色大片免费观看| 狠狠狠狠99中文字幕| 国产一区二区激情短视频| 久久精品国产清高在天天线| 国产高清视频在线播放一区| 又紧又爽又黄一区二区| 91在线观看av| 日韩欧美在线乱码| 淫妇啪啪啪对白视频| 一卡2卡三卡四卡精品乱码亚洲| 日本撒尿小便嘘嘘汇集6| 嫁个100分男人电影在线观看| 亚洲av日韩精品久久久久久密| 久久99热这里只有精品18| 黄色 视频免费看| 一二三四在线观看免费中文在| 免费看光身美女| 一本综合久久免费| 精品国内亚洲2022精品成人| 一级毛片精品| 人妻丰满熟妇av一区二区三区| 成人亚洲精品av一区二区| 热99re8久久精品国产| 在线观看美女被高潮喷水网站 | 村上凉子中文字幕在线| 麻豆成人av在线观看| 全区人妻精品视频| 国语自产精品视频在线第100页| 看免费av毛片| 在线播放国产精品三级| 国产成人欧美在线观看| 亚洲成人久久爱视频| 精品久久久久久久末码| 国产精品日韩av在线免费观看| 三级男女做爰猛烈吃奶摸视频| 欧美成人一区二区免费高清观看 | 国产人伦9x9x在线观看| 法律面前人人平等表现在哪些方面| 狂野欧美白嫩少妇大欣赏| 美女cb高潮喷水在线观看 | 亚洲精品乱码久久久v下载方式 | 午夜免费激情av| 露出奶头的视频| 国产三级黄色录像| 九色成人免费人妻av| 午夜免费观看网址| 在线视频色国产色| 悠悠久久av| 国产视频一区二区在线看| 在线观看舔阴道视频| 天堂av国产一区二区熟女人妻| www.熟女人妻精品国产| 亚洲一区高清亚洲精品| 黄色片一级片一级黄色片| 午夜精品在线福利| 久久九九热精品免费| 91久久精品国产一区二区成人 | 国产亚洲精品久久久久久毛片| 在线观看舔阴道视频| 91九色精品人成在线观看| 亚洲精品乱码久久久v下载方式 | 首页视频小说图片口味搜索| 熟女人妻精品中文字幕| 亚洲色图 男人天堂 中文字幕| 久久九九热精品免费| 国产精品爽爽va在线观看网站| 亚洲,欧美精品.| 国产精品久久久久久精品电影| av国产免费在线观看| 国产不卡一卡二| 精品人妻1区二区| 国产野战对白在线观看| 精品久久久久久,| 亚洲精品在线观看二区| 国产乱人视频| 欧美日韩黄片免| 亚洲精品一卡2卡三卡4卡5卡| 国产乱人伦免费视频| 变态另类成人亚洲欧美熟女| 国产亚洲av高清不卡| 老汉色∧v一级毛片| 女同久久另类99精品国产91| 亚洲专区国产一区二区| 国产伦一二天堂av在线观看| 中文字幕最新亚洲高清| 成人三级做爰电影| 青草久久国产| 久久久久久大精品| 波多野结衣高清作品| 久久天堂一区二区三区四区| 欧美又色又爽又黄视频| 黄色 视频免费看| 国内精品美女久久久久久| 亚洲人成网站在线播放欧美日韩| 国内精品一区二区在线观看| 成人国产综合亚洲| 成年版毛片免费区| 午夜两性在线视频| 免费在线观看影片大全网站| 亚洲国产高清在线一区二区三| 精品一区二区三区视频在线观看免费| 变态另类成人亚洲欧美熟女| 婷婷精品国产亚洲av| 欧美日韩综合久久久久久 | 国产美女午夜福利| av片东京热男人的天堂| 久久久久性生活片| 女警被强在线播放| 夜夜夜夜夜久久久久| 成人鲁丝片一二三区免费| av片东京热男人的天堂| 国产精品亚洲av一区麻豆| 亚洲av电影不卡..在线观看| 久久伊人香网站| www.精华液| 校园春色视频在线观看| 91麻豆av在线| 制服人妻中文乱码| 国产探花在线观看一区二区| 91在线观看av| 欧美日韩瑟瑟在线播放| 黑人巨大精品欧美一区二区mp4| 一区二区三区激情视频| 亚洲专区中文字幕在线| 美女cb高潮喷水在线观看 | 国产精华一区二区三区| 国产真实乱freesex| 精品一区二区三区四区五区乱码| 国产视频内射| 午夜福利成人在线免费观看| www.熟女人妻精品国产| 三级毛片av免费| 女人被狂操c到高潮| 日韩欧美国产在线观看| 国产av麻豆久久久久久久| 中文资源天堂在线| 欧美绝顶高潮抽搐喷水| 日本成人三级电影网站| 国产99白浆流出| 免费看a级黄色片| 国内揄拍国产精品人妻在线| 国产欧美日韩一区二区三| 国产黄a三级三级三级人| 91av网站免费观看| 欧美黑人巨大hd| 国产欧美日韩一区二区精品| 国产成人一区二区三区免费视频网站| 97超级碰碰碰精品色视频在线观看| www.精华液| 人妻丰满熟妇av一区二区三区| 中文字幕av在线有码专区| 成人国产综合亚洲| 亚洲电影在线观看av| 999久久久国产精品视频| 成人三级黄色视频| 一夜夜www| 中出人妻视频一区二区| 日本熟妇午夜| 五月伊人婷婷丁香| 亚洲国产欧美一区二区综合| 少妇的丰满在线观看| 亚洲国产欧美网| 亚洲 国产 在线| 欧美黄色片欧美黄色片| 日本 欧美在线| 亚洲男人的天堂狠狠| 中文字幕高清在线视频| 亚洲欧美精品综合一区二区三区| 大型黄色视频在线免费观看| 12—13女人毛片做爰片一| 国产欧美日韩一区二区三| 精品国产三级普通话版| 亚洲精品色激情综合| 亚洲九九香蕉| 男人和女人高潮做爰伦理| 精品久久久久久久久久久久久| 欧美高清成人免费视频www| 每晚都被弄得嗷嗷叫到高潮| 国产主播在线观看一区二区| 亚洲国产欧洲综合997久久,| 叶爱在线成人免费视频播放| 麻豆av在线久日| 高清毛片免费观看视频网站| xxxwww97欧美| 精品久久久久久久久久久久久| 亚洲中文日韩欧美视频| 成人国产综合亚洲| 老汉色∧v一级毛片| 日韩欧美精品v在线| 国产私拍福利视频在线观看| 色综合站精品国产| 国产高清有码在线观看视频| 午夜福利视频1000在线观看| 久久这里只有精品19| 欧美日韩亚洲国产一区二区在线观看| 久久热在线av| 无限看片的www在线观看| 亚洲欧美日韩东京热| 身体一侧抽搐| 久久国产乱子伦精品免费另类| 国产免费av片在线观看野外av| 九九热线精品视视频播放| 色精品久久人妻99蜜桃| 午夜激情福利司机影院| 丰满人妻熟妇乱又伦精品不卡| 高潮久久久久久久久久久不卡| 香蕉久久夜色| 国产99白浆流出| 美女免费视频网站| 哪里可以看免费的av片| 免费人成视频x8x8入口观看| 熟女人妻精品中文字幕| 日韩欧美在线二视频| 亚洲av成人一区二区三| 一级黄色大片毛片| 国产精品久久久久久亚洲av鲁大| 他把我摸到了高潮在线观看| 嫩草影院精品99| 性色avwww在线观看| 在线看三级毛片| 丰满人妻熟妇乱又伦精品不卡| 99久久99久久久精品蜜桃| 亚洲欧美精品综合一区二区三区| ponron亚洲| 国产蜜桃级精品一区二区三区| 国产精品自产拍在线观看55亚洲| 中亚洲国语对白在线视频| 97超级碰碰碰精品色视频在线观看| 国产高清videossex| 午夜精品一区二区三区免费看| 脱女人内裤的视频| 最近最新免费中文字幕在线| 免费人成视频x8x8入口观看| 久久久国产成人免费| 欧美极品一区二区三区四区| 天堂网av新在线| 国产精品一区二区三区四区免费观看 | 精品久久久久久久久久久久久| 中文字幕av在线有码专区| 亚洲人成网站在线播放欧美日韩| 亚洲国产精品合色在线| 法律面前人人平等表现在哪些方面| 人人妻人人看人人澡| 国产高清videossex| 一个人看视频在线观看www免费 | 久久久成人免费电影| 黄色视频,在线免费观看| 夜夜爽天天搞| 亚洲精品456在线播放app | 岛国在线观看网站| 99国产极品粉嫩在线观看| 十八禁网站免费在线| 亚洲国产欧美一区二区综合| 国产精品亚洲av一区麻豆| 国产伦精品一区二区三区四那| 国语自产精品视频在线第100页| 女人高潮潮喷娇喘18禁视频| 国产黄a三级三级三级人| 麻豆av在线久日| 特大巨黑吊av在线直播| 亚洲午夜理论影院| 12—13女人毛片做爰片一| 久久天堂一区二区三区四区| 欧美三级亚洲精品| 久久亚洲精品不卡| 91在线精品国自产拍蜜月 | 国产日本99.免费观看| 成人一区二区视频在线观看| 亚洲电影在线观看av| 国产不卡一卡二| 我的老师免费观看完整版| 1024香蕉在线观看| 亚洲精华国产精华精| 特大巨黑吊av在线直播| 亚洲自偷自拍图片 自拍| 欧美又色又爽又黄视频| www.999成人在线观看| 国产成人影院久久av| www.精华液| 欧美日韩瑟瑟在线播放| 无遮挡黄片免费观看| 亚洲九九香蕉| 亚洲一区高清亚洲精品| 亚洲无线观看免费| 人人妻,人人澡人人爽秒播| 亚洲精品粉嫩美女一区| 后天国语完整版免费观看| 最近最新中文字幕大全电影3| 麻豆成人av在线观看| 日本 av在线| 18禁观看日本| 日韩三级视频一区二区三区| 真人一进一出gif抽搐免费| 日本一本二区三区精品| 国产精品久久久久久久电影 | 国产精品久久久人人做人人爽| 亚洲国产精品成人综合色| 特大巨黑吊av在线直播| 欧美激情久久久久久爽电影| 精品久久久久久,| 999久久久精品免费观看国产| 国产男靠女视频免费网站| 午夜福利免费观看在线| 99热6这里只有精品| 亚洲午夜理论影院| 美女大奶头视频| 国产高清有码在线观看视频| 欧美成人免费av一区二区三区| 国内精品一区二区在线观看| 久久这里只有精品中国| 91久久精品国产一区二区成人 | 精品免费久久久久久久清纯| 欧美3d第一页| 亚洲最大成人中文| 搡老岳熟女国产| 日韩av在线大香蕉| 99久久成人亚洲精品观看| 黄色成人免费大全| 久久精品夜夜夜夜夜久久蜜豆| 日本a在线网址| xxxwww97欧美| 国产免费男女视频| 在线视频色国产色| 男女之事视频高清在线观看| 首页视频小说图片口味搜索| 搞女人的毛片| 国产不卡一卡二| 18美女黄网站色大片免费观看| 日韩欧美国产在线观看| 国产一级毛片七仙女欲春2| 国产av不卡久久| 国产精品九九99| 欧美色视频一区免费| 小蜜桃在线观看免费完整版高清| 国产乱人视频| 色吧在线观看| 久久午夜亚洲精品久久| 精品久久久久久久人妻蜜臀av| 国产男靠女视频免费网站| 欧美zozozo另类| svipshipincom国产片| 精品一区二区三区视频在线观看免费| 变态另类丝袜制服| 在线免费观看不下载黄p国产 | 精品福利观看| 他把我摸到了高潮在线观看| 亚洲欧美日韩高清专用| netflix在线观看网站| 亚洲国产精品999在线| 啪啪无遮挡十八禁网站| 亚洲第一电影网av| 国产精品久久久久久久电影 | 床上黄色一级片| 日本撒尿小便嘘嘘汇集6| 国产精品乱码一区二三区的特点| 国产精品久久久久久精品电影| 毛片女人毛片| 国产精品野战在线观看| 日韩免费av在线播放| 国产精品精品国产色婷婷| 久久久国产成人精品二区| 在线十欧美十亚洲十日本专区| 国产精品香港三级国产av潘金莲| 亚洲国产欧美一区二区综合| 怎么达到女性高潮| 少妇人妻一区二区三区视频| 欧美黑人巨大hd| 亚洲精品456在线播放app | 国产精品99久久99久久久不卡| 国产精品一及| 精品一区二区三区视频在线 | 91在线观看av| avwww免费| 欧美成狂野欧美在线观看| 色综合婷婷激情| 欧美在线黄色| 十八禁人妻一区二区| 啦啦啦观看免费观看视频高清| 大型黄色视频在线免费观看| 久久中文字幕一级| 丰满人妻熟妇乱又伦精品不卡| 亚洲精品在线美女| 国产一区二区三区在线臀色熟女| 亚洲精品456在线播放app | 免费观看精品视频网站| 小说图片视频综合网站| 久久国产乱子伦精品免费另类| 中亚洲国语对白在线视频| 91老司机精品| 婷婷精品国产亚洲av在线| 欧美日韩乱码在线| 90打野战视频偷拍视频| 特大巨黑吊av在线直播| 伊人久久大香线蕉亚洲五| 午夜免费激情av| 好看av亚洲va欧美ⅴa在| 99精品欧美一区二区三区四区| 亚洲av电影不卡..在线观看| 91字幕亚洲| 99riav亚洲国产免费| 757午夜福利合集在线观看| 午夜福利免费观看在线| 91老司机精品| 91麻豆精品激情在线观看国产| 女人被狂操c到高潮| 亚洲 国产 在线| 精品欧美国产一区二区三| 亚洲av五月六月丁香网| 久久中文字幕人妻熟女| 夜夜躁狠狠躁天天躁| 午夜a级毛片| 又爽又黄无遮挡网站| 欧美一区二区精品小视频在线| 天天躁日日操中文字幕| 久久久久免费精品人妻一区二区| 变态另类丝袜制服| 久久国产精品人妻蜜桃| 亚洲片人在线观看| 久久草成人影院| 亚洲一区二区三区色噜噜| 90打野战视频偷拍视频| 脱女人内裤的视频| 岛国视频午夜一区免费看| 国产av一区在线观看免费| 在线视频色国产色| 美女高潮的动态| 波多野结衣高清无吗| 欧美色视频一区免费| 精品国产超薄肉色丝袜足j| 啪啪无遮挡十八禁网站| 亚洲自偷自拍图片 自拍| 国产精品精品国产色婷婷| 成人精品一区二区免费| 深夜精品福利| 高清在线国产一区| 亚洲片人在线观看| 欧美日韩亚洲国产一区二区在线观看| 国产野战对白在线观看| 日韩有码中文字幕| 人妻夜夜爽99麻豆av| 男人的好看免费观看在线视频| 婷婷精品国产亚洲av| 18禁美女被吸乳视频| 亚洲国产欧美网| 久久久水蜜桃国产精品网| 一本精品99久久精品77| 最新中文字幕久久久久 | 亚洲欧美日韩东京热| 日韩欧美免费精品| 亚洲午夜理论影院| 中文字幕熟女人妻在线| 99精品在免费线老司机午夜| 色吧在线观看| 国产在线精品亚洲第一网站| 深夜精品福利| 亚洲第一欧美日韩一区二区三区| 日本黄色视频三级网站网址| 天天躁日日操中文字幕| 亚洲av中文字字幕乱码综合| 一a级毛片在线观看| 欧美丝袜亚洲另类 | 午夜a级毛片| 亚洲男人的天堂狠狠| 午夜福利欧美成人| 99久国产av精品| 91av网一区二区| 成熟少妇高潮喷水视频| 最新中文字幕久久久久 | 国产黄片美女视频| cao死你这个sao货| 黄色日韩在线| 国产成人影院久久av| 亚洲 欧美 日韩 在线 免费| 久久久久九九精品影院| av天堂中文字幕网| 在线观看午夜福利视频| 小说图片视频综合网站| 国产亚洲精品久久久com| 国产亚洲精品久久久久久毛片| 禁无遮挡网站| 我的老师免费观看完整版| 欧美日韩福利视频一区二区| 男人舔女人的私密视频| 黄色片一级片一级黄色片| 国产乱人视频| aaaaa片日本免费| 国产成人系列免费观看| 精品日产1卡2卡| avwww免费| 一本精品99久久精品77| 亚洲精品色激情综合| 啦啦啦韩国在线观看视频| 变态另类丝袜制服| 久久久久久久久中文| 叶爱在线成人免费视频播放| 国产伦在线观看视频一区| 欧美日韩乱码在线| 手机成人av网站| 最近最新免费中文字幕在线| 午夜两性在线视频| 亚洲欧美日韩高清专用| 亚洲av成人不卡在线观看播放网| aaaaa片日本免费| 一级a爱片免费观看的视频| 色综合欧美亚洲国产小说| 国产精品香港三级国产av潘金莲| 日本三级黄在线观看| 他把我摸到了高潮在线观看| 91老司机精品| 亚洲中文av在线| 亚洲午夜理论影院| 国产高清有码在线观看视频| 在线观看66精品国产| 国产亚洲av嫩草精品影院| 1000部很黄的大片| 黄色片一级片一级黄色片| 2021天堂中文幕一二区在线观| 免费看日本二区| 男人舔女人下体高潮全视频| 亚洲天堂国产精品一区在线| 免费高清视频大片| 99国产精品99久久久久| av在线天堂中文字幕| 超碰成人久久| 亚洲五月天丁香| 色哟哟哟哟哟哟| av片东京热男人的天堂| 精华霜和精华液先用哪个| 成人18禁在线播放| 变态另类丝袜制服| 国产午夜精品论理片| 91久久精品国产一区二区成人 | 又黄又粗又硬又大视频| 精品久久久久久久末码| 午夜福利在线观看免费完整高清在 | 欧美中文日本在线观看视频| 色噜噜av男人的天堂激情| 一卡2卡三卡四卡精品乱码亚洲| 国产不卡一卡二| 18禁美女被吸乳视频| 国产高清videossex| 99re在线观看精品视频| 亚洲天堂国产精品一区在线| 免费高清视频大片| 久久精品国产综合久久久| 亚洲欧美一区二区三区黑人| 欧美高清成人免费视频www| 岛国在线免费视频观看| 成人特级黄色片久久久久久久| 亚洲色图 男人天堂 中文字幕| 国产美女午夜福利| 男人舔女人下体高潮全视频| 亚洲成av人片在线播放无| 国产亚洲av嫩草精品影院| 亚洲成人中文字幕在线播放| 日韩欧美国产在线观看| 欧美一区二区国产精品久久精品| 一个人看视频在线观看www免费 | 国产精品一区二区免费欧美|