• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Activation of peroxymonosulfate by FeVO3-x for the degradation of carbamazepine: Vanadium mediated electron shuttle and oxygen vacancy modulated interface chemistry

    2024-04-06 06:21:08LeiduoLaiHongyuZhouYihenHongMengfanLuoYangShiHengZhangZhaokunXiongGangYaoBoLai
    Chinese Chemical Letters 2024年1期

    Leiduo Lai ,Hongyu Zhou ,Yihen Hong ,Mengfan Luo ,Yang Shi,? ,Heng Zhang ,Zhaokun Xiong,Gang Yao,Bo Lai,?

    a State Key Laboratory of Hydraulics and Mountain River Engineering,College of Architecture and Environment,Sichuan University,Chengdu 610065,China

    b Sino-German Centre for Water and Health Research,Sichuan University,Chengdu 610065,China

    c Chengdu Baixi Environmental Technology Company,Chengdu 610065,China

    d Institute of Environmental Engineering,RWTH Aachen University,Germany

    Keywords: Peroxymonosulfate Fe(III)/Fe(II) cycle Electron shuttles Oxygen vacancy Bimetallic catalysts

    ABSTRACT Fast Fe(III)/Fe(II) circulation in heterogeneous peroxymonosulfate (PMS) activation remains as a bottleneck issue that restricts the development of PMS based advanced oxidation processes.Herein,we proposed a facile ammonia reduction strategy and synthesized a novel FeVO3-x catalysts to activate PMS for the degradation of a typical pharmaceutical,carbamazepine (CBZ).Rapid CBZ removal could be achieved within 10 min,which outperforms most of the other iron or vanadium-based catalysts.Electron paramagnetic resonance analysis and chemical probe experiments revealed SO4?-,?OH,O2?- and high valent iron (Fe(IV)) were all generated in this system,but SO4?- and Fe(IV) primarily contributed to the degradation of CBZ.Besides,X-ray photoelectron spectroscopy and X-ray adsorption spectroscopy indicated that both the generated low-valent V provides and oxygen vacancy acted as superior electron donors and accelerated internal electron transfer via the unsaturated V-O-Fe bond.Finally,the proposed system also exhibited satisfactory performance in practical applications.This work provides a promising platform in heterogeneous PMS activation.

    Iron induced heterogeneous peroxymonosulfate (PMS) activation processes are promising technologies for the degradation of personal care products (PPCPs) in waters due to the strong oxidation capacity of the generated reactive oxygen species (ROS) [1–3].However,the rate-limiting step of Fe(III) conversion to Fe(II) significantly prohibits PMS decomposition and ROS generation,thus inhibiting the degradation of target pollutants [4,5].In order to expedite the Fe(III)/Fe(II) cycle and ROS generation,previous works usually introduced homogeneous reducing agents in PMS activation processes as co-catalysts for fast removal of refractory pollutants [6–9].Unfortunately,the introduction of homogeneous reductants is restricted in the practical applications due to the serious environmental pollution induced by the oxidized by-products in waters [10].Therefore,it is of great interest to develop novel strategies to accelerate the Fe(III)/Fe(II) circulation.

    It was reported that transition metals serving as electron shuttles can also facilitate the Fe(III)/Fe(II) conversion in Fenton-like oxidation,since the polyvalent metals as electron-sacrificers can donate electrons to Fe(III) until they are oxidized to the highest valence [4,11-13].Our previous results suggested that when the MnFe2O4,Fe2Mo3O12and Fe2TiO5served as catalysts,pollutant degradation efficiencies in PMS activation processes are much lower than that of FeVO4[4],indicating V species serving as electron shuttles outperform Mo,Ti,Mn.Therefore,modulating Febased materials with V species provides a great platform to accelerate Fe(III)/Fe(II) circulation without environmental pollution caused by dissolved matters in waters.Nevertheless,in most cases,stable state of V species in materials are quinquevalent (V(V)) due to the electron-deficient of 3d34s2orbits,implying the difficulties of V species as electron donators lie in the strategy for V reduction in the V modulated Fe-based materials.Our previous study suggested that adding reducing agents can facilitate V(V)species reduction in the FeVO4,further triggering the long-lasting Fe(III)/Fe(II) circulation to effectively degrade target pollutants [4].However,reducing agents at inappropriate dosage may impede the pollutant degradation efficiency due to the quenching effect of ROS and the direct consumption of oxidants.Therefore,it is imperative to develop new tactics to reduce V species in the Fe-V bimetallic materials.

    In this work,a low valent Fe-V bimetallic material (FeVO3-x)with enriched oxygen vacancy was prepared by a coprecipitation method and an ammonia reduction method to activate PMS for carbamazepine (CBZ) degradation.Notably,the reduction process would not only lead to the reduction of V,but also induce the generation of abundant electron-rich oxygen vacancy,which was reported to be a robust PMS adsorption site as well as a flexible switcher to regulate the mechanism transformation from radical to high valent iron (Fe(IV)) generation [14–16].Therefore,the FeVO3-xmay exhibit dual functions to activate PMS and generate a myriad of ROS for CBZ degradation: (i) low valent V species as electron donators raise the efficiency of Fe(III)/Fe(II) conversion;(ii) oxygen vacancy facilitates the generation of high valent Fe species.This work provides new insights into the heterogeneous Fe(III) reduction and ROS production by the defect Fe-V bimetallic catalyst.In addition,the CBZ transformation products and their corresponding toxicity were examined to evaluate the practicability of the FeVO3-x/PMS system.

    Details about the chemicals were provided in Text S1 (Supporting information).The FeVO3-xwas synthesized by the combination methods of coprecipitation and ammonia reduction.In a typical procedure,2.8078 g NH4VO3was dissolved in 150 mL deionized water at 80 °C,and then 150 mL of transparent orange solution with 9.696 g Fe(NO3)3·9H2O was slowly added into NH4VO3solution and stirred for 1 h at 80 °C.The solution was further modulated with dilute ammonia to maintain the pH at 8.0,and aged for several hours at room temperature.Then,the precipitates after filtration and washing with ethanol and water were dried at 110 °C and then calcined in the air at 600 °C for 4 h.Finally,the obtained precipitates were further calcined under ammonia atmosphere with nitrogen purging (10%,N2as the carrier gas,the tube furnace is connected with a washing bottle filled with ammonia)at 700 °C for 4 h to constitute a defect low valent Fe-V bimetallic catalyst.

    For pollutant degradation,all bath experiments were conducted with 150 mL target pollutant solution.The reaction was initiated by adding predetermined amounts of catalysts and PMS.The solution temperature was adjusted at 30 ± 1 °C by using water batch.At the predetermined time,certain volume of reaction solution was filteredviaa 0.22 μm PTFE syringe filter discs and mixed with 20 μL Na2S2O3before analysis.Details about the characterization and analytic methods could be seen in Text S2 (Supporting information).

    X-ray diffraction (XRD) spectrum suggests that the distinct diffraction peaks of FeVO3-xare indexed to (104),(311),(110),and(116) planes,and the crystal phases of pristine FeVO3-xparticles are assigned toγ-Fe2O3and V2O3(Fig.1a),indicating low valent V species exist in FeVO3-x.The vibrating sample magnetometer (VSM) results shows the saturation magnetization of FeVO3-xis ~3 emu/g (Fig.1b),which might originate from the ferromagnetism ofγ-Fe2O3.As shown in Fig.1c,the fresh FeVO3-xparticles are micron-sized and exhibit a unique brain-like morphology with wrinkled surface,which would facilitate the adhesion of PMS in the vicinity of FeVO3-x.Accordingly,the mappings of Fe,V,O species (Figs.1d-f) show that only Fe and V species are uniformly distributed on FeVO3-x,indicating enriched oxygen vacancy was created on the surface of FeVO3-x.Moreover,since the photoluminescence (PL) emission peak at 450 nm is correlated with the electron transition from shallow level to the top of the valence band,the existence of oxygen vacancy in the FeVO3-xis also verified by PL spectrum (Fig.S1 in Supporting information) [17].In addition,the N2adsorption-desorption results (Fig.S2 in Supporting information) manifest that the surface area of fresh FeVO3-xis 1.1 m2/g,suggesting the poor pollutant adsorption ability of FeVO3-x.

    Fig.1.(a) XRD spectrum of FeVO3-x.(b) The magnetic hysteresis loop of FeVO3-x.(c) SEM image and (d-f) the corresponding element mappings of FeVO3-x.

    The performance of FeVO3-x/PMS system was compared with several systems,including FeO/PMS,Fe3O4/PMS,Fe2O3/PMS,V2O3/PMS,V2O4/PMS,FeVO3-xalone and PMS alone systems.Results shown in Fig.2a and Fig.S3 (Supporting information) suggest that PMS in the absence of catalyst cannot oxide CBZ,and FeVO3-xhas no adsorption effect on CBZ,indicating CBZ was degraded by the generated ROS in the FeVO3-x/PMS system.In addition,the CBZ degradation efficiency in the FeVO3-x/PMS system within 10 min treatment is much higher (100%) than those in other systems (6%-36%),implying FeVO3-xcan effectively activate PMS to generate substantial ROS for CBZ degradation.

    Fig.2.(a) CBZ degradation in different systems.(b) DMPO-HO and DMPO-SO4 adducts in the FeVO3-x/PMS system.(c) Quenching effects of TBA and EtOH on CBZ degradation.(d) HPLC chromatograms of PMSO and PMSO2 in the FeVO3-x/PMS system.(e) PMSO degradation and PMSO2 generation in the FeVO3-x/PMS system.(f) DMPO-O2 adducts in the FeVO3-x/PMS system.Experiment condition: [FeVO3-x]0=100 mg/L,[PMS]0=0.2 mmol/L,[CBZ]0=2.5 mg/L,pHini=6.3,[PMSO]0=200 μmol/L,[DMPO]0=50 mmol/L.

    Fig.3.XPS spectra of fresh and used FeVO3-x: Fe 2p core level in the (a) fresh and (b) used FeVO3-x,V 2p core level in the (c) fresh and (d) used FeVO3-x,O 1s core level in the (e) fresh and (f) used FeVO3-x.

    The electron paramagnetic resonance (EPR) test using 5,5-dimethyl-1-pyrrolineN-oxide (DMPO) as thein situradical spin-trapping reagent was conducted to qualitatively analyze the existence of the main ROS in the FeVO3-x/PMS system.In contrast to PMS alone and FeVO3-xalone systems (Fig.2b),two signals appearing in the FeVO3-x/PMS system are assigned to DMPO-HO adduct (four characteristic peaks with height ratio of 1:2:2:1,αN=αH=14.9 G) and DMPO-SO4adduct (αN=13.8 G,αH=10.1 G,αH=1.4 G,andαH=0.8 G) [18–20],implying both hydroxyl radicals (?OH) and sulfate radicals (SO4?-) were generated in the FeVO3-x/PMS system.However,since DMPO-SO4adduct is easily converted into DMPO-HO adduct [21],the signal intensity of DMPO-SO4adduct is weak in the FeVO3-x/PMS system.To further disclose the identity of?OH and SO4?-in the FeVO3-x/PMS system,tert-butyl alcohol (TBA) was introduced for?OH quenching(: 4.0–9.1 × 105L mol-1s-1,: 3.8–7.6 × 108L mol-1s-1) [22–24],and ethanol (EtOH) was introduced for both?OH and SO4?-quenching (: 1.6 × 107L mol-1s-1,: 1.9 × 109L mol-1s-1) [22].Fig.2c suggests that the quenching effects of EtOH increase as a function of concentration(50-200 mmol/L),while TBA has a feeble quenching effect on CBZ degradation regardless of the concentration (50-200 mmol/L).Besides,the semi-quantitative analysis of?OH in the FeVO3-x/PMS system were conducted with the terephthalic acid (TPA),since 2-hydroxyterephthalic acid (HTPA) as the characteristic product can be produced after the attack of?OH [25].Surprisingly,we found that the degradation trend of CBZ in the FeVO3-x/PMS system was similar to that in the classic co-catalytic Fenton system (hydroxylamine/Fenton,Fig.S4a in Supporting information).The ROS in the hydroxylamine/Fenton system are undoubtedly?OH.Therefore,the contribution of?OH and SO4?-formed in the FeVO3-x/PMS system can be better investigated by comparing with the hydroxylamine/Fenton system.Clearly,the generation concentration of HTPA in the FeVO3-x/PMS system was much lower (Fig.S4b in Supporting information) when the degradation trend of CBZ in the FeVO3-x/PMS system was similar to that in the classic co-catalytic Fenton system (hydroxylamine/Fenton).The collective results indicate that though both?OH and SO4?-are generated in the FeVO3-x/PMS system,the amounts of SO4?-are much more than that of?OH.

    Since some studies pointed out that high-valent iron-oxo species (Fe(IV)) might be produced in the Fe mediated Fentonlike systems and the reaction rate between Fe(IV) and ethanol(kEtOH/Fe(IV): 2.51 × 103L mol-1s-1) is obviously faster than that between Fe(IV) and TBA (kEtOH/Fe(IV): 6 × 101L mol-1s-1)[19,26,27],the existence of Fe(IV) in FeVO3-x/PMS system was further qualitatively analyzed by the chemical probe method.Methyl phenyl sulfoxide (PMSO) was applied as a chemical probe because the reaction between PMSO with Fe(IV) proceeds through an oxygen atom transfer and methyl phenyl sulfone (PMSO2) is quantitatively generated [27].From the HPLC chromatograms,it is obvious that the concentration of PMSO was decreased while PMSO2was accumulated in the FeVO3-x/PMS system (Fig.2d).We further quantified the concentrations of PMSO2and PMSO to confirm the existence of Fe(IV).Results show that conversion efficiency of PMSO to PMSO2is 68.2% (Fig.2e),implying the role of Fe(IV) in the FeVO3-x/PMS system for CBZ degradation cannot be ignored.Moreover,some researchers argued that high-valent iron-oxo species might induce the production of O2?-[28,29].Therefore,EPR test was conducted with DMPO in the dimethyl sulfoxide (DMSO)solution to identify the existence of O2?-.The EPR spectrum with hyperfine splitting parameters ofαH=14.25 G,αN=12.45 G,and an intensity ratio of 1:1:1:1 is indexed to DMPO-O2adduct (Fig.2f)[30],indicating high-valent iron-oxo species reacting with PMS induces the formation of O2?-.Combined with the results of quenching experiment,although O2?-is produced in the FeVO3-x/PMS system,O2?-has a negligible effect on CBZ degradation.

    To further elucidate the generation of ROS in the FeVO3-x/PMS system,the chemical compositions of FeVO3-xwere scrutinized by XPS analysis.The spectra of Fe 2p core level in the pristine and reacted FeVO3-xshow that the ratio of Fe(III) to Fe(II) is nearly invariable Figs.3a and b),indicating the generated Fe(III) induced by the reaction between PMS and Fe(II) can be quickly reduced during treatment process.In contrast with the chemical state of Fe,pronounced changes occurred in the V species after the final reaction (Figs.3c and d),where a new peak located at 517.20 eV assigned to V(V) [31,32] was found.The oxidation of V species in the FeVO3-x/PMS system follows two pathways: (i) low valent V species (V(III) and V(IV)) react with PMS (HSO5-) to generate V(V) (Eqs.1 and 2);(ii) low valent V species as electron donators transfer electrons to Fe(III) for fast Fe(II) regeneration and finally convert to V(V) (Eqs.3 and 4).The first pathway is confirmed by Fig.2a since 32% and 25% CBZ can be degraded in the V2O3/PMS and V2O4/PMS systems,respectively.The second pathway of low valent V species for Fe(III) reduction is further scrutinized in the following content.In addition,compared with fresh FeVO3-x,the decrease of oxygen vacancy in the used FeVO3-x(Figs.3e and f)also verifies that oxygen vacancy participated in the CBZ degradation.

    To further investigate the role of low valent V species for Fe(III)reduction,the electronic structure and coordination environment of Fe and V species in the FeVO3-x,along with some other Fe and V-based oxides (FeO,Fe3O4,Fe2O3,V2O5,V2O4,and V2O3standards) were evaluated by X-ray absorption spectroscopy (XAS).E0was calculated as the maximum peak energy of the first derivative of the spectrum,which was used to identify the Fe oxidation state of different materials.According to the Fe K-edge X-ray absorption near edge structure (XANES) of FeVO3-xand other Fe-based oxides(Fig.4a),the value (7112.2 eV) ofE0in FeO spectrum is lowest,while in Fe2O3spectrum is highest (7114.1 eV),indicatingE0in Fe K-edge XANES spectrum increases as a function of chemical valence of Fe.Since the value (7112.7 eV) ofE0in the FeVO3-xis between that of FeO and Fe2O3,both Fe(II) and Fe(III) exist in the FeVO3-x.However,only Fe(III) exists in the FeVO3-xprecursor because itsE0is the same as that of Fe2O3.In addition,in contrast with Fe3O4,the pre-edge peak intensity of FeVO3-xis weaker than that of Fe3O4,implying the amount of Fe(II) in the FeVO3-xis more than that of in the Fe3O4,since the 3d orbital of Fe(II) possesses less electron number than that of Fe(III),and the pre-edge peak represents the 1s →3d electron transition [33].

    Fig.4.(a) Fe K-edge XANES analysis,(b) V K-edge XANES analysis,FT curves of (c) Fe K-edge and (d) V K-edge EXAFS k3χ(k) functions obtained from the XANES spectra without fitting.(e,f) The fitting values of V K-edge EXAFS k3χ(k) functions obtained from the XANES spectra,and (g) WT of V-foil,FeVO3-x and FeVO3-x precursor.

    As for the valence of V,the FeVO3-xprecursor,V2O5,V2O4,and V2O3standards have a pre-edge peak with prominent intensity,which drastically increases with V species oxidation states(Fig.4b).However,the pre-edge peak pattern of FeVO3-xis in remarkable contrast to those of other V-based materials.Since the symmetry of the V species in FeVO3-xdiffers from FeVO3-xprecursor,V2O3,V2O4,and V2O5,the oxidation states of V species in the FeVO3-xcannot be defined only by the pre-edge peak intensity.On the other hand,the V K-edge XANES spectrum of FeVO3-xis in line with the literature reports [4,34],indicating the oxidation state of V species in the FeVO3-xis trivalent and tetravalent.

    The Fourier-transformed (FT) extended X-ray absorption fine structures of Fe K-edge (EXAFSk3χ(k)) are shown in Fig.4c.The peak at ~1.5 ?A (without phase correction) can be identified as Fe-O bond.Comparing FeVO3-xprecursorversusFeVO3-x,the peak at ~1.5 ?A shifts to much lower intensity in FeVO3-x(Fig.4c),suggesting the coordination number decreases in FeVO3-x,which further well-documents the existence of oxygen vacancies.Since the FT curves of V K-edge EXAFSk3χ(k) functions (Fig.4d) are more complicated than that of Fe K-edge EXAFSk3χ(k),the fitting curves of FeVO3-xcompared with FeVO3-xprecursor and V foil are shown in Fig.4e,Fig.4f and Table S1 (Supporting information).The well-resolved peaks at ~1.4 ?A and ~3.0 ?A (without phase correction) in FeVO3-xand FeVO3-xprecursor are indexed to V-O bond and V-O-Fe bond,respectively.The coordination numbers of V-O and V-O-Fe shells in the FeVO3-xare 3.0 and 0.6,which is in marked contrast to that of in the FeVO3-xprecursor(5.6 and 3.0,respectively,Table S1),also indicating the existence of existence of oxygen vacancies.Moreover,the wavelet transform plots (Fig.4g) of FeVO3-xand FeVO3-xprecursor also reflect the existence of V-O and V-O-Fe bonds.The existence of V-O-Fe bond facilitates the interpretation of the interelectronic interaction of Fe and V species in FeVO3-x.Specifically,the electron-riched t2gdorbitals of V species donating electrons to the electron-deficient t2gd-orbitals of Fe(III) species through the bridging O2-via πdonation [4].Moreover,CBZ degradation and Fe(II) generation after external addition of Fe(III) into V2O4/PMS and V2O3/PMS systems (Fig.S5 in Supporting information) also imply low-valent V species as electron-rich promoters mediate electron shuttles to expedite Fe(III) reduction and pollutant degradation.To further confirm the interaction of oxygen vacancy and PMS molecules,we further conductedin-situRaman spectroscopy analysis.Thein situRaman spectroscopy shows that the peak intensities of FeVO3-xat 146,286,and 703 cm-1increase after adding PMS (Fig.S6 in Supporting information),indicating peroxo species bound to the surface oxygen vacancies might be formed [17].

    Previous studies suggested that co-existing anions in water might react with?OH and SO4?-(Eqs.5-12) [35–37].Therefore,the effects of different anions,such as Cl-,H2PO4-,NO3-and HCO3-,on CBZ degradation in the FeVO3-x/PMS system were investigated.From Fig.5a,it is clear that the common anions,such as Cl-,H2PO4-and NO3-in natural water almost show negligible effects on CBZ degradation,which suggests the great matrix resistance of this system.The obvious inhibition of CBZ degradation in the presence of HCO3-might originate from the considerable alkalinity induced by the introduction of HCO3-.However,in actual water samples such as tap water,Jinjiang water and Jiangan water,the degradation performance severely decreased (Fig.5b).This might be ascribed to the pH buffer effects of natural water samples and the presence of natural organic matters,which could severely compete with target contaminants for oxidative ROS.Finally,the system exhibited satisfactory cyclic performance during consecutive runs (Fig.5c).Despite a little decrease of CBZ removal from 100% to 80%,a facile N2or NH3regeneration could effectively restore the reactivity of used FeVO3-xand ensure the long-term stability.

    Fig.5.(a) The effect of Cl-,NO3-,HCO3-,and H2PO4- co-existing ions on CBZ degradation.(b) CBZ degradation in different water samples.(c) CBZ degradation in FeVO3-x/PMS system during 5 consecutive runs and after FeVO3-x regeneration.Experiment condition: [FeVO3-x]0=100 mg/L,[PMS]0=0.2 mmol/L,[CBZ]0=2.5 mg/L,pHini=6.3,[Cl-]=5 mg/L,[NO3-]=5 mg/L,[HCO3-]=20 mg/L,[H2PO4-]=5 mg/L.

    Based on the detected seven intermediates,we proposed the possible degradation pathway of CBZ in the FeVO3-x/PMS system(Fig.6a,Table S2 and Figs.S7-S14 in Supporting information).First,the olefinic unsaturated bond of central heterocyclic ring is readily attacked [4,38],and thusP1(m/z=251.0821) andP2(m/z=269.0922) are formed owing to the attack of SO4?-,?OH and Fe(IV).P2is then oxidized toP5(m/z=267.0772)viaintramolecular cyclisation and carboxylation reactions.In addition,the dialdehyde moieties ofP2are unstable,which leads to the rotation of benzene ring ofP2to generateP6(m/z=267.0774).The aldehyde moiety on theP6can be further oxidized by the ROS to form a carboxylic acid product (P7,m/z=283.0723).Subsequently,P7could be oxidized to form P4 (m/z=196.0766)viadeamination,acrylamido abstraction,and decarboxylation reactions.Moreover,P1can also be oxidized to generateP3(m/z=180.0813)viaintramolecular cyclisation,amine/acrylamido cleavage and de-formyl,which further be oxidized to produceP4.Finally,these detected intermediates are mineralized to CO2and H2O.Specifically,the TOC removal drastically increased with treatment time (Fig.S15 in Supporting information): the TOC removal reached 17% after 10 min treatment,while it increased to 55% after 120 min treatment.

    Fig.6.(a) CBZ degradation pathways in the FeVO3-x/PMS system.(b) Acute toxicity,(c) bioaccumulation factor,(d) developmental toxicity,and (e) mutagenicity of CBZ and its intermediates.Experimental conditions for (a): [FeVO3-x]0=100 mg/L,[PMS]0=0.2 mmol/L,[CBZ]0=2.5 mg/L,and initial pHini=6.3.

    Furthermore,we also evaluated the developmental toxicity,acute toxicity,bioaccumulation factor and mutagenicity of original CBZ and its intermediates through the Toxicity Estimation Software Tool.Fig.6b shows the oral rat LD50 ofP1andP5are 213.16 and 287.73 mg/kg,respectively,which are much lower than that of CBZ(1636.63 mg/kg),implying the acute toxicities ofP1andP5are quite more toxic than original CBZ.However,the acute toxicities of most types of intermediates are much lower than CBZ.Since the potential hazards of these intermediates are negative correlation with bioaccumulation factor,and Fig.6c shows the bioaccumulation factors ofP2,P5,P6,P7(9.56,7.41,19.70,and 4.98,respectively) are much lower than that of CBZ (27.38),four intermediates have quite lower risks than CBZ.However,the results of developmental toxicity (Fig.6d) and mutagenicity (Fig.6e) suggest that five developmental toxicants (P1,P2,P5,P6andP7) and five mutagenicity negative intermediates (P1,P3,P4,P5andP7) are generated after treatment process.

    In this work,we synthesized a novel catalysts FeVO3-xviaa facile ammonia reduction method.The high-temperature reduction process endowed the catalysts with abundant low-valent V species and electron-rich oxygen vacancy,which are both conducive to the circulation of Fe(III) to Fe(II).Through quenching experiments and EPR analysis,we found that?OH,SO4?-,O2?-and Fe(IV) were all generated in this system,but only SO4?-and Fe(IV) primarily contributed to the degradation of CBZ.X-ray photoelectron spectroscopy and X-ray adsorption spectroscopy indicated that both the low-valent V provides and oxygen vacancy could accelerate the internal electron transfer to Fe(III)viathe unsaturated V-O-Fe bond.Despite a little decrease of performance after consecutive runs,the activity could be effectively regeneratedviare-calcination treatment.Finally,the degradation product and the corresponding toxicity analysis revealed that this system is basically a toxicity attenuation process,demonstrating its potential in practical application.

    Declaration of competing interest

    The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

    Acknowledgments

    The first author is funded by the Shanghai Tongji Gao Tingyao Environmental Science &Technology Development Foundation.Additionally,the authors acknowledge the staff at beamline 1WB at the Beijing Synchronic Radiation Facility (BSRF) for their assistance during the XAS measurements.And the authors would like to acknowledge the financial support from National Natural Science Foundation of China (Nos.52070133,2022NSFSC0972),Sichuan Science and Technology Program: Key Research and Development Program (Nos.2019YFG0314,2017SZ0180 and 2019YFG0324).

    Supplementary materials

    Supplementary material associated with this article can be found,in the online version,at doi:10.1016/j.cclet.2023.108580.

    久久精品国产亚洲av天美| 国产在视频线在精品| 亚洲国产日韩欧美精品在线观看| 久久久精品94久久精品| 久久久国产成人精品二区| 免费观看人在逋| 精品国产三级普通话版| 精品人妻偷拍中文字幕| 国产伦在线观看视频一区| 最近2019中文字幕mv第一页| 99九九线精品视频在线观看视频| 国产三级中文精品| 你懂的网址亚洲精品在线观看 | 亚洲欧美日韩东京热| 啦啦啦观看免费观看视频高清| 国产精品伦人一区二区| 久99久视频精品免费| 97热精品久久久久久| 亚洲国产欧美人成| 七月丁香在线播放| 成人三级黄色视频| 又粗又爽又猛毛片免费看| 亚洲经典国产精华液单| 国产伦在线观看视频一区| av黄色大香蕉| 国产69精品久久久久777片| 久久久国产成人免费| 91久久精品国产一区二区成人| 免费av毛片视频| 久久国产乱子免费精品| 国产高潮美女av| 女人久久www免费人成看片 | 亚洲精品色激情综合| 97超视频在线观看视频| 热99在线观看视频| 午夜福利在线在线| 国产精品综合久久久久久久免费| 日本免费在线观看一区| 欧美日韩国产亚洲二区| 看片在线看免费视频| 亚洲欧美成人精品一区二区| 久久这里有精品视频免费| 久久久久久久国产电影| 一级黄片播放器| 亚洲aⅴ乱码一区二区在线播放| 有码 亚洲区| 色综合亚洲欧美另类图片| 男女啪啪激烈高潮av片| 大话2 男鬼变身卡| 国产黄片美女视频| av在线亚洲专区| 成人一区二区视频在线观看| 亚洲三级黄色毛片| 国产精品永久免费网站| 韩国av在线不卡| 国产精品久久久久久精品电影小说 | 日韩视频在线欧美| 亚洲av电影不卡..在线观看| 亚洲,欧美,日韩| 亚洲av不卡在线观看| 亚洲国产精品专区欧美| 天堂影院成人在线观看| 亚洲国产精品成人综合色| 人人妻人人澡人人爽人人夜夜 | 精品人妻熟女av久视频| 久99久视频精品免费| 国产人妻一区二区三区在| 一本一本综合久久| 国产黄色视频一区二区在线观看 | 精品熟女少妇av免费看| 国产成人精品久久久久久| 午夜精品一区二区三区免费看| 99久久成人亚洲精品观看| 国产 一区 欧美 日韩| 亚洲三级黄色毛片| 国产精品不卡视频一区二区| 国产成人一区二区在线| 大香蕉久久网| 国产成人a∨麻豆精品| 校园人妻丝袜中文字幕| 99久久无色码亚洲精品果冻| 国产精品久久久久久av不卡| 少妇猛男粗大的猛烈进出视频 | 国产欧美日韩精品一区二区| 久久精品国产亚洲网站| 三级毛片av免费| 在线免费观看不下载黄p国产| 免费在线观看成人毛片| 蜜桃亚洲精品一区二区三区| 亚洲国产精品久久男人天堂| 亚洲美女搞黄在线观看| 午夜福利成人在线免费观看| 精品99又大又爽又粗少妇毛片| 在线播放国产精品三级| 国产精品麻豆人妻色哟哟久久 | 精品久久久久久久人妻蜜臀av| 人人妻人人看人人澡| 国产伦在线观看视频一区| 亚洲在久久综合| 白带黄色成豆腐渣| 最近中文字幕2019免费版| 欧美日韩一区二区视频在线观看视频在线 | 国产精品99久久久久久久久| 国产白丝娇喘喷水9色精品| 国产黄片美女视频| 欧美精品一区二区大全| 两个人的视频大全免费| ponron亚洲| 久久99精品国语久久久| av在线观看视频网站免费| 26uuu在线亚洲综合色| 亚洲熟妇中文字幕五十中出| 久久久精品欧美日韩精品| 免费观看人在逋| 最后的刺客免费高清国语| 国产精品熟女久久久久浪| 熟女人妻精品中文字幕| 男人狂女人下面高潮的视频| 国产又黄又爽又无遮挡在线| 国产精品人妻久久久久久| 成年版毛片免费区| 纵有疾风起免费观看全集完整版 | 插逼视频在线观看| АⅤ资源中文在线天堂| 国产高清国产精品国产三级 | 一级毛片久久久久久久久女| 99九九线精品视频在线观看视频| 亚洲国产精品成人综合色| 国产精品一区www在线观看| 成人鲁丝片一二三区免费| 欧美高清性xxxxhd video| 久久久精品大字幕| av在线亚洲专区| 熟女电影av网| 久久99精品国语久久久| 婷婷六月久久综合丁香| 纵有疾风起免费观看全集完整版 | 久久久久性生活片| 色尼玛亚洲综合影院| 欧美日本视频| 国产黄片美女视频| ponron亚洲| 97人妻精品一区二区三区麻豆| 国内揄拍国产精品人妻在线| 99久久中文字幕三级久久日本| 九九热线精品视视频播放| 一个人观看的视频www高清免费观看| av女优亚洲男人天堂| 别揉我奶头 嗯啊视频| av在线亚洲专区| 九九爱精品视频在线观看| 高清毛片免费看| 麻豆一二三区av精品| 免费av不卡在线播放| 边亲边吃奶的免费视频| 最新中文字幕久久久久| 男女边吃奶边做爰视频| 91精品伊人久久大香线蕉| 麻豆精品久久久久久蜜桃| 老司机福利观看| 久久精品熟女亚洲av麻豆精品 | 国产乱人偷精品视频| 久久久久久久久中文| 三级经典国产精品| 欧美又色又爽又黄视频| 亚洲av男天堂| 久久综合国产亚洲精品| 男人的好看免费观看在线视频| 日本黄色片子视频| 中文在线观看免费www的网站| 欧美日韩国产亚洲二区| 午夜福利在线观看免费完整高清在| 亚洲成人精品中文字幕电影| 男女边吃奶边做爰视频| 亚洲精品国产av成人精品| 91精品国产九色| 一级毛片aaaaaa免费看小| 小说图片视频综合网站| 免费看a级黄色片| 黑人高潮一二区| 亚洲国产最新在线播放| 成人鲁丝片一二三区免费| 亚洲丝袜综合中文字幕| 在线观看66精品国产| 精品人妻视频免费看| 麻豆国产97在线/欧美| 国模一区二区三区四区视频| 国产精品伦人一区二区| 中文字幕av在线有码专区| 成年女人看的毛片在线观看| 看非洲黑人一级黄片| 18禁在线播放成人免费| 国产精华一区二区三区| 亚洲久久久久久中文字幕| 99久久精品一区二区三区| 亚洲成人av在线免费| 亚洲精品日韩av片在线观看| 精品久久久久久久久av| 日韩高清综合在线| 欧美高清性xxxxhd video| 国产伦一二天堂av在线观看| ponron亚洲| 国产欧美另类精品又又久久亚洲欧美| 69av精品久久久久久| 日韩一区二区三区影片| 欧美潮喷喷水| 美女脱内裤让男人舔精品视频| 欧美日韩精品成人综合77777| 偷拍熟女少妇极品色| 国产精品久久久久久精品电影小说 | 亚洲高清免费不卡视频| 干丝袜人妻中文字幕| 麻豆成人av视频| 亚洲无线观看免费| 在线a可以看的网站| 日本色播在线视频| 亚洲av电影在线观看一区二区三区 | 丝袜喷水一区| 亚洲av二区三区四区| eeuss影院久久| 国产视频首页在线观看| 日韩亚洲欧美综合| av黄色大香蕉| 欧美最新免费一区二区三区| 少妇被粗大猛烈的视频| 日本av手机在线免费观看| 久久久久性生活片| 免费观看精品视频网站| 成人亚洲欧美一区二区av| 99热网站在线观看| 一区二区三区四区激情视频| 久久精品久久久久久久性| 国产又色又爽无遮挡免| 一区二区三区高清视频在线| 国产精品国产三级国产av玫瑰| 亚洲国产最新在线播放| 99久久人妻综合| 精品酒店卫生间| 久久精品国产自在天天线| 免费观看性生交大片5| 久久精品久久久久久久性| 亚洲国产日韩欧美精品在线观看| 久久久亚洲精品成人影院| 亚洲18禁久久av| 男人的好看免费观看在线视频| 一卡2卡三卡四卡精品乱码亚洲| 一卡2卡三卡四卡精品乱码亚洲| 亚洲国产精品合色在线| 三级经典国产精品| 国产午夜精品久久久久久一区二区三区| 国产精品日韩av在线免费观看| 成人性生交大片免费视频hd| 中文字幕久久专区| 国产成人精品久久久久久| 久久人人爽人人爽人人片va| 男人的好看免费观看在线视频| av黄色大香蕉| 女人久久www免费人成看片 | 久久精品夜色国产| 国产午夜精品一二区理论片| 中文字幕av成人在线电影| 日本猛色少妇xxxxx猛交久久| 麻豆成人午夜福利视频| 内射极品少妇av片p| 国产免费一级a男人的天堂| 99在线人妻在线中文字幕| 麻豆成人午夜福利视频| 国产淫语在线视频| 一区二区三区高清视频在线| 久久精品影院6| 国产真实乱freesex| 国产探花在线观看一区二区| 亚洲精品aⅴ在线观看| 色哟哟·www| 老司机影院成人| 国产日韩欧美在线精品| 熟女电影av网| www.色视频.com| 一边摸一边抽搐一进一小说| 高清毛片免费看| 精品酒店卫生间| 久久精品夜夜夜夜夜久久蜜豆| 国产精品久久久久久av不卡| 老司机福利观看| 特级一级黄色大片| 亚洲精品日韩av片在线观看| 舔av片在线| 久久久久性生活片| 有码 亚洲区| 精品久久久久久久末码| 亚洲av电影不卡..在线观看| 亚洲性久久影院| 又粗又爽又猛毛片免费看| 嫩草影院精品99| 秋霞在线观看毛片| 日韩在线高清观看一区二区三区| 国产精品一区二区性色av| 亚洲av免费在线观看| 99久久精品国产国产毛片| 十八禁国产超污无遮挡网站| 亚洲成人av在线免费| 色综合亚洲欧美另类图片| 好男人视频免费观看在线| 免费黄网站久久成人精品| 三级经典国产精品| 亚洲国产精品久久男人天堂| 亚洲av福利一区| 免费观看的影片在线观看| 又黄又爽又刺激的免费视频.| 欧美日韩一区二区视频在线观看视频在线 | 午夜久久久久精精品| 亚洲色图av天堂| 国产精品久久久久久精品电影| 性色avwww在线观看| 夜夜爽夜夜爽视频| 一区二区三区高清视频在线| 国国产精品蜜臀av免费| 青春草国产在线视频| 特级一级黄色大片| eeuss影院久久| 91精品伊人久久大香线蕉| 蜜桃亚洲精品一区二区三区| 99久久九九国产精品国产免费| 欧美日韩精品成人综合77777| 色播亚洲综合网| 久久精品国产鲁丝片午夜精品| 最近中文字幕2019免费版| 日韩大片免费观看网站 | 麻豆av噜噜一区二区三区| 国产伦在线观看视频一区| 欧美日本亚洲视频在线播放| 狂野欧美激情性xxxx在线观看| 欧美色视频一区免费| 国产 一区 欧美 日韩| 国产极品精品免费视频能看的| 国产精品日韩av在线免费观看| 国产精品久久久久久精品电影小说 | 成人漫画全彩无遮挡| 青春草国产在线视频| 少妇高潮的动态图| 七月丁香在线播放| 精品人妻熟女av久视频| 亚洲无线观看免费| 日本wwww免费看| 麻豆成人午夜福利视频| 国产午夜精品论理片| 日本wwww免费看| 国产亚洲精品久久久com| 97超碰精品成人国产| 91av网一区二区| 亚洲aⅴ乱码一区二区在线播放| 蜜桃亚洲精品一区二区三区| 久久久久久久久久久免费av| 国产一区亚洲一区在线观看| 听说在线观看完整版免费高清| 欧美xxxx性猛交bbbb| 日韩视频在线欧美| 色综合色国产| 97超视频在线观看视频| 一级黄片播放器| 亚洲,欧美,日韩| 亚洲怡红院男人天堂| 在线免费十八禁| 国产伦一二天堂av在线观看| 久久亚洲精品不卡| 99久久精品国产国产毛片| 成人综合一区亚洲| av国产免费在线观看| 精品久久久久久久末码| 秋霞伦理黄片| 亚洲精品日韩av片在线观看| 男人的好看免费观看在线视频| 免费av观看视频| 干丝袜人妻中文字幕| 91精品一卡2卡3卡4卡| 亚洲美女视频黄频| 99在线视频只有这里精品首页| 两性午夜刺激爽爽歪歪视频在线观看| 久久久成人免费电影| 久久精品久久久久久噜噜老黄 | 99国产精品一区二区蜜桃av| 青春草视频在线免费观看| 国产三级在线视频| 亚洲综合精品二区| 丝袜喷水一区| av播播在线观看一区| 超碰av人人做人人爽久久| 国产大屁股一区二区在线视频| 亚洲精品乱码久久久久久按摩| 亚洲av熟女| 亚洲丝袜综合中文字幕| 26uuu在线亚洲综合色| 午夜爱爱视频在线播放| 国内精品一区二区在线观看| 国产成人精品婷婷| 国产v大片淫在线免费观看| av在线蜜桃| 亚洲欧美日韩卡通动漫| 国产精品电影一区二区三区| 成人国产麻豆网| 亚洲欧美一区二区三区国产| 网址你懂的国产日韩在线| 九九热线精品视视频播放| 99久久人妻综合| av播播在线观看一区| 国产真实乱freesex| 99久久九九国产精品国产免费| 国产黄a三级三级三级人| 中文字幕免费在线视频6| 日韩人妻高清精品专区| 性插视频无遮挡在线免费观看| 日韩欧美在线乱码| 国产一区二区在线观看日韩| 人妻少妇偷人精品九色| 国产黄片美女视频| 国产精品爽爽va在线观看网站| 老师上课跳d突然被开到最大视频| 亚洲精品,欧美精品| 日韩亚洲欧美综合| 国产精品国产高清国产av| 国产成人精品婷婷| 亚洲美女搞黄在线观看| 中文天堂在线官网| 成人无遮挡网站| 亚洲欧美日韩东京热| 国产一区二区在线av高清观看| 国产久久久一区二区三区| 又粗又爽又猛毛片免费看| 插阴视频在线观看视频| 国产伦理片在线播放av一区| 免费不卡的大黄色大毛片视频在线观看 | av免费在线看不卡| 欧美丝袜亚洲另类| 精品酒店卫生间| 欧美一区二区国产精品久久精品| 亚洲精品一区蜜桃| 久久国产乱子免费精品| 日韩亚洲欧美综合| av天堂中文字幕网| 深爱激情五月婷婷| 精品久久久久久成人av| 欧美又色又爽又黄视频| 禁无遮挡网站| 女人久久www免费人成看片 | 精品久久久噜噜| 午夜免费男女啪啪视频观看| 亚洲伊人久久精品综合 | 日韩成人伦理影院| 日韩大片免费观看网站 | 色网站视频免费| 综合色丁香网| 国产在线男女| 免费电影在线观看免费观看| 精品99又大又爽又粗少妇毛片| 免费看a级黄色片| 国产老妇伦熟女老妇高清| 国产精品1区2区在线观看.| 免费大片18禁| 啦啦啦韩国在线观看视频| 日日撸夜夜添| 九九爱精品视频在线观看| 村上凉子中文字幕在线| 水蜜桃什么品种好| 国产一级毛片七仙女欲春2| 亚洲精品影视一区二区三区av| 亚洲成av人片在线播放无| 国产精品一及| 欧美极品一区二区三区四区| 亚洲精品日韩在线中文字幕| 精品欧美国产一区二区三| 免费av不卡在线播放| 69人妻影院| 亚洲在久久综合| 久久久精品欧美日韩精品| 日本与韩国留学比较| 男插女下体视频免费在线播放| 少妇高潮的动态图| 精品免费久久久久久久清纯| 看黄色毛片网站| 少妇的逼好多水| 啦啦啦观看免费观看视频高清| 日韩欧美三级三区| 久久久久久久国产电影| 黄片无遮挡物在线观看| 三级毛片av免费| 亚洲电影在线观看av| 一边摸一边抽搐一进一小说| 亚洲色图av天堂| 岛国在线免费视频观看| 亚洲精华国产精华液的使用体验| 五月玫瑰六月丁香| 99热这里只有精品一区| 美女大奶头视频| 三级国产精品片| 日韩av不卡免费在线播放| 精品一区二区三区视频在线| 亚洲电影在线观看av| 一边摸一边抽搐一进一小说| 看十八女毛片水多多多| 超碰av人人做人人爽久久| 国产精品人妻久久久久久| 久久久久久大精品| 日韩一区二区视频免费看| 高清av免费在线| 日韩视频在线欧美| 亚洲精品色激情综合| av黄色大香蕉| www.色视频.com| 国产久久久一区二区三区| 日韩中字成人| 建设人人有责人人尽责人人享有的 | 成人二区视频| 日本五十路高清| 国产精品久久久久久精品电影小说 | 国产亚洲精品av在线| 成年女人永久免费观看视频| 免费观看精品视频网站| 欧美精品国产亚洲| 国产高清三级在线| 亚州av有码| 直男gayav资源| 色噜噜av男人的天堂激情| 国产乱来视频区| 精品一区二区三区人妻视频| 狠狠狠狠99中文字幕| 男女那种视频在线观看| 国内少妇人妻偷人精品xxx网站| 九色成人免费人妻av| 少妇人妻精品综合一区二区| 日日摸夜夜添夜夜添av毛片| 久久精品久久久久久噜噜老黄 | 国产欧美日韩精品一区二区| 午夜日本视频在线| 99久久精品国产国产毛片| 岛国毛片在线播放| av在线播放精品| 国产免费男女视频| 少妇裸体淫交视频免费看高清| 亚洲欧美成人精品一区二区| 久久久久久久午夜电影| 赤兔流量卡办理| 久久久久久久午夜电影| 成人欧美大片| 欧美精品国产亚洲| 免费人成在线观看视频色| 少妇的逼好多水| 黄色欧美视频在线观看| 精品久久国产蜜桃| a级一级毛片免费在线观看| 国产一区二区亚洲精品在线观看| 国产伦精品一区二区三区四那| 97超视频在线观看视频| 国产一区有黄有色的免费视频 | 精品人妻偷拍中文字幕| 国产人妻一区二区三区在| 午夜福利高清视频| 熟女人妻精品中文字幕| 日韩一本色道免费dvd| 秋霞在线观看毛片| 只有这里有精品99| 美女高潮的动态| av播播在线观看一区| 亚洲精品456在线播放app| 美女大奶头视频| 特大巨黑吊av在线直播| 亚洲国产精品sss在线观看| 亚洲av电影不卡..在线观看| 亚洲国产精品sss在线观看| 99热全是精品| 亚洲精品,欧美精品| 久久精品国产99精品国产亚洲性色| 少妇人妻一区二区三区视频| 中文字幕亚洲精品专区| 国产一区二区在线观看日韩| 内地一区二区视频在线| 国产私拍福利视频在线观看| 一级爰片在线观看| 久久人人爽人人爽人人片va| 日韩一区二区视频免费看| 亚洲最大成人av| 欧美日韩国产亚洲二区| 天美传媒精品一区二区| 色综合色国产| 日韩高清综合在线| 欧美三级亚洲精品| 乱系列少妇在线播放| 久久欧美精品欧美久久欧美| 日本黄色片子视频| 国产一区二区在线观看日韩| 亚洲国产精品国产精品| 精品午夜福利在线看| 可以在线观看毛片的网站| 青春草亚洲视频在线观看| 中文资源天堂在线| 久久99热这里只频精品6学生 | 国产精品无大码| 午夜精品国产一区二区电影 | 国产真实乱freesex| 亚洲真实伦在线观看| 男人狂女人下面高潮的视频| 国产精品av视频在线免费观看| 国产亚洲av片在线观看秒播厂 | 蜜臀久久99精品久久宅男| 久热久热在线精品观看| 美女国产视频在线观看| 夜夜爽夜夜爽视频| 中国国产av一级| 大香蕉久久网| 国产精华一区二区三区| 精品人妻偷拍中文字幕| 色视频www国产| 在线观看一区二区三区| 真实男女啪啪啪动态图| 精品午夜福利在线看| 18+在线观看网站|