• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Highly crystalline,highly stable n-type ultrathin crystalline films enabled by solution blending strategy toward organic single-crystal electronics

    2024-04-06 06:21:00YngLiuShuyuLiYihnZhngXiotingZhuFngxuYngFeiJioWenpingHu
    Chinese Chemical Letters 2024年1期

    Yng Liu ,Shuyu Li ,Yihn Zhng ,Xioting Zhu ,Fngxu Yng,? ,Fei Jio,? ,Wenping Hu,b

    a Tianjin Key Laboratory of Molecular Optoelectronic Sciences,Department of Chemistry,School of Science,Tianjin University,Tianjin 300072,China

    b Haihe Laboratory of Sustainable Chemical Transformations,Tianjin 300192,China

    Keywords: n-type organic field effect transistors Ultrathin film High-performance Composites

    ABSTRACT The development of n-type semiconductor is still far behind that of p-type semiconductor on account of the challenges in enhancing carrier mobility and environmental stability.Herein,by blending with the polymers,n-type ultrathin crystalline thin film was successfully prepared by the method of meniscusguided coating.Remarkably,the n-type crystalline films exhibit ultrathin thickness as low as 5 nm and excellent mobility of 1.58 cm2 V-1 s-1,which is outstanding in currently reported organic n-type transistors.Moreover,the PS layer provides a high-quality interface with ultralow defect which has strong resistance to external interference with excellent long-term stability,paving the way for the application of n-type transistors in logic circuits.

    Large area single crystal thin films are the best candidate materials for high-performance integrated plastic electronics,on account of the advantages of eliminating the interference of grain boundaries,defects,impurities and charge traps [1–4].Up to now,large area preparation of organic single crystal film has become a hot research field due to the inherent unique characteristics of organic molecules [5–7].On the one hand,they have good selfcrystallization and tend to aggregate crystallization in solution processing [8,9].On the other hand,because of the development of meniscus-guided coating (MGC) method,the orientation-inducing force can induce organic molecules to assemble in the same direction,enabling the formation of large-area highly crystalline films[10,11].For an organic field effect transistor (OFET),carrier transport channels are considered to be located within several molecular layers at the interface between the organic semiconductor and the insulating layer [12,13].At present,it has been reported that the monolayer molecular crystal can achieve the same performance as the bulk single crystal [14,15].Moreover,the ultrathin crystal film also has inherent incomparable unique advantages.On the one hand,the ultrathin feature can greatly reduce the bulk resistance of the semiconductor,facilitating the carrier injection[16,17].On the other hand,the carriers in the ultrathin channel can be efficiently regulated by the gate,and thus the carriers can be completely depleted in the depletion region to achieve ultra-low off-state current [18,19].Currently,the methods of preparing ultrathin single crystals mainly include liquid surface substrate method and the MGC method.Despite the liquid substrate method can prepare two-dimensional organic crystals with a controllable number of layers based on spatial confinement,it cannot be fabricated on a large scale [20].By contrast,the MGC method can be fabricated in a large area.However,in order to ensure the continuity of the film,the thickness of the film is often increased,resulting in a challenge of achieving ultrathin thickness.Although there are a few reports on p-type ultrathin single crystal films [21],investigation on largearea n-type ultrathin crystalline films is scarce.

    In addition,the long-term storage and operational stability of n-type ultrathin semiconductor films is another formidable challenge that needs to be addressed.There are two main reasons for the morphological evolution of organic thin films after long-term storage.Firstly,molecular films are assembled by weak van der Waals interactions between organic molecules [22,23].Secondly,the heterointerface is generally accompanied by the existence of interfacial stress [24].Moreover,this phenomenon will be more pronounced for ultrathin films.To overcome this problem,it has been reported that increasing the thickness of the film can improve the stability [25,26].Even worse,the stability of n-type semiconductor thin films is a long-term problem in the field,mainly because the electronic properties of organic semiconductors are easily affected by water and oxygen [27,28].Thus,the stability of n-type ultrathin films will be a huge challenge,which needs to be solved by developing sophisticated strategies.

    Herein,we develop a polymer blending strategy to realize the preparation of n-type ultrathin films,obtaining high-performance n-type organic field effect transistors with excellent stability.Choosing 4,4′-(2λ4δ2-benzo[1,2-c:4,5-c’]bis[1,2,5]thiadiazole-4,8-diyldi-5,2-thiophenediyl)bis[2-dodecylbenzonitrile] (TU-3) as the n-type semiconductor,we obtained n-type ultrathin films owing to the properties of the continuous film formation and efficient crystallization of the polymer polystyrene (PS) in TU-3/PS composite.The electron mobility of the corresponding device is as high as 1.58 cm2V-1s-1,which is the highest value for n-type ultrathin films.More importantly,the n-type ultrathin film achieves good long-term stability due to the addition of PS to stabilize the heterointerfacial stress,and the low defect system also enables the film to obtain good resistance to external interference.This study lays a solid foundation for the development of high-performance n-type ultrathin films for large area integrated electronics.

    For the solution shearing method,ultra-low solution concentration or fast shear rate are generally required to prepare ultrathin films [29].Small molecules are not easy to form films due to their low viscosity,so we tend to increase the shear rate to reduce the thickness of the film,which often results in discontinuity and inhomogeneity of the film [10].However,the addition of polymers can significantly increase the viscosity and improve the wettability of the solution,thereby improving the growth kinetics,which is more favorable for the growth of thin films [30,31].In terms of molecular selection,we chose small molecule TU-3 and polymer PS with good solubility and high stability [32,33].In film preparation,we chose the strategy of polymer blending to assist solution shearing (Fig.1a).By using the method of meniscus-guided coating,an orientation force is applied to small molecules to induce crystallization toward the dominant direction.The uniform solidification of PS with long-chain structure at the bottom layer provides a favorable platform for the deposition of TU-3 small molecules,thereby obtaining continuous and uniform ultrathin films by adjusting the appropriate shear rate (Fig.1b).Optical micrographs reveal ultrathin films with centimeter-scale dimensions and smooth,flat surfaces,and atomic force microscopy (AFM) images indicate a thickness of 5.5 nm (Fig.S1 in Supporting information).The microstructure of the ultrathin film is revealed by AFM,and it is found that the blend film has a more continuous and flatter surface than the single-component film,and the root mean square roughness (RMS) is reduced from 1.49 nm to 0.48 nm due to the introduction of polymers,which reflects that the blending strategy improves the uniformity and continuity of the ultrathin films (Figs.1c and d).In order to further analyze the crystallinity and structure of the ultrathin film,it is first observed under a polarizing microscope (POM).When the polarization angle is rotated by 45°,the film shows a uniform color change and a significant extinction phenomenon,indicating that it has a long-range ordered internal structure (Figs.1e and f).Meanwhile,the out-of-plane X-ray diffraction pattern shows that the blend film had sharper diffraction peaks,indicating that the introduction of PS effectively improves the crystallinity of TU-3 (Fig.S2 in Supporting information).Besides,the selected-area electron diffraction (SAED) image shows that the ultrathin film has periodically arranged diffraction spots,further proving its single-crystal structure (Fig.1g).

    Fig.1.(a) Chemical structure of TU-3 and PS and schematic diagram of ultrathin film preparation.(b) Schematic diagram of small molecule deposition process.(c,d) AFM images of a pure TU-3 film and a TU-3/PS blend ultrathin film on Si/SiO2 substrate.(e,f) POM images of an ultrathin film.(g) An SAED image of an ultrathin film.Inset: a transmission electron microscope image (TEM) of the ultrathin film.

    We transferred Ag (80 nm)/Au (80 nm) as source and drain electrodes on the ultrathin films,and constructed bottom-gate topcontact (BGTC) OFETs to study its electrical properties (Fig.2a and Fig.S3 in Supporting information).All experiments were performed at room temperature and in air environment.The transfer characteristic curves of ultrathin film-based OFETs are shown in Fig.2b,and the corresponding output curves are shown in Fig.2c.An electron mobility of 1.58 cm2V-1s-1is obtained under optimal conditions with an on-off ratio greater than 107.Moreover,we systematically studied the effect of different annealing temperatures on the mobility,and found that the mobility of the device was the highest when annealing at 100°C for 1 h (Fig.2d),which is attributed to the volatilization of impurities such as organic solvents and water in the ultra-thin film,as well as the enhancement of film crystallinity (Fig.S4 in Supporting information).In addition,the effect of different mixing ratios on the mobility is also crucial,and the performance of the device is the best when the mixing ratio is 3:1 (Fig.S5 in Supporting information).It is worth mentioning that with the increase of shear rate,the thickness of the film will decrease inversely proportional,and the thickness of the ultra-thin film can be as low as 5 nm.When the shear rate is 0.25 mm/s,the mobility of the ultrathin films reaches the maximum value.However,continuing to increase the shear rate significantly increases the defects of the film,thereby reducing its electrical transport capacity (Fig.2e and Fig.S6 in Supporting information).The mobilities of 30 devices under the optimal conditions are counted as shown in Fig.2f,which is a normal distribution.The average electron mobility is 1.09 cm2V-1s-1,and the maximum electron mobility is 1.58 cm2V-1s-1,which is the highest value reported so far in OFETs used TU-3 as the n-type semiconductor.

    Fig.2.(a) Schematic diagram of OFET device based on ultrathin films.Representative transfer (b) and output (c) curves of OFETs based on ultrathin films.(d) OFET mobility as a function of annealing temperature,the error bars were calculated from the standard deviations over 10 devices in each annealing temperature.(e) Film thickness and average mobility at different shear rates,the error bars were calculated from the standard deviations over 5 devices at each shear rate.(f) Histogram of mobility distribution of 30 devices,with average value of 1.09 cm2 V-1 s-1.

    Long-term operational stability and environmental stability are one of the most important application metrics for n-type organic field effect transistors.We measured the output current of the device under a constant gate voltage of 20 V,and found that the device prepared based on the blending strategy showed better stability than the single-component device.After 8.5 h of continuous bias operation,the output current of the device still did not decay(Fig.3a).At the same time,the device was switched on and off 20 times within 2 h,and its transfer curve did not change distinctly(Fig.S7 in Supporting information).In order to explore its intrinsic mechanism,we tested the UV–vis absorption spectrum of the ultrathin film within six months,and the curve basically did not change,proving its good chemical stability (Fig.3b).The devices were then tested for photostability,and the OFETs exhibited good photostability to all wavelengths of light,which was attributed to the high molecular order in the conducting channel and the highquality interface between the dielectric layer and the semiconductor (Figs.3c-e) [34].It is worth noting that when the incident light is 365 nm,the off current of the device significantly increases,which is due to the generation of a large number of photo generated charge carriers in the active layer.However,the threshold voltage did not significantly shift,because there were few defects in the system and almost no hole trapping occurred,demonstrating the photostability of the transistor (Fig.3c).In the blend film,there is a more favorable enthalpy interaction between PS and SiO2,PS will preferentially deposit on the SiO2substrate [35,36],while the more hydrophobic TU-3 small molecules crystallize at the interface of air and film,which can be confirmed in scanning electron micrographs (SEM,as shown in Fig.3i).We also used X-ray photoelectron spectroscopy (XPS) to analyze the atomic ratios of C/S and C/N on the surfaces of blend and single-component films,and the phase separation result was confirmed by their equality (Fig.3j and Fig.S8 in Supporting information).Actually,PS layer passivates the electron traps on the surface of SiO2,provides a high-quality interface,and the whole system is a low-defect system with strong resistance to external interference,thus obtaining perfect stability (Figs.3k and l).Subsequently,we stored the device in air and tracked its mobility and threshold voltage over time.The introduction of PS also significantly improved the environmental stability of the device,and the change in threshold voltage after 9 months was only about 5 V (Fig.3f).Moreover,the mobility of the device is only reduced by about 10% after 4 months of storage.After 8 months,the mobility of the device can still be as high as 1 cm2V-1s-1(Fig.3g).Compared with the previously reported stability of n-type OFETs [37–46],our work is at the cutting edge (Fig.3h).

    Fig.3.(a) The I-t curves of OFETs based on single-component and blend ultrathin films under applied constant voltage VG of 20 V at VD of 40 V.(b) Time-dependent UV–vis spectra of a blend ultrathin film under ambient air.Transfer curves of OFETs based on blend ultrathin films in dark and under different illumination intensities at (c)365 nm,(d) 450 nm and (e) 735 nm.(f) Time-dependent threshold voltage shift of single-component and blend OFETs stored in air at room temperature,the error bars were calculated from the standard deviations over 10 devices.(g) Time-dependent electron mobility of 10 OFETs based on blend ultrathin films stored in air at room temperature.(h) Comparison of n-type OFET stability.(i) Cross-sectional SEM image of a blend ultrathin film.(j) Atomic ratios of the surfaces of single-component and blend ultrathin films.(k,l) The possible mechanism for the stability of ultrathin films.

    To demonstrate the universality of this strategy for different substrates,a high-quality alumina dielectric layer was prepared by template stripping method [47],and then grew a blend ultrathin film on the dielectric (Fig.S9 in Supporting information).Optical microscope and polarized optical microscope images prove that the thin film has a flat surface and good crystallinity (Figs.4ac).Moreover,the morphology and thickness of the thin film did not significantly change with the substrate (Fig.S10 in Supporting information).Subsequently,we thermally evaporated 2 nm 2,3,5,6-tetrafluoro-7,7,8,8-tetracyanoquinodimethane (F4-TCNQ) as a buffer layer,and then deposited 30 nm Ag as the top electrode to prepare a large-area transistor array (Fig.S11 in Supporting information),and the schematic diagram of the devices structure is shown in Fig.4d.Figs.4e and f show the transfer and output curves of the devices,respectively.The highest mobility can reach 0.53 cm2V-1s-1,which is one of the best performance n-type low voltage transistors at present (Table S2 in Supporting information).The mobility of 6× 6 transistors is counted,and it has a relatively uniform distribution (Fig.4i).Likewise,low-voltage devices exhibit good operational stability and environmental stability (Figs.4g and h),which provides a favorable guarantee for the development of organic logic circuits in the future.

    Fig.4.(a) OM and (b,c) POM images of an ultrathin film on Al/AlOx substrate.(d) Schematic diagram of low-voltage transistors based on ultrathin films.(e) Representative transfer and (f) output curves of OFETs based on ultrathin films.(g) The I-t curve of OFETs under applied constant voltage VG of 2 V at VD of 4 V.(h) Time-dependent I-V curves of OFETs under ambient air.(i) The distribution of OFET mobilities of a 6× 6 low-voltage transistor array.

    In conclusion,we have fabricated large-area ultrathin n-type crystalline filmsviausing the polymer blending strategy.Through the introduction of the polymer and the regulation of the shear rate,the electron mobility of the ultrathin film can be as high as 1.58 cm2V-1s-1when the thickness can be as low as 5.5 nm.In the blend system,the favorable interaction between PS and TU-3 molecules regulates the arrangement of TU-3 molecules,enhances the crystallinity of the film,and thus improves the electrical transport performance of the device.Moreover,PS solves the instability caused by n-type semiconductors and ultrathin film,and the lowdefect system also enables the film to obtain good resistance to external interference.Finally,we have successfully fabricated n-type OFETs with high stability and high performance,while low-voltage devices have good uniformity and stability,which has guiding significance for the development of logic circuits.

    Declaration of competing interest

    The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

    Acknowledgments

    The authors are grateful to the financial support of the National Key Research and Development Program (No.2022YFF1202700),National Natural Science Foundation of China (No.52121002) and the Haihe Laboratory of Sustainable Chemical Transformations.

    Supplementary materials

    Supplementary material associated with this article can be found,in the online version,at doi:10.1016/j.cclet.2023.108764.

    日本a在线网址| 色婷婷av一区二区三区视频| 男女无遮挡免费网站观看| 免费日韩欧美在线观看| 制服人妻中文乱码| 成年女人毛片免费观看观看9 | 国产精品国产三级国产专区5o| 激情五月婷婷亚洲| 亚洲伊人久久精品综合| 如日韩欧美国产精品一区二区三区| 大型av网站在线播放| 视频区欧美日本亚洲| 在线天堂中文资源库| 1024香蕉在线观看| 亚洲人成网站在线观看播放| 天天影视国产精品| 亚洲图色成人| 日韩一区二区三区影片| 亚洲国产毛片av蜜桃av| 欧美性长视频在线观看| 91老司机精品| 国产片内射在线| 国产成人欧美在线观看 | 老汉色av国产亚洲站长工具| 国产淫语在线视频| 男女午夜视频在线观看| 97精品久久久久久久久久精品| 男男h啪啪无遮挡| 91老司机精品| 夫妻午夜视频| 国产成人一区二区三区免费视频网站 | 少妇 在线观看| 日日摸夜夜添夜夜爱| 久久久久精品国产欧美久久久 | 久久人人97超碰香蕉20202| 亚洲国产最新在线播放| 亚洲精品久久午夜乱码| 久久久精品94久久精品| av片东京热男人的天堂| 精品国产乱码久久久久久小说| 狠狠婷婷综合久久久久久88av| 大香蕉久久网| 久久鲁丝午夜福利片| 国产av一区二区精品久久| 欧美日韩黄片免| 国产福利在线免费观看视频| 国产不卡av网站在线观看| 亚洲 国产 在线| 美女视频免费永久观看网站| 国产精品一区二区精品视频观看| 99久久99久久久精品蜜桃| 50天的宝宝边吃奶边哭怎么回事| 中文字幕最新亚洲高清| 成年女人毛片免费观看观看9 | 国产精品国产三级国产专区5o| 久久久久网色| 久久精品亚洲熟妇少妇任你| 午夜福利视频精品| 精品第一国产精品| xxx大片免费视频| 美女主播在线视频| 视频在线观看一区二区三区| 国产女主播在线喷水免费视频网站| 成在线人永久免费视频| 午夜福利,免费看| 国产精品香港三级国产av潘金莲 | 天堂中文最新版在线下载| 日韩,欧美,国产一区二区三区| 久久天堂一区二区三区四区| 亚洲视频免费观看视频| 久久毛片免费看一区二区三区| 欧美黑人精品巨大| 搡老岳熟女国产| 国产精品久久久av美女十八| 亚洲伊人色综图| 伊人久久大香线蕉亚洲五| 在线亚洲精品国产二区图片欧美| 国产精品久久久久久精品古装| 侵犯人妻中文字幕一二三四区| 国产黄色视频一区二区在线观看| 亚洲午夜精品一区,二区,三区| 欧美性长视频在线观看| 亚洲精品日本国产第一区| av不卡在线播放| av不卡在线播放| 国产精品一区二区精品视频观看| 少妇 在线观看| 黄色视频在线播放观看不卡| 国产老妇伦熟女老妇高清| 久热爱精品视频在线9| 99热全是精品| 国产视频一区二区在线看| 欧美日韩黄片免| 欧美日韩亚洲高清精品| 亚洲国产成人一精品久久久| 中文字幕亚洲精品专区| 蜜桃国产av成人99| 悠悠久久av| 国产欧美日韩一区二区三区在线| 91字幕亚洲| 中文字幕制服av| 亚洲少妇的诱惑av| 黑人巨大精品欧美一区二区蜜桃| 日韩免费高清中文字幕av| 久久青草综合色| 日日摸夜夜添夜夜爱| 亚洲色图综合在线观看| 校园人妻丝袜中文字幕| 9191精品国产免费久久| 2021少妇久久久久久久久久久| 老司机在亚洲福利影院| 下体分泌物呈黄色| 麻豆乱淫一区二区| 老汉色∧v一级毛片| 亚洲精品国产av蜜桃| av在线app专区| 国产亚洲精品第一综合不卡| 国产在线观看jvid| 国产一区有黄有色的免费视频| 一个人免费看片子| 国产日韩欧美在线精品| 国产xxxxx性猛交| 免费看不卡的av| 亚洲,欧美精品.| 国产又色又爽无遮挡免| 久久久欧美国产精品| 亚洲国产精品999| 久久久久精品人妻al黑| 九草在线视频观看| 亚洲国产精品一区二区三区在线| 电影成人av| 久久精品亚洲av国产电影网| 两性夫妻黄色片| 亚洲天堂av无毛| 国产欧美日韩综合在线一区二区| 如日韩欧美国产精品一区二区三区| 精品熟女少妇八av免费久了| 性少妇av在线| 免费不卡黄色视频| 成人三级做爰电影| 国产精品 欧美亚洲| 熟女少妇亚洲综合色aaa.| 成人影院久久| 久久ye,这里只有精品| av一本久久久久| 国产99久久九九免费精品| 国产成人a∨麻豆精品| netflix在线观看网站| 丰满少妇做爰视频| 高清欧美精品videossex| av国产精品久久久久影院| 色视频在线一区二区三区| 91精品国产国语对白视频| 亚洲国产欧美网| 美国免费a级毛片| 又黄又粗又硬又大视频| 久久久久国产精品人妻一区二区| 午夜两性在线视频| 啦啦啦啦在线视频资源| 99久久人妻综合| 亚洲成人免费av在线播放| 天天影视国产精品| 国产又色又爽无遮挡免| 18禁国产床啪视频网站| 国产免费现黄频在线看| 狠狠婷婷综合久久久久久88av| 国产福利在线免费观看视频| 大香蕉久久成人网| 中文字幕另类日韩欧美亚洲嫩草| 校园人妻丝袜中文字幕| 欧美国产精品一级二级三级| 最新在线观看一区二区三区 | 日韩一区二区三区影片| 亚洲欧美精品综合一区二区三区| 超碰97精品在线观看| 国产日韩欧美亚洲二区| 久久精品aⅴ一区二区三区四区| 捣出白浆h1v1| 满18在线观看网站| 国产精品成人在线| 成人国产av品久久久| 婷婷色综合www| 狂野欧美激情性bbbbbb| 国产高清视频在线播放一区 | 久久久久久久国产电影| 欧美精品高潮呻吟av久久| 国产xxxxx性猛交| 欧美激情 高清一区二区三区| 成人免费观看视频高清| 男女之事视频高清在线观看 | 可以免费在线观看a视频的电影网站| 精品亚洲乱码少妇综合久久| 国产视频一区二区在线看| 狂野欧美激情性bbbbbb| 9热在线视频观看99| 老司机靠b影院| av视频免费观看在线观看| 亚洲精品美女久久久久99蜜臀 | 精品一区二区三卡| 一本一本久久a久久精品综合妖精| 国产亚洲精品久久久久5区| 嫁个100分男人电影在线观看 | 亚洲国产欧美日韩在线播放| 午夜福利视频在线观看免费| 在线精品无人区一区二区三| 在线看a的网站| 青草久久国产| 99热网站在线观看| 丰满迷人的少妇在线观看| 国产精品熟女久久久久浪| 国产无遮挡羞羞视频在线观看| 丝袜喷水一区| 欧美日本中文国产一区发布| 亚洲av欧美aⅴ国产| 国产一区二区在线观看av| 中国国产av一级| 欧美性长视频在线观看| 嫩草影视91久久| 亚洲国产精品999| 久久人妻熟女aⅴ| 国产精品成人在线| 又粗又硬又长又爽又黄的视频| 中文字幕最新亚洲高清| 国产免费一区二区三区四区乱码| 亚洲中文字幕日韩| 欧美av亚洲av综合av国产av| 亚洲av美国av| 电影成人av| 日韩一卡2卡3卡4卡2021年| 精品第一国产精品| 男人操女人黄网站| 久久久精品国产亚洲av高清涩受| 多毛熟女@视频| 99国产精品99久久久久| 亚洲五月色婷婷综合| 亚洲av成人不卡在线观看播放网 | 在线观看www视频免费| 欧美黑人精品巨大| 少妇裸体淫交视频免费看高清 | 自线自在国产av| 久久精品熟女亚洲av麻豆精品| 欧美日本中文国产一区发布| a级毛片在线看网站| 色婷婷av一区二区三区视频| 50天的宝宝边吃奶边哭怎么回事| 水蜜桃什么品种好| 国产在线一区二区三区精| 1024香蕉在线观看| cao死你这个sao货| 操美女的视频在线观看| 人人妻人人添人人爽欧美一区卜| 黄色视频在线播放观看不卡| 日本五十路高清| 成年人免费黄色播放视频| 嫁个100分男人电影在线观看 | 晚上一个人看的免费电影| 考比视频在线观看| 成人亚洲欧美一区二区av| 制服诱惑二区| 欧美国产精品一级二级三级| 在现免费观看毛片| 亚洲 国产 在线| 一本一本久久a久久精品综合妖精| 久久久久久久久久久久大奶| 777米奇影视久久| 我要看黄色一级片免费的| 中文字幕亚洲精品专区| av视频免费观看在线观看| 国产伦人伦偷精品视频| 99热网站在线观看| 色播在线永久视频| 欧美日韩亚洲高清精品| 午夜福利,免费看| 久久久久久久久久久久大奶| 亚洲综合色网址| 久久久久网色| 国产日韩欧美在线精品| 美女脱内裤让男人舔精品视频| 女警被强在线播放| 午夜免费鲁丝| 性色av一级| 国产精品久久久人人做人人爽| 99国产精品一区二区蜜桃av | 亚洲成国产人片在线观看| 丰满少妇做爰视频| 嫩草影视91久久| av有码第一页| 精品国产乱码久久久久久小说| 久久久久久久精品精品| 国产视频一区二区在线看| h视频一区二区三区| 9热在线视频观看99| 一个人免费看片子| 国产高清不卡午夜福利| 国产精品秋霞免费鲁丝片| 一区二区三区四区激情视频| 亚洲精品国产区一区二| 欧美黄色片欧美黄色片| 在线观看免费日韩欧美大片| 中文字幕最新亚洲高清| 久久久久国产精品人妻一区二区| 国产淫语在线视频| 亚洲av日韩在线播放| 久久久久国产一级毛片高清牌| 国精品久久久久久国模美| 老司机靠b影院| 啦啦啦 在线观看视频| 欧美日韩视频精品一区| 两个人看的免费小视频| 99热全是精品| 成人午夜精彩视频在线观看| 国产精品 国内视频| 美女扒开内裤让男人捅视频| 日韩免费高清中文字幕av| 一个人免费看片子| 亚洲成色77777| 七月丁香在线播放| 99国产精品99久久久久| 91字幕亚洲| 夫妻性生交免费视频一级片| 黄色片一级片一级黄色片| 国产成人免费无遮挡视频| 欧美亚洲日本最大视频资源| 熟女av电影| 亚洲人成电影观看| 欧美中文综合在线视频| 亚洲午夜精品一区,二区,三区| 亚洲第一av免费看| 国产成人精品久久久久久| 成人三级做爰电影| a级毛片黄视频| 国产av一区二区精品久久| 久久免费观看电影| 亚洲国产中文字幕在线视频| 久久久久网色| 日韩精品免费视频一区二区三区| 天堂中文最新版在线下载| 国产成人欧美在线观看 | 国产99久久九九免费精品| 亚洲熟女毛片儿| 欧美变态另类bdsm刘玥| 视频在线观看一区二区三区| svipshipincom国产片| 丰满饥渴人妻一区二区三| 国产又色又爽无遮挡免| 免费看十八禁软件| 中文字幕最新亚洲高清| 国产精品国产三级国产专区5o| kizo精华| 日本色播在线视频| 真人做人爱边吃奶动态| 日本五十路高清| 欧美xxⅹ黑人| 大片电影免费在线观看免费| 亚洲欧美精品综合一区二区三区| 亚洲第一青青草原| 麻豆国产av国片精品| 99久久99久久久精品蜜桃| 欧美黑人精品巨大| 免费看十八禁软件| 精品一区二区三区av网在线观看 | 免费黄频网站在线观看国产| 天天添夜夜摸| 亚洲精品乱久久久久久| 99国产精品一区二区三区| 另类亚洲欧美激情| 国产精品一国产av| 国产精品九九99| 日韩av在线免费看完整版不卡| 国产成人欧美在线观看 | 国产片内射在线| 中文乱码字字幕精品一区二区三区| 久久狼人影院| 91国产中文字幕| 天堂8中文在线网| 欧美+亚洲+日韩+国产| 色网站视频免费| 国产97色在线日韩免费| netflix在线观看网站| 午夜影院在线不卡| 一级片免费观看大全| 欧美久久黑人一区二区| 亚洲国产最新在线播放| 天天影视国产精品| 欧美日韩成人在线一区二区| 国精品久久久久久国模美| 女人高潮潮喷娇喘18禁视频| 满18在线观看网站| 黄片播放在线免费| 中文字幕制服av| 亚洲七黄色美女视频| 免费久久久久久久精品成人欧美视频| 日韩中文字幕欧美一区二区 | 国产一区二区 视频在线| 丰满饥渴人妻一区二区三| 亚洲av电影在线进入| 婷婷丁香在线五月| 亚洲精品成人av观看孕妇| 女性生殖器流出的白浆| 亚洲精品乱久久久久久| 国产黄色视频一区二区在线观看| 亚洲精品美女久久久久99蜜臀 | 激情视频va一区二区三区| 国产在线视频一区二区| 操美女的视频在线观看| 色婷婷久久久亚洲欧美| 亚洲,欧美精品.| 精品熟女少妇八av免费久了| 亚洲欧美清纯卡通| 久久久欧美国产精品| 欧美日韩视频精品一区| 咕卡用的链子| 国产91精品成人一区二区三区 | 美女大奶头黄色视频| 久久午夜综合久久蜜桃| 91字幕亚洲| 老鸭窝网址在线观看| 国产99久久九九免费精品| 午夜福利视频在线观看免费| 久久久久久久久久久久大奶| 日日爽夜夜爽网站| 精品亚洲成a人片在线观看| 老鸭窝网址在线观看| 日日摸夜夜添夜夜爱| 亚洲第一av免费看| 久久性视频一级片| 国产免费视频播放在线视频| 国产日韩欧美在线精品| 国产精品成人在线| 啦啦啦在线免费观看视频4| 欧美av亚洲av综合av国产av| 免费人妻精品一区二区三区视频| 色视频在线一区二区三区| 涩涩av久久男人的天堂| 免费高清在线观看视频在线观看| 亚洲精品av麻豆狂野| 欧美精品高潮呻吟av久久| 超色免费av| 天天躁日日躁夜夜躁夜夜| 亚洲人成网站在线观看播放| 亚洲国产av新网站| 久热爱精品视频在线9| 视频区欧美日本亚洲| 午夜久久久在线观看| 性色av一级| 你懂的网址亚洲精品在线观看| 国产高清videossex| 天堂俺去俺来也www色官网| 国产精品.久久久| 午夜老司机福利片| 成人国语在线视频| 国产日韩欧美视频二区| 精品少妇黑人巨大在线播放| 熟女少妇亚洲综合色aaa.| 天天躁夜夜躁狠狠躁躁| 日韩一本色道免费dvd| av国产久精品久网站免费入址| 熟女av电影| 可以免费在线观看a视频的电影网站| 天堂俺去俺来也www色官网| 中文字幕人妻丝袜制服| 丰满迷人的少妇在线观看| 国产深夜福利视频在线观看| 你懂的网址亚洲精品在线观看| 制服人妻中文乱码| 亚洲成人免费av在线播放| 久久精品亚洲av国产电影网| netflix在线观看网站| 一区二区日韩欧美中文字幕| 久久性视频一级片| 亚洲成人手机| 国产精品国产av在线观看| 久久久久久亚洲精品国产蜜桃av| 国产无遮挡羞羞视频在线观看| 男女下面插进去视频免费观看| 中文字幕高清在线视频| 一本一本久久a久久精品综合妖精| 欧美人与性动交α欧美精品济南到| 久久久久网色| 国产免费现黄频在线看| 激情五月婷婷亚洲| 丁香六月天网| 亚洲人成电影免费在线| 欧美国产精品va在线观看不卡| 欧美激情极品国产一区二区三区| 欧美中文综合在线视频| 精品亚洲成a人片在线观看| 午夜av观看不卡| 亚洲精品日本国产第一区| 国产欧美日韩精品亚洲av| 美女扒开内裤让男人捅视频| 十八禁高潮呻吟视频| 国产一区二区三区av在线| 97人妻天天添夜夜摸| 香蕉丝袜av| 亚洲精品av麻豆狂野| 欧美老熟妇乱子伦牲交| 亚洲av男天堂| 啦啦啦啦在线视频资源| 99国产综合亚洲精品| 啦啦啦中文免费视频观看日本| 亚洲精品久久成人aⅴ小说| 一本色道久久久久久精品综合| 亚洲精品国产av蜜桃| 免费人妻精品一区二区三区视频| 久久久久网色| 夫妻性生交免费视频一级片| 色视频在线一区二区三区| 久久毛片免费看一区二区三区| 日韩中文字幕视频在线看片| 丝瓜视频免费看黄片| 欧美成狂野欧美在线观看| 亚洲精品一卡2卡三卡4卡5卡 | 欧美亚洲日本最大视频资源| 欧美精品人与动牲交sv欧美| 男男h啪啪无遮挡| 十八禁网站网址无遮挡| 亚洲国产精品一区三区| av视频免费观看在线观看| 2018国产大陆天天弄谢| 久久久国产欧美日韩av| 日韩一卡2卡3卡4卡2021年| 三上悠亚av全集在线观看| 麻豆国产av国片精品| 精品国产超薄肉色丝袜足j| 又大又爽又粗| 丝袜脚勾引网站| 亚洲七黄色美女视频| 一本综合久久免费| 午夜福利免费观看在线| 国产亚洲欧美精品永久| 蜜桃国产av成人99| 一级,二级,三级黄色视频| 欧美日韩精品网址| 交换朋友夫妻互换小说| 老司机亚洲免费影院| 中文字幕另类日韩欧美亚洲嫩草| 男男h啪啪无遮挡| 日韩熟女老妇一区二区性免费视频| 脱女人内裤的视频| 精品人妻熟女毛片av久久网站| 男女国产视频网站| 日韩欧美一区视频在线观看| 一级毛片 在线播放| 中文字幕制服av| 麻豆国产av国片精品| 国产精品国产三级国产专区5o| 国产亚洲精品久久久久5区| 亚洲中文日韩欧美视频| 久久鲁丝午夜福利片| 国产高清国产精品国产三级| 男女无遮挡免费网站观看| 少妇的丰满在线观看| 精品亚洲成国产av| 久久这里只有精品19| 国产深夜福利视频在线观看| 日本一区二区免费在线视频| 国产一级毛片在线| 午夜av观看不卡| 美女视频免费永久观看网站| 悠悠久久av| 纵有疾风起免费观看全集完整版| 女性被躁到高潮视频| 久久99一区二区三区| 欧美精品亚洲一区二区| 精品免费久久久久久久清纯 | 亚洲欧美中文字幕日韩二区| 大型av网站在线播放| 亚洲午夜精品一区,二区,三区| cao死你这个sao货| 一区二区三区乱码不卡18| 色网站视频免费| 不卡av一区二区三区| 男女免费视频国产| 亚洲欧美清纯卡通| 男女之事视频高清在线观看 | 国产亚洲精品第一综合不卡| 七月丁香在线播放| 黑人巨大精品欧美一区二区蜜桃| 日韩伦理黄色片| 黑人巨大精品欧美一区二区蜜桃| 亚洲av成人精品一二三区| 老熟女久久久| 国产精品秋霞免费鲁丝片| av天堂在线播放| 中文字幕色久视频| 亚洲国产看品久久| 男女边吃奶边做爰视频| a级片在线免费高清观看视频| 国产日韩一区二区三区精品不卡| 亚洲,欧美精品.| 天堂8中文在线网| 成年人免费黄色播放视频| 精品少妇内射三级| 国产有黄有色有爽视频| 亚洲一区中文字幕在线| 婷婷色麻豆天堂久久| 老司机靠b影院| bbb黄色大片| 午夜福利视频在线观看免费| 又粗又硬又长又爽又黄的视频| 国产淫语在线视频| 中文字幕最新亚洲高清| 亚洲成av片中文字幕在线观看| 日日夜夜操网爽| 午夜福利在线免费观看网站| 午夜福利影视在线免费观看| 国产福利在线免费观看视频| 一二三四在线观看免费中文在| 一区二区三区精品91| 老汉色∧v一级毛片| 亚洲欧美成人综合另类久久久| videos熟女内射| 中文精品一卡2卡3卡4更新| 国产又色又爽无遮挡免|