• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Photoluminescent nickel(II) carbene complexes with ligand-to-ligand charge-transfer excited states

    2024-04-06 06:21:02ChunLiangHouJiaXiSongXiaoyongChangYongChen
    Chinese Chemical Letters 2024年1期

    Chun-Liang Hou ,Jia-Xi Song ,Xiaoyong Chang ,Yong Chen

    a Key Laboratory of Photochemical Conversion and Optoelectronic Materials &CAS-HKU Joint Laboratory on New Materials,Technical Institute of Physics and Chemistry,Chinese Academy of Sciences,Beijing 100190,China

    b University of Chinese Academy of Sciences,Beijing 100049,China

    c Department of Chemistry,Southern University of Science and Technology,Shenzhen 518055,China

    Keywords: Nickel(II) complexes N-Heterocyclic carbene Luminescence Ligand-to-ligand charge-transfer character Low-lying d-d excited states

    ABSTRACT While nickel(II) complexes have been widely used as catalysts for carbon-carbon coupling reactions,the exploration of their photophysical and photochemical properties is still in the infancy.Here,a series of square-planar Ni(II) complexes [(diNHC)NiX2] bearing chelating benzimidazole-based bis(N-heterocyclic carbene) ligands and varying anionic coligands (1,X=Cl; 2,X=Br; 3,X=I) are synthesized and structurally characterized.In solid state,both 1 and 2 exhibit orange-red photoluminescence under ambient conditions.The photophysical and electrochemical measurements along with density functional theory(DFT) calculations reveal that the low-energy emissions can be attributed to singlet excited states with ligand-to-ligand charge-transfer (LLCT) character.This work suggests that strong-field N-heterocyclic carbene ligands play a crucial role to achieve the luminescence of Ni(II) complexes.

    Platinum(II) and palladium(II) complexes with d8valence electron configuration usually display efficient charge-transfer (CT) luminescence [1–11],which has been extensively used in optoelectronic devices [2,7,11–13],bio-imaging [2,14,15],photocatalytic reactions [16–20] and so on.However,their scarcity and high costs have stimulated the search for candidates based on earth-abundant elements [21,22].Nickel,as a first-row transition metal that belongs to the same periodic group as palladium and platinum,provides an economically and ecologically benign alternative to precious metal systems [22].However,photoluminescent nickel(II)complexes with charge-transfer excited state character are very rare [23–25].The lack of luminescence properties of Ni(II) complexes can be attributed to their little metal-ligand orbitals overlap between the contracted 3d8metal center orbitals and the relevant ligand orbitals,which leads to relatively weak d-d ligand-field(LF) splitting energies and low-lying d-d LF excited states [26].As a result,these structurally distorted metal-centered (MC) LF states provide a thermally-activated d-d deactivation pathway for other close-lying excited states (i.e.,CT states) and thus quench the emission (Scheme 1a) [27,28].

    Scheme 1.(a) A thermally-activated deactivation pathway for Ni(II) complexes.Exc.,excitation;CT,the emissive charge-transfer state;d-d,low-lying metalcentered excited states;black arrows represent vibrational relaxation and nonradiative decay.(b) Representative Ni(II) complex emitter.(c) Molecular structures of Ni(II) complexes in this work.(d) Synthetic routes of complexes 1–3a and 1–3b.

    Theoretically,the thermally-activated d-d deactivation process can be suppressed by increasing the energy gap (ΔE) between the CT and d-d states,which can be realized by either raising the dd state or lowering the CT state.To this end,Yam and coworkers recently reported an emissive cyclometalated Ni(II) complex by introducing a pincer-type 1,3-di(pyridin-2-yl)benzene (N^C^N) ligand and a strongσ-donating carbazolyl ligand (Scheme 1b) [29].In solid state,this complex was found to demonstrate weak luminescence at room temperature and intense luminescence at low temperature with excited state lifetimes in the submicrosecond regime.N-Heterocyclic carbene compounds (NHCs) are characterized by strongσ-donating ability,which have been used as ligands to synthesize photoluminescent transition metal complexes,i.e.,platinum(II) [30–33],iridium(III) [34–37] and gold(I) [38–45].We envision that such strongσ-donor properties of NHCs are capable of pushing nonradiative MC d-d transitions to higher energy,thereby generating emissive Ni(II) complexes.

    Herein,we designed,synthesized and structurally characterized a class of square-planar Ni(II) carbene complexes containing benzimidazole-basedN-heterocyclic carbene ligands and halogen ligands (Scheme 1c).The [(diNHC)NiX2] (X=Cl or Br) complexes show solid-state luminescence under ambient conditions with temperature-independent lifetimes.A combination of photophysical properties and density functional theory (DFT) calculations unveils that the orange-red emission is derived from the S1state having predominant ligand (halogen)-to-ligand (NHCs)charge-transfer (LLCT) character.

    The synthetic routes to Ni(II) carbene complexes are depicted in Scheme 1d and further experimental details are provided in the Supporting information.The synthesis of ligand precursors have been described previously [46–48].Complexes [(diNHC)NiCl2] and[(diNHC)NiBr2] were readily prepared by stirring the corresponding ligands with nickel halide in dimethylformamide in the presence of NaOAc under reflux conditions.After reaction,the precipitate was filtered,washed by water and recrystallized from methanol to give yellow solid.[(diNHC)NiI2] was obtained by simple ligand exchange [46].All complexes have been characterized by1H nuclear magnetic resonance (NMR),13C NMR,and high-resolution ESI (HRESI) mass spectrometry and elemental analyses (Scheme S1,Figs.S1–S19 in Supporting information).

    Dark yellow single crystals of1–3bwere obtained by slow diffusion of hexane into saturated dichloromethane solutions at room temperature and their structures have been determined through single-crystal X-ray diffraction analysis.The selected bond lengths of Ni-CNHCand Ni-X bonds and bond angles around the metal center are given in Tables S1 and S2 (Supporting information).As depicted in Fig.1,all complexes have an approximately square-planar coordination geometry.The CNHC-Ni-CNHCbite angle of the three complexes are consistent throughout the series,being 86.46° for1b,86.96° for2b,89.94° for3b.The X-Ni-X bite angles lie in the range of 93°–94°.The Ni-CNHCbonds in three complexes have an average bond length of 1.86 ?A,which is shorter than the reported Ni(II) complexes [23,25,49],implying that the benzimidazole derivedN-heterocyclic carbene ligands can serve as a strongσ-donor ligand to raise the energy of the MC excited state.Additionally,for halogen atoms with coplanar structures,the Ni-X bond length increases with increasing atomic radius of X,2.23 ?A for1b,2.35 ?A for2b,and 2.55 ?A for3b.All Ni(II) complexes pair in a head-to-tail manner with intermolecular Ar-H???X and intramolecular Ar-H???X(2.8–3.2 ?A) (Figs.S20–S22 in Supporting information).

    Fig.1.Thermal ellipsoid plots of (a) 1b,(b) 2b and (c) 3b.

    The ultraviolet–visible (UV–vis) absorption spectra of Ni(II)complexes1–3aand1–3bwere recorded at 298 K in diluted dichloromethane (Fig.2a and Fig.S23 in Supporting information),and the photophysical data are collected in Table S3 (Supporting information).All Ni(II) complexes exhibit similar UV–vis absorption spectra with absorption maxima at 292 nm and a weak and broad absorption band between 350 and 550 nm,the latter accounting for the yellow color of Ni(II) complexes.The high energy absorption region of the Ni(II) complexes are the same as ligandsaandb(Fig.S24 in Supporting information).The lowest-energy absorption band of all Ni(II) complexes exhibit slightly blue-shifted with increasing solvent polarity from dichloromethane to acetone to acetonitrile (Fig.S25 in Supporting information).Hence,the high energy absorption band is attributed to localizedπ-π?transitions of the carbene moiety,while the lowest-energy absorption band in the visible range is ascribed to CT interactions between halogen units or nickel metal center and benzimidazole-based carbenes.As shown in Fig.2a and Table S3,with the variation of anions (Cl,Br,I),the maximum absorption peaks of complexes1–3bundergo a red shift in dichloromethane from 424 nm to 456 nm.In addition,when the two phenyl substituents of benzimidazole carbenes are replaced by methyl groups,a blue shift of the absorption peak is observed in dichloromethane.These spectral differences are attributed to the effect of halide anions and benzimidazole carbenes on the energy levels of the ground state frontier molecular orbitals(FMOs).These data suggest that the relatively low-energy bands can be assigned to a mixture of LLCT and d-d transitions (see theoretical calculations section).

    Fig.2.(a) Absorption spectra of complexes 1–3b in dichloromethane.(b) Electrochemical redox potentials and transition energies for CT states of 1–3b.The energy of the CT state was estimated from the onset of the absorption band in dichloromethane,where the intensity was 0.10 at λmax.(c) Normalized excitation and emission spectra of complexes 1–3b in solid state at room temperature.(d)Normalized PL decay at different temperatures for complex 2b.

    The redox properties of1–3aand1–3bwere determined using cyclic voltammetry (CV) and differential pulse voltammetry(DPV) in dry and degassed dimethylformamide solutions (0.1 mol/LnBu4NPF6) at room temperature.All potentials are referencedvs.ferrocene/ferrocenium (Fc/Fc+) as internal standard which are listed in Table S4 (Supporting information) and graphically presented in Fig.2b and Figs.S26 and S27 (Supporting information).The oxidation and reduction of all complexes exhibit irreversible waves,which may be caused by coordination of a solvent molecule and anionic ligand dissociation.Notably,the first reduction potentials of complexes1–3bgradually shift towards a more positive potential.Besides,the first oxidation potentials for1–3bare highly sensitive to the identity of anionic ligands.A pronounced cathodic shift in the oxidation potentials for1–3bis observed in the range Cl

    Although no detectable emission was observed for Ni(II) complexes in solution,the solid-state luminescence was clearly visible to the naked eye under 365 nm UV irradiation.Hence,photoluminescent properties of Ni(II) complexes were investigated in solid state at room temperature (Fig.2c).The emission spectra(λmax(em)=620 nm for1b;λmax(em)=631 nm for2b;solid line) and excitation spectra (λmax(ex)=410 nm for1b;λmax(ex)=425 nm for2b;dotted line) of Ni(II) complexes were recorded.The designed Ni(II) complexes display large Stokes shifts with excitation and emission peaks,which are similar to that reported in previous literature [24].When iodide ions act as anionic coligands,3bis found to be nonemissive at both low and ambient temperatures due to the iodine-induced heavy atom effect which enhanced intersystem crossing (ISC) and then quenched fluorescence [50].

    Thermally activated delayed fluorescence (TADF) and roomtemperature phosphorescence (RTP) emitters typically involve triplet excitons that are particularly sensitive to temperature and molecular oxygen [40,51,52].The emission intensity and peak position of complexes1–2bare not perturbed by oxygen (Fig.S29 in Supporting information),which indicates no involvement of triplet state.The photoluminescence (PL) decays of complex2bat different temperatures (77–300 K) were determined by time-correlated single photon counting (TCSPC),whose emission is fluorescence with a temperature-independent lifetime of 3.01–3.12 ns (Fig.2d).The PL lifetime curves are slightly longer than the temporal width of the IRF.The PL decays of complex1bshow the same result at various temperatures (77–300 K) with lifetime of 1.61–1.89 ns (Fig.S31 in Supporting information).There is no evidence for either delayed fluorescence or phosphorescence in1–2b.As mentioned earlier,complexes1–2bdisplay large Stokes shifts in solid state and electrochemical properties.We can confidently attribute the lowenergy emission of1–2bto fluorescence from the excited singlet state.

    To investigate the electronic structure features among complexes1–3b,DFT and time-dependent density functional theory(TDDFT) calculations are employed.The geometries,FMOs,corresponding energy levels and atoms/fragments distributions of three complexes in solid state are displayed in Fig.3 based on each crystal S0structure.Accompanied with the varying of halogen ligands,little structural difference but obvious gradation of FMO components and energies are formed.The HOMO of1bis mainly accorded by NiX2parts (Ni 45%+X244%),while the HOMOs in2b(Ni 3%vs.X288%) and3b(Ni 2%vs.X292%) are lack of Ni participation.Similar but opposite trend resulting from the halogen donor ability is also observed in the analysis of the lowest unoccupied molecular orbitals (LUMOs).The LUMO of1bis mainly formed by NHC carbene unit with little Ni composition.However,when the halogen ligand switches to I,a Ni atom involvement cannot be ignored.The composition changing confirms the emissive phenomenon,as a lower composition of Ni in FMOs would improve the effective emission by precluding the d-d MC state and forming LLCT state,especially in complex2b.

    Fig.3.Frontier molecular orbital isosurfaces and energies of (a) 1b,(b) 2b,and(c) 3b in the solid S0 states at the crystal S0 geometries without the optimization of heavy atoms (isovalue=0.04).The corresponding fragment distributions of each FMO are also illustrated.

    The simulated absorption spectra by TDDFT of all three complexes are displayed and the fit between calculated and observed in the visible region is acceptable (Table S5 in Supporting information).The lowest energy absorption bands can be identified as S0→S4transitions.To gain the intuitive features of compositions in these transitions,we perform the natural transition orbitals (NTO)analyses.As shown in Fig.S32 (Supporting information),all S0→S4transitions get the obvious LLCT and d-d features.Since a low-lying d-d MC state is essential for photoluminescence quenching,we further study the role of LF splitting Ni d-orbitals in FMOs,especially highest occupied LF dz2and lowest unoccupied LF dx2-y2.As given in Fig.S33 (Supporting information),the features of Ni dz2orbitals are performed in HOMO-1 for1band HOMO-5 for2b/3b.Besides,the Ni dx2-y2orbitals exhibit less significant in LUMO+3 for1b,LUMO+1 for2band LUMO for3b.The larger d-d gaps shown in1band2bimply that the decrease of d orbital compositions in FMOs means the less MC disturbance on LLCT state,so the photoluminescence would be lit up.Nonetheless,a widely dispersed Ni d orbital configuration in the LUMO of3bmay offer the neighboring MC state,which might result in a thermally d-d deactivation pathway,which is consistent with our characterization that can quench the photoluminescence.

    In summary,a class of square-planar nickel(II) carbene complexes bearing halogen ligands as electron donors have been prepared by a new synthetic route and structurally characterized by single-crystal X-ray diffraction.Wherein,the [(diNHC)NiX2] (X=Cl or Br) complexes display apparent fluorescence with temperatureindependent decay lifetimes in solid state.The experimental data and theoretical calculations altogether reveal that the solid-state fluorescence in Ni(II) complexes is likely to be a result of LLCT character.Collectively,these data lead us to conclude that NHCs are demonstrated to be a sagacious choice in developing luminescent Ni(II) complexes in the red spectral region.Our study provides new ideas and strategies for Ni(II) complexes research in photophysics and photochemistry.

    Declaration of competing interest

    The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

    Acknowledgments

    This work is supported by the Natural Science Foundation of China (No.22175191).Y.C.thanks the financial support from CASCroucher Funding Scheme for Joint Laboratories and Beijing Municipal Science &Technology Commission (No.Z211100007921020).

    Supplementary materials

    Supplementary material associated with this article can be found,in the online version,at doi:10.1016/j.cclet.2023.108333.

    母亲3免费完整高清在线观看| 久久精品成人免费网站| 色婷婷久久久亚洲欧美| 美女扒开内裤让男人捅视频| 精品熟女少妇八av免费久了| 国产精品久久久久久人妻精品电影 | 一区福利在线观看| 亚洲精品久久成人aⅴ小说| 黄色 视频免费看| 亚洲情色 制服丝袜| 美女主播在线视频| 丝袜美腿诱惑在线| 亚洲精品国产精品久久久不卡| 欧美+亚洲+日韩+国产| 国产成人a∨麻豆精品| 一本—道久久a久久精品蜜桃钙片| 一区二区三区精品91| 久久人妻福利社区极品人妻图片| 午夜福利一区二区在线看| 午夜精品国产一区二区电影| 久久久久久免费高清国产稀缺| 日日摸夜夜添夜夜添小说| 亚洲欧洲日产国产| 成年人黄色毛片网站| 亚洲黑人精品在线| 成人免费观看视频高清| 精品视频人人做人人爽| 狠狠精品人妻久久久久久综合| 高清欧美精品videossex| 日本av手机在线免费观看| 国产精品 欧美亚洲| √禁漫天堂资源中文www| 亚洲人成电影观看| 欧美av亚洲av综合av国产av| 精品国产超薄肉色丝袜足j| 国产精品1区2区在线观看. | 男人操女人黄网站| 黄色视频,在线免费观看| 日韩熟女老妇一区二区性免费视频| 欧美日本中文国产一区发布| 精品一品国产午夜福利视频| 另类精品久久| 侵犯人妻中文字幕一二三四区| 老熟妇乱子伦视频在线观看 | 午夜福利影视在线免费观看| 国产精品免费大片| 日本vs欧美在线观看视频| 国产av又大| 欧美精品一区二区大全| 日本精品一区二区三区蜜桃| 久久国产精品男人的天堂亚洲| 亚洲欧美精品综合一区二区三区| 久久久精品国产亚洲av高清涩受| 日韩欧美一区二区三区在线观看 | 亚洲第一欧美日韩一区二区三区 | 侵犯人妻中文字幕一二三四区| 我的亚洲天堂| 中亚洲国语对白在线视频| 国产无遮挡羞羞视频在线观看| 亚洲欧美成人综合另类久久久| 日本91视频免费播放| svipshipincom国产片| 美女高潮喷水抽搐中文字幕| 精品高清国产在线一区| 最近最新中文字幕大全免费视频| 久久人人爽人人片av| 亚洲一卡2卡3卡4卡5卡精品中文| 久久精品国产a三级三级三级| 国产区一区二久久| 久久精品熟女亚洲av麻豆精品| 国产日韩一区二区三区精品不卡| 丝袜美腿诱惑在线| 嫩草影视91久久| 国产精品熟女久久久久浪| 亚洲伊人久久精品综合| 国产精品av久久久久免费| 久久国产精品大桥未久av| 女性生殖器流出的白浆| 国产精品.久久久| 亚洲第一av免费看| 中文字幕制服av| 久久精品亚洲熟妇少妇任你| 一本大道久久a久久精品| 99久久99久久久精品蜜桃| 亚洲 欧美一区二区三区| 男女国产视频网站| 久久久精品94久久精品| 欧美中文综合在线视频| 夫妻午夜视频| 亚洲伊人久久精品综合| 免费观看人在逋| 久久久欧美国产精品| 波多野结衣av一区二区av| 人人妻,人人澡人人爽秒播| 亚洲va日本ⅴa欧美va伊人久久 | 久久久久精品国产欧美久久久 | 久久精品国产综合久久久| 两个人看的免费小视频| 午夜久久久在线观看| 人妻久久中文字幕网| 18禁黄网站禁片午夜丰满| 男人操女人黄网站| 国产一区二区三区av在线| 母亲3免费完整高清在线观看| 色94色欧美一区二区| 欧美午夜高清在线| 久久狼人影院| 男人添女人高潮全过程视频| 丁香六月天网| 国产亚洲av片在线观看秒播厂| 国产亚洲av片在线观看秒播厂| 精品亚洲成a人片在线观看| 九色亚洲精品在线播放| 久久影院123| av一本久久久久| 国产亚洲午夜精品一区二区久久| 菩萨蛮人人尽说江南好唐韦庄| 色精品久久人妻99蜜桃| 日本a在线网址| 亚洲精品中文字幕一二三四区 | 日韩熟女老妇一区二区性免费视频| 久久久水蜜桃国产精品网| avwww免费| 搡老岳熟女国产| 热re99久久精品国产66热6| 老熟妇乱子伦视频在线观看 | 亚洲精品中文字幕在线视频| 国产精品1区2区在线观看. | 免费黄频网站在线观看国产| 婷婷成人精品国产| 九色亚洲精品在线播放| 国产1区2区3区精品| 久久久水蜜桃国产精品网| 午夜福利免费观看在线| 国产无遮挡羞羞视频在线观看| 婷婷丁香在线五月| 国产国语露脸激情在线看| 成人国产av品久久久| 手机成人av网站| 精品卡一卡二卡四卡免费| 国产欧美日韩一区二区精品| 久久天躁狠狠躁夜夜2o2o| 亚洲欧美精品自产自拍| 国产成人精品在线电影| 精品人妻熟女毛片av久久网站| 国产精品久久久人人做人人爽| 波多野结衣av一区二区av| 黑人巨大精品欧美一区二区蜜桃| 啦啦啦啦在线视频资源| 亚洲欧美精品综合一区二区三区| 99国产精品一区二区三区| 午夜91福利影院| 精品少妇内射三级| 国产av国产精品国产| 天堂8中文在线网| 亚洲中文日韩欧美视频| 欧美日韩国产mv在线观看视频| 久久 成人 亚洲| 国产亚洲精品一区二区www | 亚洲av美国av| 久久久久精品人妻al黑| 日韩欧美一区二区三区在线观看 | 国产精品自产拍在线观看55亚洲 | 夜夜骑夜夜射夜夜干| 久久精品国产综合久久久| 9色porny在线观看| www.精华液| 欧美另类一区| 一本—道久久a久久精品蜜桃钙片| 熟女少妇亚洲综合色aaa.| 久久久国产一区二区| 91大片在线观看| 天堂8中文在线网| 热re99久久国产66热| 在线十欧美十亚洲十日本专区| 久久国产亚洲av麻豆专区| 王馨瑶露胸无遮挡在线观看| 免费在线观看视频国产中文字幕亚洲 | 超色免费av| 午夜福利在线观看吧| 视频在线观看一区二区三区| 国产极品粉嫩免费观看在线| 人妻久久中文字幕网| 黄色怎么调成土黄色| 男男h啪啪无遮挡| 精品少妇内射三级| 我要看黄色一级片免费的| 又紧又爽又黄一区二区| 韩国精品一区二区三区| 日本av免费视频播放| 日韩熟女老妇一区二区性免费视频| 美女高潮到喷水免费观看| 国产精品久久久久久人妻精品电影 | 极品少妇高潮喷水抽搐| 久久久久久免费高清国产稀缺| 欧美av亚洲av综合av国产av| 免费在线观看完整版高清| 久久久久久久国产电影| 亚洲欧美精品综合一区二区三区| 国产xxxxx性猛交| 80岁老熟妇乱子伦牲交| 免费日韩欧美在线观看| 午夜两性在线视频| 成人av一区二区三区在线看 | 狠狠狠狠99中文字幕| av超薄肉色丝袜交足视频| 久久精品成人免费网站| 黄片大片在线免费观看| tocl精华| 三级毛片av免费| 亚洲专区国产一区二区| 国产在线视频一区二区| 国产在线免费精品| 五月开心婷婷网| 国产一区二区三区在线臀色熟女 | 美女午夜性视频免费| 大香蕉久久网| 电影成人av| 在线av久久热| 亚洲av片天天在线观看| 久久久久久久国产电影| 欧美老熟妇乱子伦牲交| 日韩欧美免费精品| 女性生殖器流出的白浆| 叶爱在线成人免费视频播放| 欧美成狂野欧美在线观看| 日韩中文字幕视频在线看片| 50天的宝宝边吃奶边哭怎么回事| 欧美精品啪啪一区二区三区 | 国产又爽黄色视频| 大香蕉久久网| 国产精品 国内视频| 视频区图区小说| 亚洲欧洲精品一区二区精品久久久| 热re99久久国产66热| 亚洲专区字幕在线| 777久久人妻少妇嫩草av网站| 在线 av 中文字幕| 亚洲精品中文字幕在线视频| tube8黄色片| 欧美变态另类bdsm刘玥| 久久天堂一区二区三区四区| 一个人免费在线观看的高清视频 | 欧美日韩一级在线毛片| 777米奇影视久久| 国产成人精品久久二区二区免费| 亚洲午夜精品一区,二区,三区| 午夜视频精品福利| 欧美变态另类bdsm刘玥| 91成年电影在线观看| 男女之事视频高清在线观看| 麻豆国产av国片精品| 国产精品亚洲av一区麻豆| 夫妻午夜视频| 亚洲自偷自拍图片 自拍| 手机成人av网站| 三上悠亚av全集在线观看| 久热这里只有精品99| 黄色视频不卡| 99国产精品一区二区蜜桃av | 侵犯人妻中文字幕一二三四区| 女人被躁到高潮嗷嗷叫费观| 涩涩av久久男人的天堂| 亚洲精品一二三| 欧美xxⅹ黑人| 成年人黄色毛片网站| 国产精品免费大片| 亚洲国产中文字幕在线视频| 国产99久久九九免费精品| 一边摸一边抽搐一进一出视频| 少妇粗大呻吟视频| 亚洲精品美女久久久久99蜜臀| a在线观看视频网站| www.精华液| 午夜福利影视在线免费观看| 一区二区三区激情视频| 日韩制服丝袜自拍偷拍| 国产精品久久久人人做人人爽| 国产亚洲精品久久久久5区| 精品一区二区三区四区五区乱码| 午夜久久久在线观看| 男女下面插进去视频免费观看| 国产亚洲精品第一综合不卡| 日韩,欧美,国产一区二区三区| 这个男人来自地球电影免费观看| 男女国产视频网站| 丰满饥渴人妻一区二区三| 国产日韩欧美亚洲二区| 国产精品1区2区在线观看. | 久久久久久久久免费视频了| 亚洲av片天天在线观看| 亚洲精品第二区| 午夜免费成人在线视频| 精品一区二区三卡| 国产一区二区三区综合在线观看| 久久99一区二区三区| 中文字幕人妻熟女乱码| 亚洲欧洲日产国产| 亚洲成人手机| 国产亚洲av高清不卡| kizo精华| 天堂俺去俺来也www色官网| 在线亚洲精品国产二区图片欧美| 亚洲av成人不卡在线观看播放网 | cao死你这个sao货| 国产成人影院久久av| 国产国语露脸激情在线看| 亚洲国产中文字幕在线视频| 黄色怎么调成土黄色| 蜜桃国产av成人99| 久久av网站| 亚洲七黄色美女视频| 大香蕉久久成人网| 高潮久久久久久久久久久不卡| 久久久精品区二区三区| 少妇被粗大的猛进出69影院| 欧美精品一区二区大全| 少妇人妻久久综合中文| 真人做人爱边吃奶动态| 亚洲国产成人一精品久久久| 十八禁网站网址无遮挡| 两性夫妻黄色片| 亚洲精品国产色婷婷电影| 国产精品一区二区精品视频观看| 精品一区二区三卡| 日本a在线网址| 欧美一级毛片孕妇| 又黄又粗又硬又大视频| 久久人人97超碰香蕉20202| 欧美黑人欧美精品刺激| 日韩人妻精品一区2区三区| 十分钟在线观看高清视频www| 亚洲成人手机| 伊人久久大香线蕉亚洲五| 日韩,欧美,国产一区二区三区| 日韩大码丰满熟妇| av又黄又爽大尺度在线免费看| 黄色毛片三级朝国网站| 亚洲国产欧美日韩在线播放| 国产欧美日韩精品亚洲av| 如日韩欧美国产精品一区二区三区| 久久热在线av| 国产视频一区二区在线看| 国产真人三级小视频在线观看| 中文字幕另类日韩欧美亚洲嫩草| 女人精品久久久久毛片| 真人做人爱边吃奶动态| 日韩制服丝袜自拍偷拍| 国产精品av久久久久免费| 69精品国产乱码久久久| 正在播放国产对白刺激| 久久国产精品影院| 午夜福利乱码中文字幕| 中文字幕另类日韩欧美亚洲嫩草| 成人国产av品久久久| 在线看a的网站| 国产亚洲午夜精品一区二区久久| 亚洲欧美精品综合一区二区三区| 欧美老熟妇乱子伦牲交| 国产色视频综合| 国产人伦9x9x在线观看| 欧美激情久久久久久爽电影 | 亚洲人成电影观看| 欧美精品av麻豆av| 九色亚洲精品在线播放| 亚洲国产毛片av蜜桃av| 精品国产一区二区三区久久久樱花| 国产熟女午夜一区二区三区| 91精品国产国语对白视频| 国产精品影院久久| 免费女性裸体啪啪无遮挡网站| 亚洲综合色网址| 亚洲一区中文字幕在线| 国产一区有黄有色的免费视频| 欧美xxⅹ黑人| 高清在线国产一区| 超碰97精品在线观看| 日韩熟女老妇一区二区性免费视频| 日本撒尿小便嘘嘘汇集6| 超碰成人久久| 国产日韩欧美在线精品| 黄色视频,在线免费观看| 视频区图区小说| 国产欧美日韩精品亚洲av| 亚洲国产欧美日韩在线播放| 亚洲国产精品999| 精品熟女少妇八av免费久了| 国产99久久九九免费精品| 女人被躁到高潮嗷嗷叫费观| www.999成人在线观看| 国产欧美日韩一区二区精品| 天堂8中文在线网| 91字幕亚洲| 黄频高清免费视频| 欧美中文综合在线视频| 韩国高清视频一区二区三区| 国产免费现黄频在线看| 亚洲avbb在线观看| 97人妻天天添夜夜摸| 欧美激情 高清一区二区三区| 一级片免费观看大全| 亚洲精品国产一区二区精华液| 人妻久久中文字幕网| 这个男人来自地球电影免费观看| 久久99热这里只频精品6学生| 丰满饥渴人妻一区二区三| 欧美精品高潮呻吟av久久| 亚洲国产欧美一区二区综合| 黄片播放在线免费| 丝瓜视频免费看黄片| 大型av网站在线播放| 欧美另类一区| 老汉色∧v一级毛片| 久久久久精品人妻al黑| 最黄视频免费看| 王馨瑶露胸无遮挡在线观看| 日韩欧美一区视频在线观看| 国产极品粉嫩免费观看在线| 久久精品亚洲熟妇少妇任你| 1024香蕉在线观看| 日本wwww免费看| 久久精品国产综合久久久| 精品人妻一区二区三区麻豆| 亚洲欧美一区二区三区黑人| 午夜激情久久久久久久| 色婷婷久久久亚洲欧美| 国产97色在线日韩免费| 真人做人爱边吃奶动态| 成年av动漫网址| 久久国产精品大桥未久av| 日韩一卡2卡3卡4卡2021年| 女人爽到高潮嗷嗷叫在线视频| av线在线观看网站| 丝袜美腿诱惑在线| 久久久久视频综合| 欧美日韩精品网址| 亚洲国产精品999| 亚洲七黄色美女视频| 99热网站在线观看| 国产成人欧美在线观看 | 美女扒开内裤让男人捅视频| 热re99久久精品国产66热6| 日韩欧美免费精品| 丰满人妻熟妇乱又伦精品不卡| 亚洲 国产 在线| 精品福利永久在线观看| 久久久久久久久免费视频了| 在线观看一区二区三区激情| 青草久久国产| 99国产精品一区二区三区| 99精品欧美一区二区三区四区| 国产97色在线日韩免费| 国产精品国产三级国产专区5o| 女性生殖器流出的白浆| 首页视频小说图片口味搜索| 啦啦啦啦在线视频资源| 丝袜美腿诱惑在线| 国产成人欧美在线观看 | 黄片小视频在线播放| 久久精品久久久久久噜噜老黄| 亚洲一区中文字幕在线| 日韩三级视频一区二区三区| 熟女少妇亚洲综合色aaa.| 黄色 视频免费看| 肉色欧美久久久久久久蜜桃| 久久午夜综合久久蜜桃| 人人妻,人人澡人人爽秒播| 亚洲一区二区三区欧美精品| 99久久综合免费| 国产免费av片在线观看野外av| 精品久久久久久电影网| 亚洲专区国产一区二区| 成在线人永久免费视频| 久久ye,这里只有精品| 欧美日韩黄片免| 丝袜美腿诱惑在线| 自拍欧美九色日韩亚洲蝌蚪91| 丝袜在线中文字幕| 国产精品久久久久久人妻精品电影 | 欧美日韩黄片免| 最近中文字幕2019免费版| 亚洲欧洲日产国产| 丝瓜视频免费看黄片| 日韩大码丰满熟妇| 欧美 亚洲 国产 日韩一| 亚洲中文av在线| 午夜成年电影在线免费观看| 三上悠亚av全集在线观看| 欧美精品一区二区大全| 大片免费播放器 马上看| 黄片小视频在线播放| 日韩制服骚丝袜av| 在线 av 中文字幕| 国产精品一区二区在线观看99| 亚洲av电影在线观看一区二区三区| 嫩草影视91久久| 亚洲一区二区三区欧美精品| 我要看黄色一级片免费的| 精品人妻熟女毛片av久久网站| 可以免费在线观看a视频的电影网站| 一本综合久久免费| 老汉色av国产亚洲站长工具| 国产成人啪精品午夜网站| 黑人巨大精品欧美一区二区蜜桃| 亚洲激情五月婷婷啪啪| netflix在线观看网站| 人人妻人人爽人人添夜夜欢视频| 欧美另类亚洲清纯唯美| 极品少妇高潮喷水抽搐| av福利片在线| 久久久久久免费高清国产稀缺| 国产伦人伦偷精品视频| 久久人人爽av亚洲精品天堂| 国产精品麻豆人妻色哟哟久久| 这个男人来自地球电影免费观看| 精品久久久精品久久久| 日韩三级视频一区二区三区| 欧美另类一区| 欧美精品高潮呻吟av久久| 少妇人妻久久综合中文| 久热爱精品视频在线9| 五月开心婷婷网| 国产成人啪精品午夜网站| 天天躁夜夜躁狠狠躁躁| 欧美在线一区亚洲| 超碰成人久久| av有码第一页| 亚洲精品久久午夜乱码| 久久久精品免费免费高清| 日韩中文字幕视频在线看片| 99国产极品粉嫩在线观看| 国产色视频综合| 男人爽女人下面视频在线观看| 国产男女超爽视频在线观看| 淫妇啪啪啪对白视频 | 久久女婷五月综合色啪小说| 一级毛片女人18水好多| 国产一卡二卡三卡精品| 成人三级做爰电影| 午夜免费成人在线视频| 香蕉国产在线看| 亚洲va日本ⅴa欧美va伊人久久 | 99国产精品一区二区蜜桃av | 麻豆成人av在线观看| 中文字幕熟女人妻在线| 高清在线国产一区| 亚洲国产精品sss在线观看| 日本撒尿小便嘘嘘汇集6| 亚洲全国av大片| 欧美人与性动交α欧美精品济南到| 在线观看66精品国产| 18禁美女被吸乳视频| 在线国产一区二区在线| 波多野结衣高清作品| 久久伊人香网站| 国产精品久久久久久精品电影| 在线播放国产精品三级| 国产蜜桃级精品一区二区三区| 亚洲精品久久国产高清桃花| 老司机福利观看| 午夜影院日韩av| 国产区一区二久久| 美女午夜性视频免费| 日韩欧美国产在线观看| 国产精品久久久久久精品电影| 在线播放国产精品三级| 91麻豆精品激情在线观看国产| 久久精品aⅴ一区二区三区四区| av片东京热男人的天堂| 999久久久国产精品视频| 午夜精品在线福利| 黑人巨大精品欧美一区二区mp4| 露出奶头的视频| 国产av麻豆久久久久久久| 久久中文看片网| 成人18禁在线播放| 天天躁狠狠躁夜夜躁狠狠躁| bbb黄色大片| 国产一区二区三区视频了| 国模一区二区三区四区视频 | 久久久精品大字幕| 久热爱精品视频在线9| av视频在线观看入口| 国产精品亚洲美女久久久| 嫩草影院精品99| 天堂av国产一区二区熟女人妻 | 欧美一区二区国产精品久久精品 | 日韩中文字幕欧美一区二区| 午夜免费激情av| 成人特级黄色片久久久久久久| 久久精品国产亚洲av高清一级| 亚洲一区二区三区不卡视频| 舔av片在线| netflix在线观看网站| 国产精品自产拍在线观看55亚洲| 国产亚洲精品综合一区在线观看 | www.熟女人妻精品国产| 草草在线视频免费看| 国产高清videossex| 美女黄网站色视频| 91大片在线观看| 国产精品香港三级国产av潘金莲| 午夜福利成人在线免费观看| 在线观看一区二区三区| 老司机福利观看| 亚洲国产精品999在线| 亚洲成人久久爱视频| 色哟哟哟哟哟哟| av福利片在线| 黄色 视频免费看| 麻豆成人午夜福利视频| 午夜福利高清视频| 99精品久久久久人妻精品| 亚洲 国产 在线| x7x7x7水蜜桃|