• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    New insight into polystyrene ion exchange resin for efficient cesium sequestration: The synergistic role of confined zirconium phosphate nanocrystalline

    2024-04-06 06:21:04MengzhouWngMingynFuJunfengLiYihuiNiuQingruiZhngQinSun
    Chinese Chemical Letters 2024年1期

    Mengzhou Wng ,Mingyn Fu ,Junfeng Li ,Yihui Niu ,Qingrui Zhng,? ,Qin Sun,?

    a Hebei Key Laboratory of Heavy Metal Deep-Remediation in Water and Resource Reuse,School of Environmental and Chemical Engineering,Yanshan University,Qinhuangdao 066004,China

    b Laboratory of Environmental Technology,INET,Tsinghua University,Beijing 100084,China

    Keywords: Zirconium phosphate Nanocrystalline Polystyrene resin Cesium Removal

    ABSTRACT Polystyrene resins (PS) have been practical ion exchangers for radionuclides removal from water.However,nonspecific effects of ion exchange groups continue to be a major obstacle for emergency treatment with coexisting ions of high concentrations.The selectivity for Cs+ enables zirconium phosphate (ZrP)to be the most promising inorganic sorbent for radioactive cesium extraction,despite being difficult to synthesize and causing excessive pressure loss in fixed-bed reactors due to fine powder.Herein,through facile confined crystallization in host macropores,we prepared PS confined α-ZrP nanocrystalline(ZrP-PS).Size-screen sorption of layered α-ZrP and sulfonic acid group preconcentration of PS synergistically enable a considerably higher Cs+ affinity of ZrP-PS than PS,as confirmed by X-ray photoelectron spectroscopy (XPS) analysis.ZrP-PS demonstrated remarkable cesium sequestration performance in both batch and continuous experiments,with a high adsorption capacity of 269.58 mg/g,a rapid equilibrium within 80 min,and a continuous effluent volume of 2300 L/kg sorbents.Given the excellent selectivity for Cs+ and flexibility to separate from treated water,ZrP-PS holds great promise as purification packages for the emergency treatment of radioactively contaminated water.

    In the last 50 years,severe nuclear reactor accidents in Europe,Asia,and North America have caused local radiation to rise above natural background levels in the short term,as well as chronic contamination exceeding prescribed standards in different parts of the world [1–3].The total discharges of radioactive cesium (mostly137Cs and134Cs) after the Fukushima accident were estimated at 27.1 PBq,the most massive amount of artificial radioactive material ever released into the sea [4].As an alkali metal,radioactive cesium exists mainly as the cation of Cs+in water,migrates easily and eventually enters the human body through the food chain,increasing the risk of developing tumors through external and internal exposure [5–7].Therefore,it is of imperative interests to sequestrate cesium from aqueous environments in nuclear emergency treatment.

    Many separation technologies have been used to remove radioisotopes from wastewater in nuclear power plants,including Cs+,such as precipitation,solvent extraction,evaporation concentration,membrane and ion exchange [8–10].Ion exchange technology benefits from flexible operations,adaptability to various scenarios,easy integration of devices and recycling,especially from reducing the amount of final solid waste generated effectively by avoiding large amounts of radioactive sludge or organic solvents[11].However,studies are inadequate on removing radioactive alkaline and alkaline earth metal cations by ion exchange resins when coexisting with cations of high concentration [12,13].As a common feature of ionic pollutants purification by ion exchange resins,the nonspecific effect between ion exchange groups and ions may cause the competitive exchange of coexisting cations and reduce Cs+removal efficiency [14–17].This low Cs+selectivity is the main limitation of ion exchange technology for emergency treatment in real waters.

    Unlike ion exchange resins,inorganic ion exchangers such as zirconium compounds,metal hexacyanoferrates (MHCF),ammonium molybdophosphate (AMP),and clay minerals allow selective enrichment of alkaline metals and alkaline earth metals cations and halide anions [14,18–27].For sequestrating cesium,the performances of Prussian blue,zeolite,and AMP still need to be improved regarding adsorption equilibrium time,adsorption capacity,and stability [14,18].At the same time,zirconium phosphate (ZrP) has received much interest in recent decades on its excellent performance [23–27].Since Clearfield and Alberti pioneered the synthesis and structural description of layered ZrP,analogous layered semicrystalline phosphates have been actively researched for solid acid catalysis,adsorption and drug delivery basing on their similar layered structures [23,24].These semicrystalline ZrP are cationic layered compounds with a permanent surface charge and flexible layered structures bound by van der Waals forces,in which the Zr atoms connectedviathe HPO42-groups with the pristine exchangeable counter-ions located within the interlayer space [25].For the separation and extraction of fission products from high-level liquid wastes (HLLWs),ZrP and its derivatives exhibited remarkable Cs selectivity,very sparing aqueous solubility,and excellent radiation resistance,making them the most promising inorganic ion exchangers in Cs extraction [26].However,it is still a problem for ZrP to be directly employed in flow-through treatment systems due to the excessive pressure drop from the fine powder,which greatly limits the practical engineering application of ZrP as the Cs-selective ion exchangers.

    Despite its low selectivity of Cs+,commercial resins have been proposed to be an ideal host for incorporating inorganic particles as an engineering application solution,notably polystyrene ion change resins (PS).In previous studies,PS-hosted nanoparticles were proved efficient in purifying trace heavy metal cations,oxyanions,and halide anions [28–31].PS host primarily provides three benefits.Firstly,immobilize charged groups of the polymeric PS,namely the sulfonic acid group or quaternary ammonium group,permeate and preconcentration target ions by ‘Donnan membrane effect’before surface bonding,enhancing final capacity of target ions [32].Secondly,charged groups facilitate dispersion of small-size particles,providing greater adsorption capacities and/or faster adsorption rates [33].Thirdly,millimeter-scale PS beads are appropriate for continuous flow systems for satisfactory hydrodynamic performance in typical water purification units like continuous packed columns.Thus,we speculate that PS-hosted ZrP exhibits efficient cesium sequestration and is feasible for continuous packed columns.Moreover,universal purification components for emergency treatment could be fabricated based on cesium sequestration behavior and mechanism by PS-hosted ZrP from complex aqueous environments.However,to the best of our knowledge,such research has not been reported.

    Herein,we aim to sequestrate cesium using PS-hosted ZrP and investigate the behavior and mechanism of cesium sequestration.Through facile confined crystallization in the host macropores,we prepared the PS-confinedα-ZrP nanocrystalline,noted as ZrP-PS.Batch sorption runs were performed to examine the adsorption performance of ZrP-PS on simulated radioactive cesium,including the effects of solution pH,coexisting ions,reaction temperature and time.A series of characterizations revealed the mechanism of cesium sequestration.Byin-situcrystalline growth in macropores,nanoα-ZrP was embedded in the porous inner surface of PS.The specific affinity between layeredα-ZrP nanocrystalline and Cs+synergized the Donnan film effect of PS,which allowed cesium to be efficiently separated from water coexisting with highconcentration cations.The continuous packed column assessment predicted ZrP-PS to be an excellent solution for cesium sequestration in emergency treatment applications.

    A polystyrene macroporous cation exchange resin charged with sulfonic acid groups (-SO3–) was used as host.Detailed materials,synthesis and characterization of ZrP-PS and Cs+adsorption experiment sections were in Support Information (Texts S1-S5 in Supporting information).

    By a facile process similar to amorphous ZrP synthesis,nanocrystallineα-ZrP was dispersed in PS and confined in macropores of the host.ZrP-PS was shown with uniformly distributed ZrP particles of diameters of 200–400 nm without aggregation (Fig.1a).In contrast,nano ZrP synthesized without PS host aggregated severely only showing ~50 nm particles at the edges (Fig.1b).For the N2sorption isotherms (Fig.1c),macropores in PS exhibited a type II isotherm with a steep increase in adsorption volume atP/P0=0.95–1.00,while the hysteresis loop of ZrP-PS appeared in the lower relative pressure range reflecting the decreased pore size distribution [34].Also,the pore volume and average pore size of ZrP-PS both decreased (Fig.1c,insert).The atomic force microscope (AFM) 3D analysis in Fig.S1a (Supporting information)showed that the vertical height approximate 200 nm of the central cross-section of ZrP-PS was smoother than that of PS.Both the N2sorption isotherms and the AFM images indicated pore confined ZrP blocked some macropores.Pore-confinement is also demonstrated by the gradually growth of ZrP from the outer surface to the inner part of PS (Text S6 and Fig.S1b in Supporting information).The confined ZrP exhibits the characteristic diffraction peaks at 2θof 11.6,20.3,and 24.9° in the X-ray powder diffractometer(XRD) pattern (Fig.1d),which correspond to the crystal planes(002),(110),and (112) of crystallineα-Zr(HPO4)2·H2O (α-ZrP,JCPDS No.22–1022).The (002) crystal plane spacing was 7.6 ?A calculated from Bragg’s law (Text S7 in Supporting information),indicating the PS-confined ZrP was layeredα-ZrP crystalline [35–38].

    Fig.1.Characterization of ZrP-PS and ZrP: (a) the TEM image of ZrP-PS and (b)the TEM images of ZrP powder,(c) nitrogen adsorption-desorption isotherms (inset:pore size distribution) of PS and ZrP-PS,and (d) XRD patterns of ZrP powder,ZrP-PS and Cs-sequestrated ZrP-PS (ZrP-PS-Cs),and the standard pattern of Zr(HPO4)2·H2O(top to bottom).

    The typical synthesis of layered structural ZrP involves hightemperature calcination [24,38–40].In this study,Zr4+,as the ZrP precursor,dispersed throughout macropores of the PS host due to negative charges of -SO3–,which significantly altered the crystallization behavior of ZrP.Confined formation of the crystalline phase is possible because of altered crystallization kinetics and thermodynamics in PS pores [30,41].Without pore-confinement,ZrP was mainly amorphous and showed broad diffraction peaks in XRD pattern (Fig.1d).Accordingly,through porous and crosslinking matrix and ample surface charge of PS,α-ZrP was confined in the host,which was presumed to facilitate good cesium sequestration in addition to -SO3–groups.

    Cesium sequestration of ZrP-PS demonstrated removal efficiencies higher than 95.2% in the wide pH range of 3.27–10.93 (Fig.2a).This performance benefited from the stably negative zeta potentials of ZrP-PS due to permanently negatively charged -SO3–in PS[42].H+release was observed in cesium sequestration by ZrP-PS(Fig.S2 in Supporting information),suggesting similar proton-Cs+exchange to that of amorphous ZrP,and thus an excess of H+ions inhibited the Cs+removal at pH values 0.84 and 1.91.Furthermore,surface protonation of ZrP-PS at high acidity resulted in the most positive zeta potential at pH around 1.0,which weakened nonspecific electrostatic interaction of ZrP-PS toward Cs+,thereby affecting cesium sequestration.

    Fig.2.(a) Solution pH effects on Cs+ removal (ZrP-PS dose: 1.0 g/L,initial Cs+=50 mg/L,298 K for 24 h) and zeta potentials of ZrP-PS,(b) effects of competing cations Na+and Ca2+ on Cs+ removal (sorbent dose 1.0 g/L,initial Cs+=50 mg/L,298 K for 24 h,pH 6.5–7.0),(c) kinetic models fitting results,inset: intraparticle diffusion model fitting(ZrP-PS dose: 0.4 g/L,initial Cs+=80 mg/L,298 K,pH 6.5–7.0),and (d) adsorption isotherm curves fitted by Langmuir and Freundlich models (ZrP-PS dose: 1.0 g/L,24 h,pH 6.5–7.0).

    It is essential for emergency treatment to investigate the selectivity of Cs+under coexistence of competing cations.Both ZrP-PS and PS were affected to some extent with increasing concentrations of Na+and Ca2+(Fig.2b).When Na+/Cs+(mol/mol)was increased from 0 to 16,the Cs+removal efficiency by ZrP-PS remained greater than 90.0%;in contrast,that by PS decreased dramatically from 94.6% to 72.8% and was only 44.8% at Na+/Cs+(mol/mol)=64.When Ca2+/Cs+(mol/mol) was increased from 0 to 32,the removal efficiency of Cs+by ZrP-PS decreased from 97.0% to 40.2%,while that of PS from 94.6% to 16.2%.However,with the further increase of Ca2+/Cs+,the removal efficiency of ZrP-PS stabilized.The solid-liquid distribution ratioKdof ZrP-PS(310 mL/g) was about 24 times greater than that of PS (Text S8 in Supporting information).ZrP-PS is expected to sequestrate Cs+viaproton exchange by ZrP [43] in addition to the nonspecific interaction of -SO3–groups,with the latter to be a main interaction of PS.The proton-exchange sites onα-ZrP provide a specific affinity and high selectivity for Cs+,while the selectivity by PS with coexisting cations was inferior because cations competed the nonspecific sites of -SO3–.In addition,effects of Mg2+,typical coexisting anions (Cl-,NO3-,SO42-),humic acid and salinity on Cs+selectivity supported the benefits of ZrP-PS for emergency treatment in natural waters (Text S9,Fig.S3 in Supporting information).

    The adsorption kinetics and isotherm experiments were conducted through batch adsorption tests to investigate further the cesium sequestration performance of ZrP-PS (Text S10 in Supporting information).Fig.2c shows the adsorption kinetics of Cs+on ZrP-PS,with PS as the reference in Fig.S4a (Supporting information).Cs+uptake equilibriums reached within ~80 min for both ZrP-PS and PS;however,ZrP-PS exhibited a faster kinetic process.Cs+removal efficiencies by ZrP-PS at 30 and 80 min were 55.1% and 84.5%,respectively.Thepseudo-first-order,pseudosecond-order,and intraparticle diffusion models fitted the kinetic data of ZrP-PS well,with higher rate constantsK1,K2andKintrepresenting the faster kinetic rate than PS (Table S1 in Supporting information).The intraparticle diffusion model exhibited a higher correlation to ZrP-PS (R2=0.9825) than PS (R2=0.8393),inferring that decreased average pore size in ZrP-PS affected intraparticle diffusion of Cs+.The isothermal adsorption data of Cs+on PS and ZrP-PS were fitted well by Langmuir and Freundlich models(Fig.2d,Fig.S4b and Table S2 in Supporting information).According to the Langmuir model,the adsorption capacity of Cs+on PS was 230.61 mg/g and did not change much at the experimental temperatures.The adsorption capacity of Cs+by ZrP-PS increased with decreasing temperatures,indicating the exothermic nature of cation exchange ofα-ZrP [44].The maximum adsorption capacity of Cs+on ZrP-PS was 269.85 mg/g at 293 K,greater than that on PS and an almost unmatched maximum capacity for Cs+adsorption compared with the literature in the last ten years [45–54] (Table 1).In addition,when ZrP-PS was used in simulated radioactive wastewater (Table S3 in Supporting information),removal efficiency was not significantly influenced by high Cs+concentrations of 50 and 200 mg/L (Fig.S5 in Supporting information),further demonstrating efficient cesium sequestration performance of ZrP-PS.

    Table 1 Comparison of Cs adsorption capacities and kinetics by adsorbents in literatures in the last ten years.

    To disclose the mechanism of efficient Cs+sequestration by ZrP-PS,XRD,Fourier transform infrared (FT-IR) spectra and X-ray photoelectron spectroscopy (XPS) analysis of different samples was performed,and the results are depicted in Figs.1d and 3,Figs.S6 and S7 (Supporting information).By XPS analysis,differences of P 2p,Zr 3d and O 1s binding energies between PS-confinedα-ZrP nanocrystalline and amorphous ZrP further approved the structural characteristics ZrP-PS and ZrP shown in the XRD patterns(Text S11 in Supporting information).After Cs+adsorption on ZrPPS,cesium was detected in the ZrP-PS-Cs sample both in the XRD and XPS analyses,as the characteristic peaks of Cs+solid solutions(Cs2Zr(PO4)2and CsZrH(PO4)2·xH2O) in Fig.1d and Cs 3d bonding energies at 725.0–740.0 eV in the full XPS spectrum shown in Fig.3b.XRD characteristic peaks ofα-ZrP were observed without position variation.FT-IR spectra comparison of ZrP-PS and ZrP-PS-Cs in Fig.3a presents that most functional groups remained before and after Cs+adsorption,confirming the stable chemical composite of ZrP-PS.Weak bands at 1410 cm-1of ZrP-PS are attributed to the presence ofδ(POH),indicating the existence of structural hydroxyl as exchangeable proton sites in confinedα-ZrP.This involvement of proton exchange in phosphate groups during Cs+adsorption could also be inferred from the notable reduction of the (002) peak intensity of ZrP-PS in Fig.1d and the intensity changes of bands at 1035 and 670 cm-1in Fig.S6 (Text S12 in Supporting information).More information on the mechanism of Cs+sequestration is revealed in the XPS spectra.In the high-resolution analysis,Cs 3d5/2binding energy of ZrP-PS-Cs shifted 0.4 eV compared to the standard peak of CsNO3located at 724.2 eV (Fig.3c) [55],and P 2p binding energy shifted from 134.2 eV of ZrP-Cs to 133.8 eV of ZrP-PS-Cs (Fig.S7d in Supporting information).These bonding energies shifts hint the strong interaction between Cs+and ZrP-PS.In addition,as shown in Fig.S7e (Supporting information),the Cs 3d5/2peak around 723.8 eV is attributable to the electrostatic interaction of -SO3–toward Cs+(noted as -SO3–Cs+),whereas the one around 724.1 eV is attributable to the ion exchange between Cs+and protons of P-O-H inα-ZrP (noted as P-O-Cs) [56].The O 1s of ZrP-PS-Cs shows a broad peak which could correspond to O atoms bonded to Cs atoms in addition to those in Zr-O,P-O andS-O (Fig.3d).The shift of O 1s from 532.2 eV to 531.8 eV after Cs+adsorption also suggests an interaction between Cs+and ZrP-PS using oxygen atoms as bridges,forming the P-O-Cs and lowering the O 1s binding energy [57].Thus,proton exchange by P-OH and electrostatic interaction by -SO3H are associated mechanisms of Cs sequestration by ZrP-PS.

    Fig.3.(a) FT-IR spectra of ZrP-PS,ZrP-PS-Cs and ZrP-PS-Cs/Ca samples,(b) XPS survey spectra of PS-Cs,ZrP-Cs,ZrP-PS,and ZrP-PS-Cs,(c) Cs 3d5/2 XPS spectra of CsNO3,ZrP-PS-Cs,and ZrP-PS-Cs/Ca (Ca:Cs=1) samples,(d) O 1s XPS spectra of Zr-PS and ZrP-PS-Cs,and (e) the illustration of synergistic role of confined α-ZrP on cesium sequestration.

    Furthermore,the synergy ofα-ZrP is emphasized by characterizing the competing adsorption of Ca2+on different materials.When Cs+and Ca2+co-existed,the FT-IR peak of -SO3H at 1035 cm-1blue-shifted by 6.75 cm-1,more than just 1.84 cm-1without Ca2+,suggesting nonspecific interaction of -SO3H with both cations.Compared to fresh ZrP-PS,the POH peaks blue-shifted for 4 cm-1after Cs sequestration without and with Ca2+competitive adsorption,which implies specific interaction of P-O-H and Cs+.In high-resolution XPS analysis of Cs 3d5/2in Fig.S7e and Fig.3c,negligible shift on Cs 3d5/2binding energy could be observed from PS-Cs to ZrP-PS-Cs,but a–0.7 eV positive shift exhibited for ZrPPS-Cs/Ca compared to PS-Cs.This is because of different deconvoluted peaks area portions with and without Ca2+coexistence.In both cases,the Cs 3d5/2spectra were divided into two peaks corresponding to P-O-Cs and -SO3–Cs+.The area fractions of P-O-Cs and-SO3-Cs+of ZrP-PS-Cs were 18.2% and 81.8%,respectively.However,as for ZrP-PS-Cs/Ca,peak fractions varied distinguishably with 60.2% P-O-Cs and 39.8% -SO3–Cs+.Such results certify that with high concentration Ca2+coexistence,Cs sequestration by -SO3–Cs+path abated while P-O-Cs dominated and contributed high selectivity of Cs+by ZrP-PS.

    Based on the removal performance and characteristic results,the mechanism of efficient Cs+sequestration by ZrP-PS was elucidated,as illustrated in Fig.3e.Cs+sequestration by ZrP-PS is attributed to the synergistic effect of confined nanocrystallineα-ZrP and -SO3–groups covalently binding in the PS polymer host.

    Firstly,negatively charged -SO3–groups enrich Cs+viaelectrostatic interaction,a fundamental effect of cation exchange resins,to a concentration higher than in the bulk solution by the Donnan membrane effect.This widely verified effect [28–32,34] promotes Cs+diffusion to interaction sites.Secondly,confinedα-ZrP absorb Cs+through interlayer proton exchange.Inα-ZrP,Zr atoms planes severe as the basic layered structure,with -HPO4groups attached by three O atoms coordinating to Zr.While the fourth O of -HPO4,bearing a proton,points toward the interlayer space as a potential cation exchange site [37].The maximum opening to the interlayer space expands to adequate for Cs+(radius 1.69 ?A) to diffuse into interlayers and exchange with the proton in P-O-H [26,58-60],then the accessibility of Cs is constrained by crystal lattice match and restraint,shown as Eq.1.

    Thirdly,with the presence of monovalent alkali metal and divalent alkali earth metal cations that lacking outermost electron distinction from Cs+,confinedα-ZrP plays a vital role in selective adsorption toward Cs+.Competitive Na/Ca/Mg cations occupied the nonspecific adsorption sites of -SO3–,which somewhat reduced Cs+adsorption capacity of ZrP-PS.However,different radius and dehydration enthalpy of hydrated Cs+and competitive cations determine the approachability toα-ZrP interlayers for these cations.The dehydration enthalpy for alkali metal and alkali earth metal ions increases with hydration radius,in the order of Cs+(3.29 ?A)

    The practicality of ZrP-PS for cesium sequestration was evaluated by a simulated emergency treatment test using flow-through columns packed with ZrP-PS and PS,respectively,with the results shown in Fig.4.As expected,ZrP-PS demonstrated a considerable improvement in Cs+removal efficiency over PS.After a continuous run of approximately 2300 liters per kilo sorbents,Cs+concentration in the effluent from the ZrP-PS column rose,reaching the breakthrough at ~3200 liters per kilo sorbents.In contrast,the effluent was only approximately 208 liters per kilo sorbents at the breakthrough of PS.It is noteworthy that for PS,the concentration of Cs+in the effluent around 300 L/kg sorbent was higher than 2 mg/L,which can be explained by the elution effect in continuous sorption [66,67].Some Cs+initially sorbed by PS was replaced by competing cations Na+,Ca2+,and Mg2+because of the nonspecific effect of -SO3–on these cations.Due to the specific affinity ofα-ZrP for Cs+,the elution effect in Cs+adsorption by ZrPPS was suppressed,and therefore a larger treatment capacity was obtained.The amount of water treated by ZrP-PS was more than ten times that of PS,indicating the promising application of PSconfinedα-ZrP nanocrystalline.

    Fig.4.Assessment of continuous sorption performances of ZrP-PS and PS (SLV:0.3 m/h,EBCT: 6 min,Cs+: 2 mg/L,Ca2+: 100 mg/L,Mg2+: 100 mg/L,Na+: 100 mg/L).

    In summary,we developed efficient cesium sequestration using the PS confinedα-ZrP nanocrystalline.Macropores and -SO3–in the PS host permitted uniform dispersion ofα-ZrP,whose interlayer spacing screened competitive hydrated cations out and allowed Cs+retention on interlayer ion exchange sites.The specific ion exchange and nonspecific electrostatic reaction synergistically prompted a high Cs+adsorption capacity of 269.58 mg/g and a quick equilibrium within 80 min.The continuous treatment exhibited a remarkable capacity of approximately 2300 L water/kg ZrPPS.Given its efficient cesium sequestration and flexibility to separate from treated water,ZrP-PS has excellent potential for emergency treatment and deep purification of radioactively contaminated water.

    Declaration of competing interest

    The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

    Acknowledgments

    This work was financially supported by NSFC (Nos.U22A20403,21301151 and 52070115),Natural Science Foundation of Hebei Province (Nos.B2021203036 and E2022203011),and Key Project of the Hebei Education Department (No.ZD2021103).

    Supplementary materials

    Supplementary material associated with this article can be found,in the online version,at doi:10.1016/j.cclet.2023.108442.

    国模一区二区三区四区视频 | 久久久水蜜桃国产精品网| 亚洲国产看品久久| 日韩欧美精品v在线| 亚洲真实伦在线观看| 午夜福利高清视频| 婷婷精品国产亚洲av在线| 嫩草影视91久久| 色在线成人网| 国产精品久久久人人做人人爽| 日韩精品免费视频一区二区三区| 免费av毛片视频| 日本精品一区二区三区蜜桃| 亚洲人成77777在线视频| 两个人视频免费观看高清| 久久久久国内视频| 嫁个100分男人电影在线观看| 可以在线观看的亚洲视频| 国产日本99.免费观看| 亚洲avbb在线观看| 黑人欧美特级aaaaaa片| 在线观看舔阴道视频| 欧美精品亚洲一区二区| 两个人的视频大全免费| 亚洲成人精品中文字幕电影| 午夜免费观看网址| 一个人免费在线观看的高清视频| 啪啪无遮挡十八禁网站| 久9热在线精品视频| 99久久综合精品五月天人人| 日本一本二区三区精品| 亚洲国产日韩欧美精品在线观看 | 国产精品亚洲av一区麻豆| 级片在线观看| 久久久久免费精品人妻一区二区| 在线观看免费视频日本深夜| 此物有八面人人有两片| 黄色女人牲交| 90打野战视频偷拍视频| 一个人观看的视频www高清免费观看 | 精品福利观看| 精品电影一区二区在线| 日本 av在线| 国产精品九九99| 夜夜爽天天搞| 女警被强在线播放| 亚洲男人的天堂狠狠| 免费一级毛片在线播放高清视频| 欧美激情久久久久久爽电影| 国产高清视频在线播放一区| 在线观看一区二区三区| 国产精品九九99| 久久天躁狠狠躁夜夜2o2o| 精品熟女少妇八av免费久了| 亚洲精品国产一区二区精华液| 可以在线观看毛片的网站| 国产精品99久久99久久久不卡| 国内少妇人妻偷人精品xxx网站 | 日韩三级视频一区二区三区| 免费搜索国产男女视频| 99精品久久久久人妻精品| 欧美成人免费av一区二区三区| 欧美黄色淫秽网站| 男女下面进入的视频免费午夜| 国内揄拍国产精品人妻在线| 一区福利在线观看| 宅男免费午夜| 1024香蕉在线观看| 中文资源天堂在线| 91在线观看av| 亚洲国产精品合色在线| 国产精品乱码一区二三区的特点| 国产激情欧美一区二区| 丝袜美腿诱惑在线| 最近最新中文字幕大全免费视频| 女生性感内裤真人,穿戴方法视频| 亚洲av电影在线进入| 欧美乱色亚洲激情| 亚洲avbb在线观看| 亚洲精品国产一区二区精华液| 国产高清videossex| 欧美久久黑人一区二区| 日本熟妇午夜| 悠悠久久av| 色综合亚洲欧美另类图片| 日本精品一区二区三区蜜桃| 欧美成人性av电影在线观看| 午夜老司机福利片| 亚洲国产精品久久男人天堂| 黄色a级毛片大全视频| 欧美乱色亚洲激情| 久久亚洲真实| 91成年电影在线观看| 亚洲专区字幕在线| 一级毛片高清免费大全| 久久久久免费精品人妻一区二区| 成人欧美大片| 免费av毛片视频| netflix在线观看网站| 一卡2卡三卡四卡精品乱码亚洲| 美女扒开内裤让男人捅视频| 少妇的丰满在线观看| 又爽又黄无遮挡网站| 国产高清videossex| 欧美一级a爱片免费观看看 | 久久久精品国产亚洲av高清涩受| 午夜免费激情av| 香蕉国产在线看| aaaaa片日本免费| 国产日本99.免费观看| 日日爽夜夜爽网站| 欧美日韩黄片免| 男女做爰动态图高潮gif福利片| 日本a在线网址| aaaaa片日本免费| 中文字幕av在线有码专区| 两个人的视频大全免费| 1024香蕉在线观看| 1024视频免费在线观看| 亚洲成人久久爱视频| 麻豆一二三区av精品| 一区二区三区高清视频在线| 欧美午夜高清在线| 久久亚洲真实| 亚洲avbb在线观看| 成年版毛片免费区| av欧美777| 亚洲aⅴ乱码一区二区在线播放 | 免费在线观看视频国产中文字幕亚洲| 成人特级黄色片久久久久久久| 日韩欧美一区二区三区在线观看| 国产高清有码在线观看视频 | 欧美绝顶高潮抽搐喷水| 欧美又色又爽又黄视频| АⅤ资源中文在线天堂| 嫁个100分男人电影在线观看| 国产精品永久免费网站| 天天一区二区日本电影三级| 欧美日韩黄片免| 国产精品影院久久| 欧美午夜高清在线| 久久久久久久精品吃奶| 国产69精品久久久久777片 | 国产伦在线观看视频一区| 18禁观看日本| 老汉色av国产亚洲站长工具| 久久精品成人免费网站| 国产v大片淫在线免费观看| 熟妇人妻久久中文字幕3abv| 亚洲成人久久性| 免费av毛片视频| 久久天躁狠狠躁夜夜2o2o| 国产真实乱freesex| 国产激情久久老熟女| 国产亚洲精品综合一区在线观看 | 一边摸一边抽搐一进一小说| 国产v大片淫在线免费观看| 超碰成人久久| 国产精品久久久久久亚洲av鲁大| a级毛片a级免费在线| 非洲黑人性xxxx精品又粗又长| 50天的宝宝边吃奶边哭怎么回事| 老司机在亚洲福利影院| 神马国产精品三级电影在线观看 | 国产日本99.免费观看| 淫妇啪啪啪对白视频| 亚洲午夜精品一区,二区,三区| 国产精品久久久av美女十八| 琪琪午夜伦伦电影理论片6080| 国产高清视频在线播放一区| 老熟妇乱子伦视频在线观看| 日日爽夜夜爽网站| 亚洲av中文字字幕乱码综合| 欧美 亚洲 国产 日韩一| 国产乱人伦免费视频| 午夜日韩欧美国产| 久久久国产精品麻豆| 国产三级黄色录像| cao死你这个sao货| 黄色片一级片一级黄色片| 麻豆久久精品国产亚洲av| 亚洲在线自拍视频| 窝窝影院91人妻| 国产一区二区三区视频了| 久久亚洲精品不卡| 久久久久久久久久黄片| 久久香蕉精品热| 欧美日本亚洲视频在线播放| 国产精品日韩av在线免费观看| 男人的好看免费观看在线视频 | 免费无遮挡裸体视频| 悠悠久久av| 精品久久久久久久久久久久久| 日日摸夜夜添夜夜添小说| 精品国产亚洲在线| 一进一出好大好爽视频| 一个人观看的视频www高清免费观看 | 三级国产精品欧美在线观看 | 最近视频中文字幕2019在线8| 欧美日韩福利视频一区二区| 中文字幕久久专区| 动漫黄色视频在线观看| 99热只有精品国产| 男插女下体视频免费在线播放| 国产又黄又爽又无遮挡在线| 久久香蕉精品热| 香蕉av资源在线| 欧美成人一区二区免费高清观看 | 国产激情偷乱视频一区二区| 国产高清视频在线播放一区| 久久香蕉国产精品| 国产av又大| 成年免费大片在线观看| 久久久久国内视频| 美女高潮喷水抽搐中文字幕| 最近在线观看免费完整版| 国产激情偷乱视频一区二区| 国产精品久久久久久亚洲av鲁大| 国产精品一区二区三区四区久久| 久久久久九九精品影院| 久久国产精品人妻蜜桃| 精品少妇一区二区三区视频日本电影| 草草在线视频免费看| 久久天躁狠狠躁夜夜2o2o| 欧美国产日韩亚洲一区| 变态另类成人亚洲欧美熟女| 久久婷婷人人爽人人干人人爱| 母亲3免费完整高清在线观看| √禁漫天堂资源中文www| 婷婷精品国产亚洲av| 国产av一区二区精品久久| av超薄肉色丝袜交足视频| 国产av一区在线观看免费| 国产精品免费视频内射| 午夜免费观看网址| 国产精华一区二区三区| 久久国产精品人妻蜜桃| 老熟妇乱子伦视频在线观看| 亚洲成人中文字幕在线播放| 岛国在线免费视频观看| 成人三级做爰电影| 白带黄色成豆腐渣| 国产一区在线观看成人免费| 免费搜索国产男女视频| 级片在线观看| 国产99白浆流出| 国产欧美日韩精品亚洲av| 日韩有码中文字幕| 中文字幕高清在线视频| 日本五十路高清| 99国产综合亚洲精品| 国产单亲对白刺激| 亚洲午夜精品一区,二区,三区| 亚洲片人在线观看| 免费看十八禁软件| 欧美久久黑人一区二区| 一进一出抽搐gif免费好疼| 亚洲av日韩精品久久久久久密| 精品无人区乱码1区二区| 窝窝影院91人妻| 无限看片的www在线观看| 蜜桃久久精品国产亚洲av| 国产伦一二天堂av在线观看| 又粗又爽又猛毛片免费看| 天天添夜夜摸| 俺也久久电影网| 人妻久久中文字幕网| 久久国产精品影院| 免费电影在线观看免费观看| 麻豆成人午夜福利视频| 国产亚洲精品综合一区在线观看 | 后天国语完整版免费观看| 天堂av国产一区二区熟女人妻 | 亚洲av熟女| 国产人伦9x9x在线观看| 老汉色∧v一级毛片| 久久精品综合一区二区三区| 操出白浆在线播放| 日韩欧美国产在线观看| netflix在线观看网站| 熟女少妇亚洲综合色aaa.| 亚洲av五月六月丁香网| 男人舔女人下体高潮全视频| 日本a在线网址| 99久久综合精品五月天人人| 女人爽到高潮嗷嗷叫在线视频| 日韩欧美国产一区二区入口| 亚洲七黄色美女视频| 99久久综合精品五月天人人| 色尼玛亚洲综合影院| 黄色片一级片一级黄色片| 亚洲在线自拍视频| 国产99久久九九免费精品| 夜夜躁狠狠躁天天躁| 欧美乱色亚洲激情| 国产在线精品亚洲第一网站| 神马国产精品三级电影在线观看 | 99久久国产精品久久久| 成人精品一区二区免费| 精品少妇一区二区三区视频日本电影| 亚洲精品av麻豆狂野| 啦啦啦韩国在线观看视频| 97碰自拍视频| 天天添夜夜摸| 久久久国产成人精品二区| av免费在线观看网站| 长腿黑丝高跟| 99久久精品国产亚洲精品| 成人国产综合亚洲| 中文字幕人妻丝袜一区二区| bbb黄色大片| 99国产精品一区二区三区| 国产精品,欧美在线| bbb黄色大片| 曰老女人黄片| 99在线人妻在线中文字幕| 最新在线观看一区二区三区| 变态另类成人亚洲欧美熟女| 久久香蕉国产精品| 人妻久久中文字幕网| 亚洲一区二区三区色噜噜| 舔av片在线| 欧美中文综合在线视频| 老汉色∧v一级毛片| 香蕉丝袜av| 午夜久久久久精精品| 999久久久国产精品视频| 最近最新中文字幕大全免费视频| 亚洲人成网站高清观看| 99国产极品粉嫩在线观看| 19禁男女啪啪无遮挡网站| 长腿黑丝高跟| 中国美女看黄片| 夜夜爽天天搞| 国产精品一区二区免费欧美| 久久久久久久久中文| 亚洲专区字幕在线| 久久精品夜夜夜夜夜久久蜜豆 | 精品乱码久久久久久99久播| 麻豆国产av国片精品| 国产午夜精品论理片| 草草在线视频免费看| 久99久视频精品免费| 成人国产综合亚洲| 亚洲精品粉嫩美女一区| 欧美成人免费av一区二区三区| 亚洲精品中文字幕在线视频| 精品国产乱码久久久久久男人| 亚洲天堂国产精品一区在线| 国产三级中文精品| 久久精品成人免费网站| 亚洲av成人一区二区三| 精品国产美女av久久久久小说| 久久久精品国产亚洲av高清涩受| av免费在线观看网站| 久久久久久大精品| 欧洲精品卡2卡3卡4卡5卡区| 欧美+亚洲+日韩+国产| 中亚洲国语对白在线视频| 成人精品一区二区免费| 99久久精品热视频| 日本撒尿小便嘘嘘汇集6| 亚洲中文字幕日韩| 一个人免费在线观看电影 | 日日爽夜夜爽网站| 色噜噜av男人的天堂激情| 欧美人与性动交α欧美精品济南到| 99国产精品一区二区三区| 亚洲男人天堂网一区| 国产成人av教育| av免费在线观看网站| 舔av片在线| 欧美久久黑人一区二区| 国产精品久久久av美女十八| 久久久国产成人免费| 婷婷亚洲欧美| 露出奶头的视频| 亚洲天堂国产精品一区在线| 亚洲乱码一区二区免费版| 欧美成狂野欧美在线观看| 欧美日韩瑟瑟在线播放| 麻豆国产97在线/欧美 | 国产一区二区三区视频了| 国产黄色小视频在线观看| 中文在线观看免费www的网站 | 99久久综合精品五月天人人| 午夜视频精品福利| 麻豆av在线久日| 国产精品香港三级国产av潘金莲| av在线天堂中文字幕| av天堂在线播放| 两个人视频免费观看高清| 啦啦啦韩国在线观看视频| 婷婷六月久久综合丁香| 亚洲成a人片在线一区二区| 亚洲中文字幕一区二区三区有码在线看 | 亚洲真实伦在线观看| 毛片女人毛片| 亚洲色图av天堂| 露出奶头的视频| 久久久精品大字幕| 亚洲片人在线观看| 亚洲成a人片在线一区二区| 日本黄大片高清| 夜夜爽天天搞| 国产伦在线观看视频一区| 床上黄色一级片| 日韩欧美国产在线观看| 美女免费视频网站| 操出白浆在线播放| 日韩中文字幕欧美一区二区| 51午夜福利影视在线观看| 国产精品电影一区二区三区| 国产精品av视频在线免费观看| 99热6这里只有精品| 国产亚洲av高清不卡| 在线观看美女被高潮喷水网站 | 两个人免费观看高清视频| 青草久久国产| 亚洲色图av天堂| 2021天堂中文幕一二区在线观| 亚洲激情在线av| 国产熟女午夜一区二区三区| 老熟妇乱子伦视频在线观看| 亚洲 欧美一区二区三区| 高潮久久久久久久久久久不卡| 最好的美女福利视频网| 久久九九热精品免费| 婷婷亚洲欧美| 听说在线观看完整版免费高清| 欧美在线一区亚洲| 精品久久久久久久末码| 日韩大尺度精品在线看网址| 波多野结衣高清无吗| 日韩大码丰满熟妇| 欧美极品一区二区三区四区| 好看av亚洲va欧美ⅴa在| 亚洲18禁久久av| 97超级碰碰碰精品色视频在线观看| 亚洲人成电影免费在线| 韩国av一区二区三区四区| avwww免费| 在线观看免费午夜福利视频| 午夜免费成人在线视频| 午夜激情av网站| 国产精品自产拍在线观看55亚洲| 怎么达到女性高潮| 国产精品一及| 国产久久久一区二区三区| 国产成人系列免费观看| 中文字幕精品亚洲无线码一区| 中文亚洲av片在线观看爽| 亚洲国产欧美一区二区综合| 欧美性长视频在线观看| 最近视频中文字幕2019在线8| 啦啦啦韩国在线观看视频| 88av欧美| 亚洲天堂国产精品一区在线| av欧美777| 亚洲欧美精品综合久久99| 国产av在哪里看| 热99re8久久精品国产| 午夜福利高清视频| 香蕉国产在线看| 国产精品久久久久久久电影 | 一区二区三区激情视频| 啪啪无遮挡十八禁网站| 又黄又爽又免费观看的视频| 黄频高清免费视频| 女人爽到高潮嗷嗷叫在线视频| a级毛片a级免费在线| 亚洲av中文字字幕乱码综合| 19禁男女啪啪无遮挡网站| 啦啦啦观看免费观看视频高清| 久久精品国产清高在天天线| 午夜成年电影在线免费观看| 色噜噜av男人的天堂激情| 国产v大片淫在线免费观看| 亚洲自拍偷在线| 操出白浆在线播放| 夜夜躁狠狠躁天天躁| 精品国产美女av久久久久小说| 久久久久性生活片| 成人国产一区最新在线观看| 亚洲一卡2卡3卡4卡5卡精品中文| 免费在线观看影片大全网站| a级毛片在线看网站| 日本熟妇午夜| а√天堂www在线а√下载| www日本在线高清视频| 香蕉丝袜av| 特级一级黄色大片| 黄色视频,在线免费观看| 国产激情偷乱视频一区二区| 亚洲精品美女久久久久99蜜臀| 九色国产91popny在线| 国产免费av片在线观看野外av| 后天国语完整版免费观看| 国产成人av教育| 亚洲国产中文字幕在线视频| 亚洲人成网站在线播放欧美日韩| 久久久久国内视频| 夜夜看夜夜爽夜夜摸| 99在线视频只有这里精品首页| 免费在线观看影片大全网站| 两性夫妻黄色片| 亚洲欧美精品综合一区二区三区| 亚洲av成人av| 少妇裸体淫交视频免费看高清 | 变态另类成人亚洲欧美熟女| 久久天躁狠狠躁夜夜2o2o| 国产精品98久久久久久宅男小说| 亚洲av熟女| 精品福利观看| 18美女黄网站色大片免费观看| 精品福利观看| 男女视频在线观看网站免费 | 欧美最黄视频在线播放免费| 天堂√8在线中文| 精品第一国产精品| 香蕉av资源在线| 香蕉国产在线看| 亚洲第一欧美日韩一区二区三区| 国产成人啪精品午夜网站| 2021天堂中文幕一二区在线观| 国产麻豆成人av免费视频| 亚洲精品在线美女| 日本a在线网址| 亚洲成av人片免费观看| 亚洲精品在线美女| 给我免费播放毛片高清在线观看| 精品不卡国产一区二区三区| 一本久久中文字幕| 精品一区二区三区视频在线观看免费| 禁无遮挡网站| 一边摸一边做爽爽视频免费| 欧美日韩亚洲综合一区二区三区_| 亚洲精品av麻豆狂野| 国产黄a三级三级三级人| 成人一区二区视频在线观看| 久久中文看片网| 一本精品99久久精品77| 亚洲18禁久久av| 窝窝影院91人妻| 51午夜福利影视在线观看| 妹子高潮喷水视频| xxxwww97欧美| 精华霜和精华液先用哪个| 国产精品亚洲av一区麻豆| 天天躁狠狠躁夜夜躁狠狠躁| 特大巨黑吊av在线直播| 男人舔女人下体高潮全视频| 免费在线观看亚洲国产| 久久午夜综合久久蜜桃| 国产精品av视频在线免费观看| 欧美极品一区二区三区四区| 亚洲精品久久成人aⅴ小说| 国产精品亚洲av一区麻豆| 欧美久久黑人一区二区| 久久精品国产清高在天天线| 高清在线国产一区| 国产欧美日韩一区二区三| 久久久精品大字幕| 99在线人妻在线中文字幕| 亚洲中文日韩欧美视频| 亚洲精品一卡2卡三卡4卡5卡| 1024视频免费在线观看| 动漫黄色视频在线观看| 日本一区二区免费在线视频| 伊人久久大香线蕉亚洲五| 桃色一区二区三区在线观看| 欧美+亚洲+日韩+国产| www.熟女人妻精品国产| 俄罗斯特黄特色一大片| 精品少妇一区二区三区视频日本电影| 国产区一区二久久| 亚洲国产欧洲综合997久久,| 亚洲最大成人中文| 久99久视频精品免费| 国产蜜桃级精品一区二区三区| 欧美日本视频| 制服诱惑二区| 国产高清激情床上av| 黑人操中国人逼视频| 午夜福利视频1000在线观看| 美女午夜性视频免费| 波多野结衣巨乳人妻| 高清毛片免费观看视频网站| 久久久国产欧美日韩av| 啦啦啦韩国在线观看视频| 中亚洲国语对白在线视频| 国产亚洲精品第一综合不卡| 一级毛片女人18水好多| 最近最新免费中文字幕在线| 亚洲乱码一区二区免费版| 国产探花在线观看一区二区| 色精品久久人妻99蜜桃| 午夜福利18| 成人欧美大片| 日韩高清综合在线| 搡老岳熟女国产| 成人精品一区二区免费| 亚洲五月婷婷丁香| 亚洲国产看品久久| 9191精品国产免费久久| 一本一本综合久久| 国产主播在线观看一区二区| 99久久99久久久精品蜜桃| 欧美成狂野欧美在线观看| 久久亚洲精品不卡| 亚洲一区二区三区不卡视频| 最近在线观看免费完整版| 国产精品久久久人人做人人爽| 国产免费男女视频| 黄色片一级片一级黄色片|