• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Silicon quantum dots-based fluorescent sensor for the detection of cobalt with high sensitivity and selectivity

    2024-04-06 06:21:08EtihjMohmmedSullmKhlidMohmmedAdmJunjunLiuHongliChenJinxiXio
    Chinese Chemical Letters 2024年1期

    Etihj Mohmmed Sullm ,Khlid Mohmmed Adm ,Junjun Liu ,Hongli Chen,? ,Jinxi Xio,?

    a State Key Laboratory of Applied Organic Chemistry,College of Chemistry and Chemical Engineering,Lanzhou University,Lanzhou 730000,China

    b Department of Chemistry,Faculty of Education,University of Kordofan,El Obeid 51111,Sudan

    Keywords: Silicon quantum dots Fluorescence Poly(vinylpyrrolidine) Test paper Cobalt detection

    ABSTRACT Fluorescent silicon quantum dots (Si QDs) were hydrothermally synthesized from a mixture of 3(2-aminoethylamino) propyl (dimethoxymethylsilane) (AEAPDMMS) and poly(vinylpyrrolidine) (PVP).The resulting Si QDs exhibited good water solubility and high stability.Under the optimized conditions,the probe revealed an excellent linear fluorescence quenching effect on Co2+ ranging from 1 μmol/L to 120 μmol/L with a limit of detection of 0.37 μmol/L (based on 3 s/k).The quenching mechanism was studied,showing that static quenching (SQE) causes the main effect.Furthermore,the test paper based on Si QDs was prepared,which is cost-effective,high sensitivity,good selectivity,easy to use and show excellent anti-interference capability.This method was applied to analyze the content of Co2+ in environmental water samples with satisfying results.

    Heavy metals found in groundwater are difficult to decompose and thus accumulate in living organisms,causing a threat to the environment and human health [1,2].Cobalt (Co2+) is a physiologically essential mineral,albeit required in very low amounts,which plays an important role in DNA biosynthesis as an essential component of vitamin B12 [3,4].In particular,cobalt deficiency inhibits erythropoiesis and myelin synthesis and causes anemia and dementia [5–9].However,excessive cobalt intake can cause asthma,convulsions,bone defects,stomach disorders,vasodilatation,carcinogenesis,paralysis,and heart disease [1,5,10,11].The World Health Organization (WHO) recommends the maximum limit of cobalt in drinking water is 1.7 μmol/L [12].Therefore,it is necessary to design and develop an analytical technique characterized by simplicity and selectivity to detect Co2+to preserve human health and the environment’s safety [1,13].To date,the existing methods for determining Co2+,such as liquid chromatography,electrochemical,and atomic absorption spectrometry,have been reported [2,14-16].Unfortunately,the relatively complex procedures,costly tests,and tedious sample processing limit these analytical methods.Therefore,it is critical to establish a rapid and facile approach to detect Co2+under low concentrations.

    Recently,various fluorescent nanomaterials have been utilized as nanoprobes for Co2+detection with high selectivity and sensitivity.For instance,MTPT-capped CdS QDs was developed for Co2+fluorescence analysis [17].Some single element-based dots,including carbon [18],phosphorus [19],and sulfur QDs [1] were also used for Co2+detection.Moreover,functionalized carbon dots [20],nitrogen and sulfur co-doped graphene quantum dots [21],and carbon dots prepared using flax straw as carbon source [6] were developed to sense Co2+.However,these fluorometric chemosensors had some inherent issues,such as the weak water solubility,potential toxicity and low sensitivity,may hinder their actual applications.Therefore,searching for more effective materials for fluorometric detection of Co2+with high sensitivity,superior selectivity,outstanding visual ability and excellent portability is important and urgent.

    Interestingly,among various detection methods,fluorescent silicon (Si) QDs sensing to detect Co2+exhibits some advantages over other technologies,such as simplicity,high sensitivity,short response time,low instrumentation cost and nontoxic.Further,it can provide and facilitate the naked-eye detection in an uncomplicated manner.Additionally,the sensitivity and selectivity are dependent on the affinity between the active groups on the surface of the Si QDs and the target metal ion [22–24].Moreover,Si QDs smaller than 10 nm are promising fluorescent nanomaterials with environmental friendliness,high photostability,and remarkable biocompatibility,which have received extensive attentions in multiplex sensing,drug delivery,disease diagnosis,bioimaging and other fields [25–28].Extensive industry knowledge and investment in silicon-based technologies make it an ideal replacement for other quantum dot materials [29,30].

    In this work,Si QDs have been synthesized by a one-step hydrothermal method using polyvinylpyrrolidone (PVP) and 3(2-aminoethylamino) propyl (dimethoxymethylsilane) (AEAPDMMS)as the reductant and silicon source,respectively.Under excited at 370 nm,the synthesized Si QDs exhibited a bright blue fluorescence.The fabrication of the fluorescent sensing platform was characterized by good thermal and optical stability and water solubility based on the prepared Si QDs.It is found that the FL intensity of Si QDs was rapidly and selectively quenched with Co2+addition (Scheme 1).The proposed fluorescent method was successfully applied for detecting Co2+in water samples with satisfactory results.Further,a visual method has been developed by the test paper based on Si QDs,which is fast,economical,and showing excellent anti-interference capability.

    Scheme 1.Schematic representation of hydrothermal preparation of novel fluorescent silicon quantum dots for Co2+ detection.

    As illustrated in Scheme 1,AEAPDMMS was chosen as Si source and PVP as reducing reagent in this work.By using a one-step hydrothermal method,Si QDs were obtainedviamixing AEAPDMMS and PVP and stirring in an oil bath.In this process,AEAPDMMS to PVP ratio,reaction temperature and time are the important parameters on the fluorescence (FL) intensity.As shown in Figs.S1A and B (Supporting information),the FL intensity was highest as reaction in a row for 2 h at 100°C.Furthermore,the amount of PVP was optimized with the volume of AEAPDMMS fixed at 1.0 mL.As presented in Fig.S1C (Supporting information),the FL intensity increased with increasing the amount of PVP up to 1 g and then decreased slightly.Therefore,the optimal parameters are as follows: reaction time of 2 h,reaction temperature of 100°C and AEAPDMMS/PVP ratio of 1.0 mL/1.0 g.

    The morphology of the as-synthesized Si QDs was shown in TEM image (Fig.S2A in Supporting information),which appeared spherical with good mono-dispersibility ranging from 2.5 nm to 7.3 nm,while the medial diameter was around 4.1 nm (Fig.S2B in Supporting information).Fig.S3 (Supporting information) presented the FT-IR spectrum of Si QDs.The peaks at 1020 and 934 cm-1were assigned to Si-C and Si-O stretching vibrations,respectively [31].The signal at 742 cm-1was pertained to the wagging vibration of secondary amine N–H [27,32,33].The unsaturated bending vibration and stretching vibration absorption peaks at 2950 and 1465 cm-1belonged to the C–H bond [33,34].The FT-IR spectrum of Si QDs clarified broad N–H and O–H stretching peaks at 3445 cm-1[35,36],indicating that the surface of Si QDs is mostly plated with amino and hydroxyl groups,which means Si QDs have excellent water solubility.Furthermore,the other peaks can be attributed to the stretching vibration of the C=O bond at 1677 cm-1[31] and the C–N bond at 1289 cm-1[37].

    XPS spectra illustrated the chemical bonding and surface constitutes of the Si QDs (Fig.1).The five significant peaks at 102.98,152.87,284.05,399.80 and 531.20 eV are assigned to Si 2p,Si 2s,C 1s,N 1s and O 1s,respectively (Fig.1A) [33].Furthermore,four peaks are observed at 284.35 eV,284.94 eV,285.77 eV,and 287.56 eV in the C 1s spectrum (Fig.1B),indicating the presence of C–Si,C–C/C=C,C–N and C=O bonds on the surface of Si QDs[36].Meanwhile,the O 1s spectrum (Fig.1C) shows three peaks at 530.82 eV,531.48 eV,and 532.13 eV,which can be assigned to Si–O and C–OH/C–O–C groups,respectively [32,38,39].The peaks at 399.05 eV,399.50 eV and 400.00 eV in the high-resolution N 1s spectrum (Fig.1D) indicate that nitrogen exists mainly in the form of N-Si,C–N–C and Si–N–O groups [40].High-resolution Si 2p XPS spectrum of the Si QDs (Fig.1E) show three peaks centered at 101.24 eV,101.75 eV,and 102.30 eV,which could be belonged to the Si-C,Si-N,and Si-O,respectively [34].Besides,the optical properties of the Si QDs were confirmed by UV–vis absorption and fluorescence spectra (Fig.1F).As shown in Fig.1F,the typical absorption bands appeared at about 285 nm and 342 nm corresponding to theπ-π?transition for C=C andn-π?transition for C=O or C–N,respectively [41,42].And the aqueous solution of Si QDs emitted bright blue fluorescence under UV light (365 nm) and colorless under sunlight.From Fig.S4 (Supporting information),370 nm was adopted as the optimum excitation wavelength for the further experiments due to the strongest fluorescent emission at 435 nm.The synthesized Si QDs showed absolute quantum yield 2.36% obtained by Edinburgh FLS920.The above results strongly support that the N–H and O–H functional groups are on the surface of Si QDs,guaranteeing the excellent water solubility and enhancing the application as luminescent sensors in aqueous solution.

    Fig.1.High resolution XPS spectra of Si QDs: (A) Full range,(B) C 1s,(C) O 1s,(D) N 1s and (E) Si 2p,respectively.(F) FL excitation (1) and emission (2) spectra and UV–vis absorption spectrum (3) of Si QDs,the inset photographs are Si QDs solutions under visible light and UV light illumination.

    The stability investigation of Si QDs is significant for its wide application.As shown in Fig.2A,the fluorescence activities were stable with pH ranging from 4 to 10,indicating that the solution acidity did not influence the fluorescence intensity of Si QDs,and the Si QDs sensor could efficiently detect Co2+in a wide pH range.As shown in Fig.2B,it appeared utterly stable after exposing the Si QDs sensor to light illumination for one hour.Moreover,when the temperature increased from 25°C to 85°C,the FL intensity of the Si QDs remained unchanged (Fig.2C).The stability of Si QDs was also assessed in an ionic medium,where the fluorescence intensity of the Si QDs remained the same in the concentrations range of NaCl from 0 to 120 mmol/L (Fig.2D).Therefore,the sensor Si QDs showed high stability,and could be used in different practical applications.

    Fig.2.(A) Influence of pH on the fluorescence spectra of Si QDs in response to Co2+ in aqueous buffered solution.(B) FL intensity of Si QDs as function of time.(C) Normalized FL intensity of Si QDs after incubation at different temperature for 4 min.(D) Normalized FL intensity of the Si QDs in 10 mmol/L PBS (pH 7.4) with different concentrations of NaCl.Error bars stand for the standard deviation of three independent experiment. λex=370 nm, λem=435 nm.

    The response time of the fluorescent sensing was investigated.As shown in Fig.3A,when the Si QDs and Co2+solutions were mixed,the fluorescence quenched very fast and reached a plateau within 30 s,indicating that the probe can detect Co2+quickly.Fig.3B shows the fluorescence spectra of Si QDs in the presence of different concentrations of Co2+in PBS buffer solution (pH 7.4).As illustrated in Fig.3B,the bright blue fluorescence emitted from the Si QDs solution can be effectively quenched with an increasing concentration of Co2+.Further,as seen in Fig.S5 (Supporting information),there is a continuous shift trend in the CIE coordinates from (0.159,0.104) to (0.165,0.128) in the blue gamut with the increase of Co2+concentration,verifying the corresponding fluorescence color changes.Fig.3C shows the quenching efficiency (F/F0)has an excellent linear relationship with Co2+concentration in the range of 1–120 μmol/L (R2=0.996) with a limit of detection (LOD)of 0.37 μmol/L (based on 3 s/k,wheresis the standard deviation of the blank solution andkis the slope of the calibration curve).Although Si QDs show a moderate linear range and sensitivity for Co2+detection compared with some previous Co2+probes (Table S1 in Supporting information),they are easy to fabricate and have advantages in comprehensive ability.

    Fig.3.(A) Time-dependent interaction between Si QDs and Co2+ (190 μmol/L) at room temperature.(B) Fluorescence intensity of Si QDs upon addition of various concentrations of Co2+ (from top to bottom,0,1,5,10,20,40,60,80,100,120,150,170,180 and 190 μmol/L respectively) in 10 mmol/L PBS solution (pH 7.4).(C)Calibration curve for Si QDs with increasing concentration of Co2+ (1–120 μmol/L).(D) F/F0 response of the Si QDs to other kinds of cations (380 μmol/L) in the absence (black bars) or presence (red bars) of 190 μmol/L Co2+. λex=370 nm.Error bars stand for the standard deviation of three independent experiments.

    High selectivity for analytes from potentially competing species is an important feature of probes.To explore the selectivity of Si QDs for Co2+,the effects of cations (Na+,K+,Li+,Ca2+,Mg2+,Mn2+,Ni2+,Zn2+,Hg2+,Cu2+,Fe2+and Al3+),anions (F-,Cl-,Br-,I-,CN-,SCN-,ClO4-,HSO4-,CO32-,and H2PO4-),and some molecules (catechol,glutathione,methionine,glucose,cysteine,hydroquinone,histidine,valine and arginine) were investigated.The emitted fluorescence of Si QDs solution was quenched upon addition of Co2+(190 μmol/L) (Fig.3D,Fig.S6 in Supporting information).However,upon addition of interfering metal ions,theF/F0ratio (FandF0are fluorescence intensities of Si QDs in the presence and absence of the target,respectively) is approximately close to 1,indicating a selective response of Si QDs to Co2+.Moreover,the anti-interference performance of the sensing system was also evaluated,as shown in Fig.3D and Fig.S7 (Supporting information);Si QDs did not show a significant fluorescence response to any interference other than Co2+.These results indicate that the detection system has excellent selectivity and a strong tolerance to Co2+.

    To investigate the fast,convenient and economical detection of Co2+,a facile and visual method was developed by Si QDs-based test paper.Under UV irradiation of 365 nm,the entire test paper showed bright-blue fluorescence (Fig.4A-a).A series of test papers based on Si QDs for different concentrations of Co2+from 0 to 80 μmol/L were displayed in Fig.4A-b.The fluorescence of the Si QDs paper sensor was quenched under the UV lamp and the color changes could be easily distinguished with naked eyes related to those concentrations of Co2+.The selectivity of paper sensor was also tested for the detection of various other ions (i.e.,Al3+,Fe2+,Cu2+,Hg2+,Mn2+,Mg2+,Zn2+,Ca2+,Ni2+,Li+,Na+,K+,F-,Cl-,Br-,I-,CN-,SCN-,ClO4-,HSO4-,CO32-,H2PO4-) under the same conditions (Fig.S8 in Supporting information).As shown in Fig.4Ac,no obvious fluorescence quenching was observed in the presence of other interfering metal ions.Meanwhile,the anti-interference performance of the paper sensor was also evaluated by dipping a mixture consisting of other 12 metal ions and Co2+with different concentrations into the sensing system.A remarkable fluorescence quenching appeared with the increase of Co2+concentration (Fig.4A-d),which was basically consistent with the result in the absence of the interfering ions (Fig.4A-b).

    Fig.4.The Si QDs-based paper sensor for visual detection of Co2+.(A) Photographs of test paper staining with the Si QDs under UV irradiation of 365 nm: (a) only Si QDs;(b) with different concentrations of Co2+ (from 1 to 12 are 0.1,0.5,1,5,10,20,30,40,50,60,70 and 80 μmol/L);(c) with different interfering metal ions(80 μmol/L,from 1 to 12: Na+,K+ Li+,Ca2+,Mg2+,Mn2+,Ni2+,Zn2+,Hg2+,Cu2+,Fe2+ and Al3+);(d) with the mixture of other 12 interfering metal ions (80 μmol/L)and Co2+ with different concentrations (from 1 to 12 are 0.1,0.5,1,5,10,20,30,40,50,60,70 and 80 μmol/L).(B) The 3D models of the images in part A.

    In addition,three-dimensional (3D) models of the corresponding responsive field were used to obtain quantitative fluorescence intensity by ImageJ software (Fig.4B),reflecting the color change of the test paper more intuitively.Moreover,it was seen that each chromaticity was uniform over a whole piece of test paper due to the homogeneous distribution.Significantly,the chromatic density of the test paper gradually increased with the increasing cobalt concentration,and it appeared deepest at 80 μmol/L.The brightblue test paper exhibited a dosage-sensitive color response with a discernable scale as low as 1 μmol/L with the observation of naked eye.

    To evaluate the feasibility and reliability of this proposed method,the probe Si QDs was applied to determine Co2+in Yellow River water and tap water samples.The emission spectrum for Co2+determination was recorded at an excitation wavelength of 370 nm.Standard additional methods were used to verify the accuracy of the method,and the recoveries were determined by adding 10,20 and 30 μmol/L Co2+.As shown in Table 1 and Fig.S9 in Supporting information,the average recoveries of Co2+reached 97.9%–103%.

    Table 1 Detection of Co2+ in environmental water samples.

    Thus,the accuracy and precision of this proposed approach are satisfactory,indicating that the probe can be applied to detect Co2+in environmental water samples.Moreover,the Si QDs-based test paper was applied to the detection of Co2+in river water and tap water samples (Fig.S10 in Supporting information),indicating it is a simple and economical sensing platform for rapid and visual determination of Co2+.

    Fluorescence quenching can be from fluorescence resonance energy transfer (FRET) or inner filter effect (IFE) when there is an overlap between the luminescent substance’s emission or excitation spectra and the quencher’s UV–vis absorption spectrum[43,44].In our work,there is no noticeable overlap between the absorption spectrum of Co2+and the FL excitation/emission spectra of Si QDs (Fig.5A),meaning no FRET or IFE mechanism.Static quenching effect (SQE) or dynamic quenching effect (DQE)is also an important mechanism of FL quenching.Generally,for SQE,a stable compound is formed between the fluorophore and other molecules [12];for DQE,the collision happens between the quencher and the fluorophore during the return of the luminescent substance to the ground state [39].Furthermore,SQE and DQE fit into the Stern-Volmer equation (Eq.1) [45].

    Fig.5.(A) FL excitation spectrum (black) and emission spectrum (red) of Si QDs,and UV–vis absorption spectrum of Co2+ (blue).(B) Stern-Volmer plot of Si QDs solution upon the addition of different concentrations of Co2+ (5,10,15,20 and 25 μmol/L).

    whereKqis the FL quenching rate constant which reflects the effects of inter-diffusion and inter-collision in this system.FandF0refer to the steady-state FL intensities of the fluorophore in the presence and absence of quencher.Ksvis the Stern-Volmer quenching constant.[C] is the concentration of the quencher.τ0refers to the average lifetime of the fluorophore in the absence of quencher.Conforming to Eq.1,Kqvalues were calculated as 3.40×1012,2.99×1012and 2.07×1012L mol-1s-1,with their corresponding temperatures at 298,303 and 308 K (Table S2 in Supporting information).When the plot ofF0/F versus[C] in a certain concentration range gives an ascending curvature,the quenching could be assigned to a single static or dynamic [12].

    The average FL lifetime of the prepared Si QDs in our work is 5.19 ns (Table S3 in Supporting information).The FL lifetime of Si QDs in the presence of different concentrations of Co2+was studied for an in-depth investigation of which mechanism is responsible for the FL quenching.As observed in Fig.S11 and Table S3 (Supporting information),the FL lifetime of Si QDs did not change in the presence and absence of Co2+.This suggests that the FL of Si QDs was statically quenched by Co2+[46].Moreover,as observed in Fig.5B,the linear relationship between Co2+concentrations (5,10,15,20 and 25 μmol/L) andF0/Fis good.In addition,as shown in Table S2 (Supporting information),theKqandKsv(slope) values decrease with increasing temperature.AllKqvalues were much larger than the maximum dynamicKq(2.0×1010L mol-1s-1).Thus,it is further suspected that the quenching is caused by SQE [39].Not surprisingly,mixing Si QDs and Co2+led to an obvious peak at 350–400 nm appearing in the UV–vis absorption spectra compared to the overlay curve (red dotted curve) in Fig.S12 (Supporting information),illustrating that the affinity and the H-bonding interactions between the active groups on the surface of the Si QDs and Co2+may be responsible for the fluorescence quenching [22].Therefore,the above results confirm that the FL deletions are mainly caused by SQE rather than DQE[12].

    In this work,we have developed a rapid and facile one-pot method to synthesize Si QDs with high stability under a broad range of chemical conditions and described a sensitive and selective Si QDs-based fluorescence method to detect Co2+in an aqueous medium.The detection limit for Co2+was 0.37 μmol/L based on 3σ/slope with a linear range from 1 μmol/L to 120 μmol/L.The static quenching effect is mainly responsible for the fluorescence quenching of the Si QDs by Co2+.Meanwhile,the high selectivity and sensitivity can ensure Si QDs as a realistic nanoprobe for quantifying Co2+in real water samples with good recoveries.Additionally,we have prepared test papers based on Si QDs,which are costeffective,easy-to-use and show excellent anti-interference ability,and can detect Co2+in water samples quickly and efficiently.

    Declaration of competing interest

    The authors declare that they have no known competing financial interests or personal relationships that could have influenced the work reported in this study.

    Acknowledgments

    The authors are grateful for financial support from the National Natural Science Foundation of China (Nos.21874060,22074057 and 21775059).

    Supplementary materials

    Supplementary material associated with this article can be found,in the online version,at doi:10.1016/j.cclet.2023.108476.

    日本黄色日本黄色录像| 宅男免费午夜| 日韩视频在线欧美| 天天躁狠狠躁夜夜躁狠狠躁| 91成人精品电影| 久久精品国产a三级三级三级| 乱人伦中国视频| 男女午夜视频在线观看| 国产在线一区二区三区精| 18禁国产床啪视频网站| 久久99精品国语久久久| 99国产精品一区二区三区| 丝袜美足系列| 午夜福利视频精品| 咕卡用的链子| 欧美性长视频在线观看| 亚洲午夜精品一区,二区,三区| 国产精品一区二区精品视频观看| 成年人午夜在线观看视频| 久久精品亚洲熟妇少妇任你| 水蜜桃什么品种好| 日韩一区二区三区影片| 亚洲精品中文字幕在线视频| 纯流量卡能插随身wifi吗| 嫩草影视91久久| 国产亚洲av片在线观看秒播厂| 悠悠久久av| 在线亚洲精品国产二区图片欧美| 自线自在国产av| 国产日韩欧美亚洲二区| 欧美97在线视频| 赤兔流量卡办理| 欧美人与善性xxx| 九草在线视频观看| 黑丝袜美女国产一区| 亚洲欧美一区二区三区黑人| 母亲3免费完整高清在线观看| 亚洲精品久久久久久婷婷小说| 国产精品一国产av| 国产国语露脸激情在线看| 一级毛片 在线播放| 又粗又硬又长又爽又黄的视频| 日韩av免费高清视频| 制服人妻中文乱码| 男男h啪啪无遮挡| 我要看黄色一级片免费的| a 毛片基地| 另类精品久久| 亚洲精品成人av观看孕妇| 三上悠亚av全集在线观看| 国产精品久久久av美女十八| 国产午夜精品一二区理论片| 91精品三级在线观看| 久久女婷五月综合色啪小说| 成年美女黄网站色视频大全免费| 国产精品熟女久久久久浪| 少妇被粗大的猛进出69影院| 亚洲av成人精品一二三区| 满18在线观看网站| 亚洲,欧美,日韩| 两个人看的免费小视频| 久久久久视频综合| 熟女少妇亚洲综合色aaa.| 国产一区二区在线观看av| 别揉我奶头~嗯~啊~动态视频 | 日韩欧美一区视频在线观看| 亚洲五月色婷婷综合| 亚洲精品国产一区二区精华液| 18禁国产床啪视频网站| 男女午夜视频在线观看| 日韩 欧美 亚洲 中文字幕| 亚洲男人天堂网一区| 亚洲人成网站在线观看播放| 久久国产精品人妻蜜桃| 少妇 在线观看| 日日摸夜夜添夜夜爱| 国产亚洲午夜精品一区二区久久| 一区二区三区精品91| 亚洲精品一区蜜桃| 国产精品国产三级国产专区5o| 精品久久久精品久久久| www.熟女人妻精品国产| 午夜福利一区二区在线看| 欧美成人精品欧美一级黄| 超碰97精品在线观看| 欧美日韩av久久| 亚洲一码二码三码区别大吗| 色精品久久人妻99蜜桃| 视频区欧美日本亚洲| 久久久久久久精品精品| 成人三级做爰电影| 亚洲第一av免费看| 久久精品久久久久久久性| 国产一级毛片在线| 纯流量卡能插随身wifi吗| 国产亚洲av片在线观看秒播厂| 两个人免费观看高清视频| 捣出白浆h1v1| 免费女性裸体啪啪无遮挡网站| 纵有疾风起免费观看全集完整版| 日韩av在线免费看完整版不卡| 国产亚洲精品久久久久5区| 亚洲精品国产色婷婷电影| av网站免费在线观看视频| 久久久久久久国产电影| 91成人精品电影| 国产淫语在线视频| 1024香蕉在线观看| bbb黄色大片| 叶爱在线成人免费视频播放| 亚洲av欧美aⅴ国产| 成年女人毛片免费观看观看9 | 丝袜美腿诱惑在线| 男女午夜视频在线观看| 国产亚洲av片在线观看秒播厂| 三上悠亚av全集在线观看| 国产一区有黄有色的免费视频| 国产av一区二区精品久久| a级片在线免费高清观看视频| 晚上一个人看的免费电影| 99热全是精品| 国产欧美亚洲国产| 后天国语完整版免费观看| 久久中文字幕一级| 男女免费视频国产| 午夜福利在线免费观看网站| 国产免费福利视频在线观看| 男女免费视频国产| 午夜福利一区二区在线看| 色94色欧美一区二区| 不卡av一区二区三区| 午夜福利在线免费观看网站| 男女之事视频高清在线观看 | 两个人看的免费小视频| 首页视频小说图片口味搜索 | 热99国产精品久久久久久7| 亚洲精品在线美女| 一本久久精品| 日本欧美国产在线视频| 午夜视频精品福利| 少妇精品久久久久久久| 精品少妇内射三级| 欧美日韩亚洲综合一区二区三区_| 精品一区在线观看国产| 后天国语完整版免费观看| 欧美激情高清一区二区三区| 另类亚洲欧美激情| 最近中文字幕2019免费版| 国产欧美日韩综合在线一区二区| 91麻豆av在线| 91精品伊人久久大香线蕉| 久久人人爽人人片av| 在线观看一区二区三区激情| 久热这里只有精品99| 日韩欧美一区视频在线观看| 丝袜脚勾引网站| 精品欧美一区二区三区在线| 亚洲熟女精品中文字幕| av又黄又爽大尺度在线免费看| 黑人欧美特级aaaaaa片| 下体分泌物呈黄色| 亚洲av成人精品一二三区| 最近手机中文字幕大全| 亚洲欧美激情在线| 亚洲国产看品久久| 日韩熟女老妇一区二区性免费视频| 老司机影院毛片| 久久99精品国语久久久| 久久久久视频综合| 色综合欧美亚洲国产小说| 老司机影院成人| 九色亚洲精品在线播放| 美女视频免费永久观看网站| 欧美av亚洲av综合av国产av| 成年人免费黄色播放视频| 超色免费av| 欧美人与性动交α欧美精品济南到| 国产成人91sexporn| 校园人妻丝袜中文字幕| 欧美日韩av久久| 国产日韩欧美亚洲二区| 亚洲成av片中文字幕在线观看| 性色av乱码一区二区三区2| 99热国产这里只有精品6| 国产精品欧美亚洲77777| 高清欧美精品videossex| 日韩 亚洲 欧美在线| 亚洲人成电影免费在线| 免费高清在线观看视频在线观看| 狠狠婷婷综合久久久久久88av| 免费在线观看影片大全网站 | 国产精品熟女久久久久浪| 日韩制服骚丝袜av| 久久热在线av| 欧美性长视频在线观看| 一本综合久久免费| 国产精品国产三级专区第一集| 国产伦理片在线播放av一区| 国产欧美日韩精品亚洲av| 免费看十八禁软件| 成年女人毛片免费观看观看9 | xxx大片免费视频| 99久久综合免费| 久久久精品区二区三区| 国产欧美日韩一区二区三 | 精品亚洲成国产av| av有码第一页| 亚洲精品自拍成人| 中文字幕色久视频| 免费久久久久久久精品成人欧美视频| 精品国产一区二区三区久久久樱花| 一区二区三区精品91| 午夜激情久久久久久久| 多毛熟女@视频| 久久人妻熟女aⅴ| 丝袜在线中文字幕| 人妻人人澡人人爽人人| www日本在线高清视频| 黄色视频在线播放观看不卡| 少妇猛男粗大的猛烈进出视频| 在线观看66精品国产| 亚洲人成网站在线播放欧美日韩| 亚洲精品中文字幕在线视频| 亚洲全国av大片| 草草在线视频免费看| 国产精品影院久久| 亚洲 欧美一区二区三区| 亚洲中文日韩欧美视频| 婷婷丁香在线五月| 欧美色视频一区免费| 大型av网站在线播放| 精华霜和精华液先用哪个| 日韩欧美一区视频在线观看| 首页视频小说图片口味搜索| 18禁黄网站禁片午夜丰满| 又紧又爽又黄一区二区| 美女大奶头视频| videosex国产| 午夜激情福利司机影院| 精品国内亚洲2022精品成人| 一级黄色大片毛片| 亚洲精品久久成人aⅴ小说| 国产伦人伦偷精品视频| 免费在线观看亚洲国产| 看免费av毛片| 亚洲精品国产区一区二| 国产免费av片在线观看野外av| 夜夜爽天天搞| 校园春色视频在线观看| 久久精品亚洲精品国产色婷小说| 国产精品影院久久| 久久久精品欧美日韩精品| 人人妻人人澡人人看| 精品国产乱子伦一区二区三区| 啦啦啦观看免费观看视频高清| 老司机在亚洲福利影院| 欧美+亚洲+日韩+国产| 久久 成人 亚洲| 欧美久久黑人一区二区| 精品熟女少妇八av免费久了| 亚洲黑人精品在线| 最新在线观看一区二区三区| 成人午夜高清在线视频 | 亚洲自拍偷在线| 日韩欧美一区视频在线观看| 亚洲精品国产精品久久久不卡| 欧美日韩乱码在线| 国产成人精品无人区| 久久久久久九九精品二区国产 | 国产成人av教育| 国产精品永久免费网站| 欧美国产精品va在线观看不卡| 久久人人精品亚洲av| 精品免费久久久久久久清纯| 免费看日本二区| 久久精品亚洲精品国产色婷小说| 成人三级黄色视频| 国产精品精品国产色婷婷| 国产亚洲欧美98| 亚洲专区字幕在线| 国产野战对白在线观看| 1024视频免费在线观看| 亚洲avbb在线观看| 99久久国产精品久久久| 亚洲国产毛片av蜜桃av| 99re在线观看精品视频| 两个人视频免费观看高清| 少妇的丰满在线观看| 超碰成人久久| 巨乳人妻的诱惑在线观看| 免费人成视频x8x8入口观看| 午夜亚洲福利在线播放| 国产亚洲av高清不卡| 亚洲激情在线av| 18禁裸乳无遮挡免费网站照片 | 欧洲精品卡2卡3卡4卡5卡区| 久久久久免费精品人妻一区二区 | 美女高潮喷水抽搐中文字幕| 少妇裸体淫交视频免费看高清 | 午夜成年电影在线免费观看| 成人永久免费在线观看视频| 亚洲熟女毛片儿| 中文字幕另类日韩欧美亚洲嫩草| 人人妻,人人澡人人爽秒播| 亚洲,欧美精品.| 99久久无色码亚洲精品果冻| 成年免费大片在线观看| 热re99久久国产66热| 999精品在线视频| 国产精品综合久久久久久久免费| 亚洲一区二区三区色噜噜| 国产私拍福利视频在线观看| 久久人妻福利社区极品人妻图片| 99热6这里只有精品| 午夜福利成人在线免费观看| 精品一区二区三区四区五区乱码| 黑人操中国人逼视频| 波多野结衣高清无吗| 欧美在线黄色| 男人舔女人下体高潮全视频| 国产99久久九九免费精品| 亚洲va日本ⅴa欧美va伊人久久| 日本五十路高清| 亚洲中文av在线| 禁无遮挡网站| 婷婷六月久久综合丁香| videosex国产| 国产色视频综合| 久久草成人影院| 在线十欧美十亚洲十日本专区| 在线av久久热| 亚洲欧洲精品一区二区精品久久久| 超碰成人久久| 国产又爽黄色视频| 狠狠狠狠99中文字幕| 俺也久久电影网| 亚洲欧美一区二区三区黑人| 欧美黄色淫秽网站| 免费人成视频x8x8入口观看| 青草久久国产| 欧美成人性av电影在线观看| 久久久久久亚洲精品国产蜜桃av| 亚洲av成人一区二区三| 国产精品影院久久| 成在线人永久免费视频| 国产97色在线日韩免费| 国产精品一区二区精品视频观看| 一进一出好大好爽视频| 久久午夜亚洲精品久久| 久久 成人 亚洲| 久久国产乱子伦精品免费另类| 亚洲五月天丁香| 中文在线观看免费www的网站 | 国产免费男女视频| 国产高清激情床上av| 日韩大码丰满熟妇| 国产成人av激情在线播放| 亚洲人成网站在线播放欧美日韩| 国产av一区二区精品久久| 日韩高清综合在线| 亚洲欧美日韩高清在线视频| 亚洲av成人不卡在线观看播放网| 欧美日韩乱码在线| 99久久精品国产亚洲精品| 国产精品自产拍在线观看55亚洲| 男人操女人黄网站| 91在线观看av| 视频区欧美日本亚洲| 男人的好看免费观看在线视频 | 中文字幕人成人乱码亚洲影| 日韩精品青青久久久久久| 久久婷婷成人综合色麻豆| 国产精品爽爽va在线观看网站 | 精品久久久久久久久久久久久 | 香蕉av资源在线| 国产精品久久视频播放| 50天的宝宝边吃奶边哭怎么回事| 精品久久久久久,| 一二三四在线观看免费中文在| 男女做爰动态图高潮gif福利片| 黄色视频,在线免费观看| 国产精品,欧美在线| 久久久久九九精品影院| 高潮久久久久久久久久久不卡| 可以免费在线观看a视频的电影网站| 欧美国产日韩亚洲一区| 成年版毛片免费区| 丰满的人妻完整版| 国产亚洲av嫩草精品影院| 夜夜躁狠狠躁天天躁| 美女午夜性视频免费| 欧美色视频一区免费| 久久精品亚洲精品国产色婷小说| 欧美黄色片欧美黄色片| 三级毛片av免费| 日韩国内少妇激情av| 婷婷亚洲欧美| 亚洲人成网站在线播放欧美日韩| 午夜免费观看网址| 首页视频小说图片口味搜索| 女同久久另类99精品国产91| 黄片小视频在线播放| 日韩一卡2卡3卡4卡2021年| 欧美 亚洲 国产 日韩一| 亚洲,欧美精品.| 亚洲第一欧美日韩一区二区三区| 国产精品1区2区在线观看.| 国产欧美日韩精品亚洲av| 欧美日韩亚洲国产一区二区在线观看| 免费在线观看影片大全网站| 亚洲av第一区精品v没综合| 脱女人内裤的视频| 亚洲精品一卡2卡三卡4卡5卡| 亚洲精品国产区一区二| 淫秽高清视频在线观看| 久久草成人影院| 午夜激情av网站| 久久久久久国产a免费观看| 国产v大片淫在线免费观看| 亚洲精品在线美女| 大型av网站在线播放| 久久国产亚洲av麻豆专区| 国产主播在线观看一区二区| 国产真实乱freesex| 美女国产高潮福利片在线看| 91麻豆精品激情在线观看国产| bbb黄色大片| 亚洲精品一卡2卡三卡4卡5卡| 国产精品爽爽va在线观看网站 | 国产精品久久久久久精品电影 | 国产在线精品亚洲第一网站| 国产精品永久免费网站| 亚洲国产欧美网| 午夜免费成人在线视频| 欧美成人一区二区免费高清观看 | 日本五十路高清| 亚洲精品一卡2卡三卡4卡5卡| 女性生殖器流出的白浆| 久久精品国产综合久久久| 欧美激情高清一区二区三区| 午夜久久久在线观看| 嫩草影视91久久| 在线观看午夜福利视频| 好看av亚洲va欧美ⅴa在| 亚洲成av片中文字幕在线观看| 熟女少妇亚洲综合色aaa.| 老熟妇仑乱视频hdxx| 母亲3免费完整高清在线观看| 亚洲av中文字字幕乱码综合 | 中文字幕人妻熟女乱码| 一二三四在线观看免费中文在| 99国产综合亚洲精品| 黑人欧美特级aaaaaa片| 99re在线观看精品视频| or卡值多少钱| 国内久久婷婷六月综合欲色啪| 精品人妻1区二区| 久久性视频一级片| 成人国产综合亚洲| a级毛片a级免费在线| 一本精品99久久精品77| 美女大奶头视频| 欧美人与性动交α欧美精品济南到| 一级黄色大片毛片| 男女之事视频高清在线观看| 精品久久久久久久人妻蜜臀av| 欧美黄色片欧美黄色片| 国产片内射在线| 亚洲国产毛片av蜜桃av| 免费在线观看亚洲国产| 俺也久久电影网| 国产黄片美女视频| 狠狠狠狠99中文字幕| 香蕉久久夜色| 露出奶头的视频| 高潮久久久久久久久久久不卡| 他把我摸到了高潮在线观看| 欧美中文日本在线观看视频| 好男人电影高清在线观看| 日韩高清综合在线| 777久久人妻少妇嫩草av网站| 国产精品精品国产色婷婷| 久久国产亚洲av麻豆专区| 亚洲国产欧洲综合997久久, | 午夜影院日韩av| 午夜激情福利司机影院| 日韩中文字幕欧美一区二区| 黄频高清免费视频| 亚洲av成人一区二区三| 亚洲中文av在线| 国产激情欧美一区二区| 精品国产亚洲在线| 免费看a级黄色片| 高清毛片免费观看视频网站| 人妻丰满熟妇av一区二区三区| 国内久久婷婷六月综合欲色啪| 国产精品久久久久久亚洲av鲁大| 欧美色视频一区免费| 女同久久另类99精品国产91| av超薄肉色丝袜交足视频| 日本熟妇午夜| 长腿黑丝高跟| 少妇的丰满在线观看| 国产又黄又爽又无遮挡在线| 91成人精品电影| 亚洲熟妇熟女久久| 亚洲avbb在线观看| 亚洲精品一区av在线观看| 在线观看免费午夜福利视频| 欧美日韩黄片免| 午夜免费激情av| 亚洲国产高清在线一区二区三 | 免费在线观看黄色视频的| 精品国产超薄肉色丝袜足j| a级毛片在线看网站| 成熟少妇高潮喷水视频| 国产熟女xx| 99精品欧美一区二区三区四区| 亚洲一区高清亚洲精品| 天天躁夜夜躁狠狠躁躁| 精品久久久久久久末码| 国产亚洲精品av在线| 国产激情偷乱视频一区二区| 亚洲国产精品999在线| 亚洲成人久久爱视频| 欧美成人午夜精品| 成人亚洲精品一区在线观看| 国产精品 欧美亚洲| 国产高清激情床上av| АⅤ资源中文在线天堂| 欧美人与性动交α欧美精品济南到| 色老头精品视频在线观看| 老汉色av国产亚洲站长工具| 日韩欧美国产在线观看| 一级a爱片免费观看的视频| 中文字幕精品亚洲无线码一区 | 老汉色∧v一级毛片| 成人国产一区最新在线观看| 日韩av在线大香蕉| 男男h啪啪无遮挡| 91麻豆精品激情在线观看国产| 国产区一区二久久| 天天躁夜夜躁狠狠躁躁| 男女之事视频高清在线观看| √禁漫天堂资源中文www| 中文字幕精品亚洲无线码一区 | 国产真人三级小视频在线观看| 久久久国产成人精品二区| 久久欧美精品欧美久久欧美| 99热6这里只有精品| 亚洲专区中文字幕在线| 男人操女人黄网站| 不卡一级毛片| 亚洲精品久久国产高清桃花| 婷婷精品国产亚洲av| 一边摸一边抽搐一进一小说| 一二三四在线观看免费中文在| 日本 欧美在线| 国产99白浆流出| 国产精品 欧美亚洲| 成人18禁在线播放| 欧美 亚洲 国产 日韩一| 精品电影一区二区在线| 啪啪无遮挡十八禁网站| 国产激情偷乱视频一区二区| 无限看片的www在线观看| 国产精品免费一区二区三区在线| 国产亚洲欧美精品永久| 好看av亚洲va欧美ⅴa在| 老司机靠b影院| 国产精品 国内视频| 一级a爱视频在线免费观看| 此物有八面人人有两片| 欧美性猛交╳xxx乱大交人| 成人欧美大片| 婷婷精品国产亚洲av在线| 久久精品国产清高在天天线| 黄色丝袜av网址大全| 99re在线观看精品视频| 在线av久久热| 精品国产美女av久久久久小说| 国产在线精品亚洲第一网站| 国产亚洲欧美在线一区二区| 国产伦一二天堂av在线观看| 黄频高清免费视频| 国产亚洲精品一区二区www| 男女之事视频高清在线观看| 亚洲色图av天堂| 老司机深夜福利视频在线观看| 18禁美女被吸乳视频| 欧美性长视频在线观看| videosex国产| 美国免费a级毛片| 亚洲狠狠婷婷综合久久图片| 啦啦啦韩国在线观看视频| 久久久水蜜桃国产精品网| 成人欧美大片| 成人免费观看视频高清| 精品久久久久久久人妻蜜臀av| 亚洲无线在线观看| 一区二区三区国产精品乱码| 黄色视频不卡| 午夜免费鲁丝| 国产精品免费一区二区三区在线| 黑人欧美特级aaaaaa片| 一a级毛片在线观看| 欧美日韩亚洲综合一区二区三区_| 一本大道久久a久久精品| 视频在线观看一区二区三区| 99国产精品一区二区三区| 午夜免费激情av| 亚洲专区中文字幕在线| 国产v大片淫在线免费观看| 两个人免费观看高清视频| 精品久久久久久久久久免费视频|