• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Supramolecular cyclization induced emission enhancement in a pillar[5]arene probe for discrimination of spermine

    2024-04-06 06:20:56YibinZhouHaoTangHanlunWuXiaomeiJiangLingyunWangDerongCao
    Chinese Chemical Letters 2024年1期

    Yibin Zhou,Hao Tang ,Hanlun Wu,Xiaomei Jiang,Lingyun Wang,Derong Cao

    State Key Laboratory of Luminescent Materials and Devices,School of Chemistry and Chemical Engineering,South China University of Technology,Guangzhou 510641,China

    Keywords: Spermine Pillar[5]arene Probe Supramolecular chemistry Supramolecular cyclization induced emission enhancement

    ABSTRACT Early diagnosis and treatment of cancer requires the development of tools that are both sensitive and selective in detecting spermine.In this study,we presented a "supramolecular cyclization-induced emission enhancement" strategy for the sensitive and selective detection of spermine.A new pillar[5]arene probe (P1) demonstrated excellent solution/solid dual-state emission properties,and the addition of certain spermine (Spm) resulted in fluorescence enhancement due to the synergy of multiple weak interactions that restricted the free motion of P1 in the P1?Spm complex.This mechanism was further confirmed by time-resolved spectroscopy,DFT calculations,and IGM analysis.With its low limit of detection and high selectivity, P1 is a promising tool for measuring spermine in artificial urine samples.

    Spermine (Spm) is a polyamine widely present in eukaryotic cells and bodily fluids,playing a critical role in cell proliferation and development [1–3].Recent studies have linked elevated levels of spermine to the presence of cancer,making it a promising biomarker for early detection and efficacy evaluation of cancer treatment [4,5].However,conventional detection methods such as chromatography and immunoassays are time-consuming and expensive [6,7],necessitating the development of a swift and accurate diagnostic tool.Fluorescent probes have been recognized as a potent approach for spermine detection,with various organic molecules [8–13],quantum dots [14],conjugated polymers [15–17],organic metal compounds [18,19],and supramolecular selfassemblies [20–25] being employed in the past decade.However,the development of novel fluorescent probes for its detection remains desired because the probes for the identification of spermine with high selectivity are still rare.

    Pillar[5]arene has been extensively employed in supramolecular chemistry due to its rigid structure and favorable host-guest characteristics [26–33].By altering its structure,functionalized pillar[5]arenes have been developed and used for the detection of ions and small molecules [34–39].Recently,we designed a functionalized pillar[5]arene with aggregation-induced emission (AIE)group and multiple-binding-site for the selective discrimination of specific alkylenediamines [40].Here we proposed a “supramolecular cyclization-induced emission enhancement” (SCIEE) strategy for the selective detection of spermine.By introducing multiple binding sites to pillar[5]arene as a new host (P1),P1and spermine can form a host-guest complex with a ring-like structure by supramolecular cyclization.Such a ring-like self-assembly restricts the free motion of the host,resulting in the fluorescence enhancement and selective detection of spermine.

    In this study,two modified versions of pillar[5]arene (P1and its control counterpartP2,Scheme 1) were designed and synthesized for the purpose of sensing spermine.Due to the inclusion of diphenylethene groups,bothP1andP2exhibited strong emission properties in both dilute solutions and solid state,featuring dual state emission.P1was designed with three binding sites specifically suited for spermine,with the distance between two carboxyl groups ofP1matching the alkyl chain length of spermine.This design activated the supramolecular cyclization upon the addition of spermine,restricting the free motion ofP1in the host-guest complex and resulting in enhanced fluorescence.However,P2was not effective in recognizing spermine despite also having three binding sites,as the distance between two carboxyl groups ofP2was too great for the amino groups at the end of the spermine to bind to them simultaneously.

    Scheme 1.Chemical structures of P1, P2,and NP and the schematic illustration of detection mechanism.

    The synthetic route ofP1andP2was shown in Scheme S1(Supporting information).Initially,intermediates6aand6bwere produced through the Suzuki reaction of compounds2/4and5,respectively.These intermediates were subjected to a sequence of Williamson and hydrolysis reactions to obtain the desiredP1andP2compounds.NMR and HRMS analysis were conducted to fully characterize the related compounds,as shown in Figs.S1-S25 (Supporting information).

    The photophysical characteristics ofP1andP2were examined in acetonitrile and solid states.The absorption spectra ofP1andP2were similar with two absorption bands being observed atca.305 and 331 nm (Fig.S26a in Supporting information).Similarly,the normalized fluorescence spectra of both compounds were nearly indistinguishable,with blue emission at 397 nm (Fig.1a and Fig.S26b in Supporting information).DFT calculations indicated that the photophysical properties ofP1andP2were nearly identical due to their comparable conjugated structures and energy gaps(Fig.1b and Fig.S27 in Supporting information).Additionally,the emission ofP1andP2showed weak solvatochromic properties,with a redshift of 16 and 20 nm,respectively,from toluene to DMF(Fig.S28 and Table S1 in Supporting information).

    Fig.1.(a) Photos of the fluorescence emitted by P1 and P2 in solution and the solid state;(b) Spatial distribution of the HOMO and LUMO of P1 and P2.Fluorescence spectra of P1 (c) and P2 (d) (2.5 μmol/L) in DMSO/H2O mixtures with varying water content ranging from 0 to 99%.

    In the solid state,bothP1andP2emitted strong blue emission atca.413 and 415 nm,respectively (Fig.S29 in Supporting information).To investigate their fluorescence properties in the aggregated state,dimethyl sulfoxide and water were chosen as the good solvent and poor solvent,respectively.In a dimethyl sulfoxide solution,P1(2.5 μmol/L) exhibited blue emission at 401 nm.The fluorescence intensity of the mixture solution showed a tendency to increase and then decrease with the increase of water volume fraction (f w).However,the magnitude of the fluorescence change was not significant for all samples,and all samples emitted strong blue light (Fig.1c and Fig.S30a in Supporting information).Similarly,P2also displayed significant blue fluorescence in both the solution and aggregated state (Fig.1d and Fig.S30b in Supporting information).These findings demonstrate thatP1andP2possess excellent solvent/solid dual state emission properties.The large conjugated structure of both compounds enables efficient fluorescence in dilute solutions,while the presence of the pillar[5]arene structure prevents the formation ofπ-πstacking in the aggregated state,resulting in excellent fluorescence performance of the aggregates.

    Furthermore,solution-thickening experiments were conducted to confirm whether fluorescence enhancement could be attained by limiting the free motion ofP1andP2.As depicted in Fig.S31(Supporting information),the fluorescence of bothP1andP2underwent a significant enhancement as the volume fraction of glycerol increased,indicating that the intramolecular rotation ofP1andP2could be constrained by the thickening approach,resulting in an increase in fluorescence.

    The host–guest complexation betweenP1and spermine was investigated in acetonitrile.The emission ofP1was significantly increased upon the addition of spermine (Fig.S32 in Supporting information).The observed fluorescence enhancement correlated with the results of time-resolved spectroscopy experiments,where the fluorescence lifetime ofP1was found to increase from 2.80 ns to 3.14 ns upon the addition of spermine,as shown in Fig.S33 and Table S2 (Supporting information).To quantify the hostguest binding,a fluorescence titration experiment was conducted with the concentration ofP1held constant.As depicted in Fig.2,the fluorescence intensity ofP1increased gradually with the addition of spermine.The binding isotherms were fitted well to a 1:1 binding model using the Scientist 3 program.The equilibrium binding constant ofP1to spermine was determined to be (7.7±0.6)×105L/mol in acetonitrile.In order to examine the solvent effect on theP1-spermine binding,we investigated the fluorescence response ofP1(2.5 μmol/L) upon adding 5 μmol/L spermine in various solutions,including an acetonitrile/water mixture (1:9,v/v),an aqueous solution,and PBS buffer solutions (pH 6.5 and 7.4).As shown in Fig.S34 (Supporting information),the fluorescence of theP1solution barely changed when spermine was added to the aqueous solution or PBS buffer solution,indicating that the binding capacities ofP1to spermine were not high in those media.The fluorescence enhancement ofP1was observed in the acetonitrile/water mixture (1:9,v/v) with the equilibrium binding constant ofP1to spermine determined to be (2.3± 0.2)×104L/mol,which is 33 times lower than that in acetonitrile (Fig.S35 in Supporting information).The binding capacity ofP1to spermine decreased greatly in the presence of water,which may be attributed to the competition between spermine and water for the binding of carboxylic unit ofP1and high solubility of spermine in water.

    Fig.2.Binding isotherm of P1?Spm complex fitted with a 1:1 binding model.Inset: Dependence of fluorescence of P1 on the concentration of spermine in acetonitrile.[P1]=2.5 μmol/L.

    Fig.3.1H NMR spectra for the binding of P1 with spermine (400 MHz,DMSO–d 6).(a) P1 (5 mmol/L);(b) P1 (5 mmol/L) and spermine (5 mmol/L);(c) spermine(5 mmol/L).

    To confirm the host-guest interactions betweenP1and spermine,1H NMR was conducted (Fig.3).The disappearance of the peak of protons HAon the carboxyl group ofP1indicated a proton exchange process betweenP1and spermine,while upfield shifts of the NMR peak was observed for protons HBon the methylene group.The NMR peaks for protons Hc,Hd,and Heon spermine displayed substantial upfield shifts and broadening,which were attributed to the inclusion-induced shielding effects and complexation dynamics [41].Comparatively,the NMR peaks for protons Haand Hbon spermine exhibited downfield shifts,possibly due to the effect of protonation of the amino group and the inability of the cavity ofP1to fully encapsulate spermine,leaving the exposed Haand Hbprotons outside the cavity.Besides,1H NMR titration experiments were performed to further investigate the binding betweenP1and spermine where DMSO was used as the solvent instead of acetonitrile due toP1’s inadequate solubility in acetonitrile for NMR experiments (Fig.S36 in Supporting information).The chemical shifts of protons on spermine were shifted with the addition ofP1and the binding isotherm was fit well with a 1:1 binding model,suggesting a 1:1 host-guest binding.The equilibrium binding constant ofP1to spermine in DMSO was calculated to be(5.3± 0.8)×103L/mol using the Scientist 3 program (Fig.S37 in Supporting information).Additionally,an ESI-MS experiment was conducted,which also revealed the formation of 1:1 host-guest complex in theP1/Spm system,as evidenced by the presence of the [P1?Spm]+peak in the spectrum (Fig.S38 in Supporting information).

    The control experiments were conducted by observing the fluorescent behavior of two control molecules ofP1(i.e.,P2andNP)upon the addition of spermine (Fig.S39 in Supporting information).The absence of substantial fluorescence enhancement inP2andNPindicated their inability to effectively bind with spermine,which was attributed to the great distance between two carboxyl groups ofP2and the lack of a pillar[5]arene cavity inNP.This finding reinforced the importance of the pillar[5]arene cavity and the dual carboxyl-amine interactions in the selective recognition of spermine.

    To further investigate the mechanism behindP1’s selective recognition of spermine,several methods were employed,including DFT calculations and independent gradient model (IGM) analysis.The complex structure ofP1?Spm was optimized by DFT and depicted in Fig.4a.One binding site showed a strong electrostatic interaction (1.328 ?A) between the carboxylate anion and the alkylammonium cation due to proton transfer from a carboxyl group ofP1to an amino group of spermine.At another binding site,an O–H???N bond (1.607 ?A) was formed between a carboxyl group ofP1and an amine group of spermine,consistent with the characteristics of carboxyl-amine interaction,namely,charge-assisted hydrogen bond [42].IGM analysis revealed strong electrostatic interaction,hydrogen bond (indicated by blue areas in the isosurfaces),and van der Waals interactions (indicated by green areas in the isosurfaces) betweenP1and spermine (Fig.4c) [43].In contrast,the amino groups at the end of spermine could not attach to twoP2carboxyl groups simultaneously to establish two carboxyl-amine interactions,as shown in Fig.4b.These theoretical studies confirmed that the synergy of carboxyl-amine interactions and van der Waals interactions between the host and the guest played a key role in restricting the free motion ofP1and achieving supramolecular cyclization-induced emission enhancement.

    Fig.4.The complex structure of P1?Spm (a) and P2?Spm (b) predicted by DFT calculation.(c) δginter=0.01 a.u.isosurfaces graphs of P1?Spm.

    The investigation of the selectivity ofP1towards spermine in the presence of various amines was carried out.Firstly,1,12-diaminododecane,which has the same chain length as spermine,was chosen to bind toP1.As shown in Fig.S40 (Supporting information),the emission ofP1was significantly increased upon the addition of 1,12-diaminododecane,indicating that the presence of 1,12-diaminododecane may cause interference in the detection of spermine.However,1,12-diaminododecane is not biogenic amine and not typically present in the physiological environment and is therefore unlikely to cause interference in the detection of spermine [44].Thus,taking into account practical application scenarios,interference was mainly selected from some common biogenic amines.Secondly,the results presented in Fig.5 showed that the fluorescence emission ofP1was significantly enhanced upon the addition of spermine,while no significant increase in fluorescence was observed in any of the other biogenic amine solutions.Thirdly,considering that spermine is a basic compound,the impact of NH3on the spermine sensing process was investigated.As depicted in Fig.S41 (Supporting information),P1was capable of accurately detecting spermine in the presence of varying concentrations of NH3.Additionally,competition experiments were conducted to evaluateP1’s ability to distinguish spermine from other amines,as shown in Fig.S42 (Supporting information).The experimental findings indicated thatP1exhibited selective detection of spermine andwas barely influenced by basic compounds.The limit of detection (LOD) for spermine in acetonitrile was determined as 0.094±0.002 μmol/L using the equation 3σ/S (where standard deviation,σ=1.1 and slope,S=3.5×107) (Fig.S43 in Supporting information) [20].These results indicated thatP1possessed high sensitivity and selectivity in recognizing spermine,placing it among the most selective and sensitive probes (Table S3 in Supporting information).

    Fig.5.The fluorescence spectra of P1 (2.5 μmol/L) with different biogenic amines(5 μmol/L) in acetonitrile.Inset: photographs of samples under 365 nm UV illumination.Guests are 1: Spermine,2: Spermidine,3: 1,5-pentanediamine,4: 1,4-butanediamine,5: Tryptamine,6: Histamine,7: Tyramine,8: Urea,9: Ethylenediamine.

    To showcase the potential utility ofP1in detecting spermine in artificial urine,the fluorescence spectra ofP1were determined with the addition of artificial urine (depicted in Fig.S44a in Supporting information).The results showed that the fluorescence intensities at 400 nm were linearly proportional to the spermine concentration in the range of 0–17 μmol/L,as demonstrated in Fig.S44b (Supporting information).The LOD for spermine in artificial urine was determined to be 0.4 μmol/L,which is sensitive enough in pathological conditions.The findings of the recovery experiments are summarized in Table 1.

    Table 1 Real sample analysis data for different samples pre-spiked with the known concentrations of spermine.

    In conclusion,we used supramolecular cyclization induced emission enhancement as a new strategy to detect spermine by pillar[5]arene derivative (i.e.,P1) bearing three binding sites for spermine.An increase in the fluorescent emission ofP1with the addition of spermine was attributed to the inhibition ofP1’s free motion in theP1?Spm complex by supramolecular cyclization,aided by multiple weak interactions.P1possessed high sensitivity and selectivity in recognizing spermine (with LOD of 0.094 μmol/L and 0.4 μmol/L for spermine in acetonitrile and artificial urine) due to the synergism based on the pillar[5]arene cavity,the dual carboxyl-amine interactions,and the proper chain lengths ofP1and spermine,placing it among the most selective and sensitive probes.However,a similar pillar[5]arene derivativeP2cannot form such a ring-like structure by supramolecular cyclization,resulting no obvious emission enhancement because the chain length ofP2does not match that of spermine.Another similar probeNPdoes not show the supramolecular cyclization-induced emission enhancement due to the lack of a pillar[5]arene cavity.This study presents a novel approach to developing probes for spermine detection,and suggests potential applications in early cancer diagnosis.However,it should be mentioned that other alkanediamines with similar chain lengths,i.e.,1,12-diaminododecane may increase the emission ofP1.Fortunately,1,12-diaminododecane is not biogenic amine and therefore may not interfere the detection of spermine in the physiological environment samples.

    Declaration of competing interest

    The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

    Acknowledgments

    This work was supported by the National Natural Science Foundation of China (Nos.22071066,22071065),the National Key Research and Development Program of China (No.2016YFA0602900),the Guangdong Natural Science Foundation,China (No.2018B030311008),and the Guangzhou Science and Technology Project,China (No.202102020802).

    Supplementary materials

    Supplementary material associated with this article can be found,in the online version,at doi:10.1016/j.cclet.2023.108626.

    交换朋友夫妻互换小说| 美女脱内裤让男人舔精品视频| 99九九线精品视频在线观看视频| 亚洲欧洲国产日韩| 久久99精品国语久久久| 91午夜精品亚洲一区二区三区| 国产av精品麻豆| 我的老师免费观看完整版| 九九久久精品国产亚洲av麻豆| 国产av国产精品国产| 国产精品国产三级国产专区5o| 在线观看人妻少妇| 国产免费现黄频在线看| 只有这里有精品99| 久久综合国产亚洲精品| 51国产日韩欧美| 三上悠亚av全集在线观看| 99久久精品一区二区三区| 精品熟女少妇av免费看| 成人国产麻豆网| 午夜免费鲁丝| 亚洲av不卡在线观看| 色5月婷婷丁香| 欧美精品人与动牲交sv欧美| 国产亚洲午夜精品一区二区久久| 欧美xxxx性猛交bbbb| 黄色欧美视频在线观看| 午夜日本视频在线| 欧美少妇被猛烈插入视频| 国产在视频线精品| 亚洲欧美色中文字幕在线| 国产av精品麻豆| 国产一区二区在线观看av| 久久 成人 亚洲| 超碰97精品在线观看| 国产成人午夜福利电影在线观看| 一级,二级,三级黄色视频| 美女主播在线视频| 亚洲美女黄色视频免费看| 婷婷色麻豆天堂久久| 永久免费av网站大全| 亚洲国产精品一区二区三区在线| videosex国产| 精品少妇黑人巨大在线播放| 国产精品人妻久久久久久| 亚洲不卡免费看| 久久精品国产a三级三级三级| 亚洲成人一二三区av| 少妇 在线观看| 大又大粗又爽又黄少妇毛片口| 在线天堂最新版资源| 亚洲综合色惰| 性色avwww在线观看| 18禁观看日本| 一级毛片黄色毛片免费观看视频| 国产精品免费大片| 久久精品久久久久久久性| 欧美激情 高清一区二区三区| 日韩av在线免费看完整版不卡| 午夜久久久在线观看| 精品一区二区三区视频在线| 国产精品麻豆人妻色哟哟久久| 国产av一区二区精品久久| 国产av精品麻豆| 99re6热这里在线精品视频| 国产永久视频网站| 精品一区二区免费观看| 国产成人av激情在线播放 | 黑人猛操日本美女一级片| 青青草视频在线视频观看| 精品卡一卡二卡四卡免费| 国产精品98久久久久久宅男小说| 亚洲中文字幕日韩| 无遮挡黄片免费观看| 日韩欧美国产一区二区入口| 黑人巨大精品欧美一区二区蜜桃| 国产又色又爽无遮挡免费看| 久久精品国产亚洲av香蕉五月 | 少妇粗大呻吟视频| 三上悠亚av全集在线观看| 丝袜喷水一区| 黄色视频不卡| 人人妻人人澡人人爽人人夜夜| 人成视频在线观看免费观看| 中国美女看黄片| 如日韩欧美国产精品一区二区三区| 搡老乐熟女国产| 老熟妇乱子伦视频在线观看| 美国免费a级毛片| 亚洲一区中文字幕在线| 丰满饥渴人妻一区二区三| 国产精品影院久久| 欧美黑人欧美精品刺激| 女警被强在线播放| 日韩免费高清中文字幕av| 无遮挡黄片免费观看| 51午夜福利影视在线观看| 精品久久蜜臀av无| 一边摸一边做爽爽视频免费| 大香蕉久久网| 老司机午夜福利在线观看视频 | 露出奶头的视频| 国产一区二区在线观看av| 亚洲色图综合在线观看| 无限看片的www在线观看| 成年版毛片免费区| 丁香欧美五月| kizo精华| 日韩视频一区二区在线观看| 波多野结衣一区麻豆| 国产aⅴ精品一区二区三区波| 老司机亚洲免费影院| 大型黄色视频在线免费观看| 久久久欧美国产精品| 交换朋友夫妻互换小说| 国产精品亚洲av一区麻豆| svipshipincom国产片| 热99国产精品久久久久久7| 999久久久精品免费观看国产| 日本欧美视频一区| 人人妻人人澡人人爽人人夜夜| 两性夫妻黄色片| 亚洲国产中文字幕在线视频| 超碰成人久久| 免费黄频网站在线观看国产| 亚洲熟妇熟女久久| 啪啪无遮挡十八禁网站| 日韩中文字幕视频在线看片| 亚洲色图综合在线观看| 日韩中文字幕欧美一区二区| 国产日韩欧美亚洲二区| 精品人妻1区二区| 午夜福利,免费看| 最近最新免费中文字幕在线| 亚洲综合色网址| 热99国产精品久久久久久7| 国产在线观看jvid| 国产一区二区三区在线臀色熟女 | 一本久久精品| 999久久久精品免费观看国产| 欧美+亚洲+日韩+国产| 亚洲熟妇熟女久久| 最新的欧美精品一区二区| 国产色视频综合| 精品久久久久久电影网| 国产精品欧美亚洲77777| 午夜91福利影院| 18禁观看日本| 美女高潮喷水抽搐中文字幕| 国产成人影院久久av| 国产亚洲午夜精品一区二区久久| 欧美日韩国产mv在线观看视频| 成年版毛片免费区| 国产在线一区二区三区精| 精品人妻在线不人妻| 欧美黑人精品巨大| 国产男靠女视频免费网站| 少妇被粗大的猛进出69影院| 亚洲成人国产一区在线观看| 啦啦啦 在线观看视频| 国产亚洲欧美在线一区二区| 国产免费现黄频在线看| 中亚洲国语对白在线视频| 久久久久国内视频| 国产激情久久老熟女| 精品高清国产在线一区| 欧美精品啪啪一区二区三区| 国产精品1区2区在线观看. | 在线观看舔阴道视频| 狠狠精品人妻久久久久久综合| 男女床上黄色一级片免费看| 亚洲av日韩在线播放| 欧美成狂野欧美在线观看| 日韩一卡2卡3卡4卡2021年| 黄片播放在线免费| 黑人巨大精品欧美一区二区mp4| 另类亚洲欧美激情| www.999成人在线观看| 99riav亚洲国产免费| 在线av久久热| 91精品国产国语对白视频| 日本黄色视频三级网站网址 | 在线 av 中文字幕| 18禁观看日本| av在线播放免费不卡| 国产精品九九99| 最近最新免费中文字幕在线| 亚洲国产av影院在线观看| e午夜精品久久久久久久| 亚洲人成伊人成综合网2020| 国产精品免费大片| 777米奇影视久久| 可以免费在线观看a视频的电影网站| 日本一区二区免费在线视频| 亚洲伊人久久精品综合| 国产片内射在线| 精品卡一卡二卡四卡免费| 久久久久久免费高清国产稀缺| 精品亚洲成国产av| 午夜福利在线免费观看网站| 亚洲伊人久久精品综合| 成人18禁在线播放| 无限看片的www在线观看| 日韩精品免费视频一区二区三区| 交换朋友夫妻互换小说| 丰满人妻熟妇乱又伦精品不卡| 激情在线观看视频在线高清 | 飞空精品影院首页| 国产亚洲欧美在线一区二区| 亚洲天堂av无毛| 一级毛片精品| av线在线观看网站| 黑丝袜美女国产一区| av网站在线播放免费| 一二三四在线观看免费中文在| 欧美老熟妇乱子伦牲交| 国产色视频综合| 最新美女视频免费是黄的| 精品国产亚洲在线| 人妻 亚洲 视频| 黑丝袜美女国产一区| 在线观看免费日韩欧美大片| 看免费av毛片| 亚洲全国av大片| 成年人免费黄色播放视频| 女人精品久久久久毛片| 一边摸一边抽搐一进一出视频| 悠悠久久av| 在线观看免费视频网站a站| 大型av网站在线播放| 国产aⅴ精品一区二区三区波| 国产亚洲av高清不卡| av在线播放免费不卡| 精品免费久久久久久久清纯 | 深夜精品福利| 国产伦人伦偷精品视频| 一区在线观看完整版| 欧美一级毛片孕妇| 怎么达到女性高潮| 一本久久精品| 熟女少妇亚洲综合色aaa.| 色视频在线一区二区三区| av免费在线观看网站| 男女无遮挡免费网站观看| 国产成人精品久久二区二区91| 一本色道久久久久久精品综合| 亚洲中文日韩欧美视频| 亚洲一区中文字幕在线| 日韩中文字幕欧美一区二区| 黑人巨大精品欧美一区二区蜜桃| 黄色视频不卡| 大型av网站在线播放| 青草久久国产| 日本撒尿小便嘘嘘汇集6| 成年女人毛片免费观看观看9 | av视频免费观看在线观看| 99在线人妻在线中文字幕 | 日韩视频一区二区在线观看| 一夜夜www| 成年人黄色毛片网站| 自拍欧美九色日韩亚洲蝌蚪91| 久久精品亚洲精品国产色婷小说| 涩涩av久久男人的天堂| 黄频高清免费视频| √禁漫天堂资源中文www| 精品福利观看| 在线观看免费视频网站a站| 亚洲人成电影观看| 久久人人爽av亚洲精品天堂| 成人av一区二区三区在线看| 在线天堂中文资源库| 国产精品秋霞免费鲁丝片| 亚洲欧洲日产国产| 亚洲av片天天在线观看| 十八禁高潮呻吟视频| 新久久久久国产一级毛片| av有码第一页| 亚洲国产av新网站| 高清欧美精品videossex| 国产深夜福利视频在线观看| 中文字幕另类日韩欧美亚洲嫩草| 色综合欧美亚洲国产小说| 精品少妇一区二区三区视频日本电影| 日韩欧美一区视频在线观看| 中文欧美无线码| 丰满人妻熟妇乱又伦精品不卡| 色综合婷婷激情| 国产欧美日韩一区二区三区在线| 美女高潮喷水抽搐中文字幕| 欧美日韩成人在线一区二区| 丰满人妻熟妇乱又伦精品不卡| 97人妻天天添夜夜摸| 巨乳人妻的诱惑在线观看| 老汉色av国产亚洲站长工具| 精品一区二区三区四区五区乱码| 国产在线精品亚洲第一网站| 丰满饥渴人妻一区二区三| 露出奶头的视频| 成年女人毛片免费观看观看9 | 国产成人欧美在线观看 | videos熟女内射| 国产精品 国内视频| 国产1区2区3区精品| 精品一品国产午夜福利视频| 日韩有码中文字幕| 色老头精品视频在线观看| 日韩欧美三级三区| 桃红色精品国产亚洲av| 一级毛片精品| 老司机在亚洲福利影院| 丁香六月天网| 国产免费现黄频在线看| 久久香蕉激情| 国产aⅴ精品一区二区三区波| 欧美精品啪啪一区二区三区| av线在线观看网站| 日本精品一区二区三区蜜桃| 亚洲av日韩在线播放| 国产麻豆69| av国产精品久久久久影院| 亚洲欧美日韩另类电影网站| 免费少妇av软件| 女人久久www免费人成看片| 亚洲人成电影观看| 午夜久久久在线观看| 欧美人与性动交α欧美软件| 男人舔女人的私密视频| 美女高潮喷水抽搐中文字幕| a级毛片在线看网站| 成年女人毛片免费观看观看9 | 亚洲精华国产精华精| 少妇的丰满在线观看| 国产成人精品久久二区二区免费| 另类精品久久| 国产精品久久久人人做人人爽| 91av网站免费观看| 无人区码免费观看不卡 | 久久精品熟女亚洲av麻豆精品| 亚洲人成77777在线视频| 两性夫妻黄色片| 搡老乐熟女国产| 国产精品一区二区精品视频观看| 亚洲成人免费av在线播放| 成人免费观看视频高清| 国产黄频视频在线观看| 国产人伦9x9x在线观看| 黄色视频在线播放观看不卡| 国产精品久久久av美女十八| 国产精品自产拍在线观看55亚洲 | 夜夜爽天天搞| 国产激情久久老熟女| 九色亚洲精品在线播放| 国产一区有黄有色的免费视频| 国产精品自产拍在线观看55亚洲 | 一区二区三区精品91| 黑人猛操日本美女一级片| 成年女人毛片免费观看观看9 | 精品午夜福利视频在线观看一区 | 搡老岳熟女国产| 99国产精品一区二区蜜桃av | 热re99久久国产66热| 国产主播在线观看一区二区| 亚洲成a人片在线一区二区| 国产视频一区二区在线看| 叶爱在线成人免费视频播放| 国产在线精品亚洲第一网站| 亚洲第一av免费看| 亚洲人成电影观看| 久久国产亚洲av麻豆专区| 久久狼人影院| 18禁美女被吸乳视频| 久久久久视频综合| 欧美人与性动交α欧美软件| 精品亚洲成a人片在线观看| 大型av网站在线播放| av网站在线播放免费| 老司机亚洲免费影院| 一区福利在线观看| 视频在线观看一区二区三区| 日日爽夜夜爽网站| 亚洲专区中文字幕在线| av有码第一页| 三级毛片av免费| 精品国产国语对白av| 国产真人三级小视频在线观看| 大陆偷拍与自拍| 女人精品久久久久毛片| 国产成+人综合+亚洲专区| 丁香六月天网| 中文字幕人妻丝袜制服| 婷婷丁香在线五月| 欧美精品亚洲一区二区| 建设人人有责人人尽责人人享有的| 国产xxxxx性猛交| 国产精品二区激情视频| 国产精品 国内视频| www.熟女人妻精品国产| 亚洲欧美日韩另类电影网站| 亚洲视频免费观看视频| 久久九九热精品免费| 久久青草综合色| www.自偷自拍.com| 久久中文字幕一级| 老司机福利观看| 欧美成人午夜精品| 国产精品自产拍在线观看55亚洲 | 男女边摸边吃奶| 国产日韩一区二区三区精品不卡| www.自偷自拍.com| 国产亚洲精品久久久久5区| 我的亚洲天堂| 新久久久久国产一级毛片| 亚洲欧美一区二区三区黑人| 国产精品一区二区免费欧美| 亚洲伊人色综图| 一级,二级,三级黄色视频| 久久 成人 亚洲| 国产野战对白在线观看| 亚洲av国产av综合av卡| 一区二区三区乱码不卡18| 考比视频在线观看| 99精品久久久久人妻精品| 曰老女人黄片| 国产精品.久久久| 亚洲综合色网址| 波多野结衣av一区二区av| 国产熟女午夜一区二区三区| 久久国产精品影院| 丝袜美腿诱惑在线| 亚洲色图综合在线观看| 午夜福利乱码中文字幕| 亚洲成a人片在线一区二区| 婷婷成人精品国产| 男女免费视频国产| 91精品国产国语对白视频| 国产不卡av网站在线观看| av片东京热男人的天堂| 男人舔女人的私密视频| 成人手机av| 9191精品国产免费久久| 考比视频在线观看| 日韩大片免费观看网站| 欧美 日韩 精品 国产| 一边摸一边抽搐一进一小说 | 777米奇影视久久| 老汉色∧v一级毛片| 黄频高清免费视频| 黑人欧美特级aaaaaa片| 久久久国产欧美日韩av| 香蕉国产在线看| 热re99久久国产66热| 美女午夜性视频免费| 国产成人影院久久av| 在线 av 中文字幕| 国产精品二区激情视频| 如日韩欧美国产精品一区二区三区| 国产日韩欧美在线精品| 一边摸一边抽搐一进一小说 | 脱女人内裤的视频| 两个人免费观看高清视频| 亚洲精品乱久久久久久| 一级a爱视频在线免费观看| 国产精品九九99| 久久久久精品国产欧美久久久| 久久久久久人人人人人| 老鸭窝网址在线观看| 91九色精品人成在线观看| 午夜久久久在线观看| 美女国产高潮福利片在线看| 黄色视频不卡| 制服人妻中文乱码| 巨乳人妻的诱惑在线观看| 日本一区二区免费在线视频| 欧美成人午夜精品| 最近最新中文字幕大全免费视频| 高潮久久久久久久久久久不卡| 丁香欧美五月| 亚洲熟女精品中文字幕| 真人做人爱边吃奶动态| 天天影视国产精品| 国产精品成人在线| 美国免费a级毛片| 国产三级黄色录像| 国产在线精品亚洲第一网站| 国产高清激情床上av| 成人国语在线视频| 天堂俺去俺来也www色官网| 欧美老熟妇乱子伦牲交| 狂野欧美激情性xxxx| 韩国精品一区二区三区| 成人黄色视频免费在线看| 亚洲专区国产一区二区| 色94色欧美一区二区| 天堂8中文在线网| 一进一出好大好爽视频| 久久这里只有精品19| 国产无遮挡羞羞视频在线观看| 老司机影院毛片| 青青草视频在线视频观看| 久久天堂一区二区三区四区| 日韩大片免费观看网站| 久久久久久久国产电影| 男人操女人黄网站| 老司机亚洲免费影院| 久久国产精品大桥未久av| 脱女人内裤的视频| 在线永久观看黄色视频| 欧美黄色淫秽网站| 亚洲专区中文字幕在线| 久久天躁狠狠躁夜夜2o2o| 99九九在线精品视频| 精品国产一区二区三区久久久樱花| 亚洲中文日韩欧美视频| 亚洲精品粉嫩美女一区| 久久久久久久久免费视频了| 久久久欧美国产精品| 久久久精品94久久精品| 久久精品aⅴ一区二区三区四区| 久久久久国产一级毛片高清牌| 91成人精品电影| 桃花免费在线播放| 欧美日韩亚洲高清精品| 日本一区二区免费在线视频| 黑人巨大精品欧美一区二区蜜桃| 亚洲伊人久久精品综合| 狠狠精品人妻久久久久久综合| 亚洲国产av新网站| 午夜免费成人在线视频| 国产欧美日韩综合在线一区二区| www.自偷自拍.com| 国产精品秋霞免费鲁丝片| 99久久人妻综合| 日本wwww免费看| 婷婷成人精品国产| 亚洲人成电影观看| 九色亚洲精品在线播放| cao死你这个sao货| 又黄又粗又硬又大视频| 露出奶头的视频| 一级毛片女人18水好多| 国产成人系列免费观看| 亚洲国产av新网站| 丝袜在线中文字幕| 国产成人影院久久av| 岛国在线观看网站| 国产精品av久久久久免费| 啦啦啦中文免费视频观看日本| 久热这里只有精品99| 老司机午夜福利在线观看视频 | 热re99久久精品国产66热6| 欧美精品人与动牲交sv欧美| 国产精品久久久久成人av| 国产一区二区三区在线臀色熟女 | 精品一区二区三卡| 日本撒尿小便嘘嘘汇集6| 在线观看人妻少妇| 人妻久久中文字幕网| 久久中文看片网| 一级毛片精品| 丝袜美腿诱惑在线| 水蜜桃什么品种好| 一区二区三区精品91| 妹子高潮喷水视频| 久久久精品国产亚洲av高清涩受| 免费黄频网站在线观看国产| 色综合欧美亚洲国产小说| 午夜福利乱码中文字幕| 国产精品欧美亚洲77777| 成年动漫av网址| 高清av免费在线| 亚洲精品久久成人aⅴ小说| 伦理电影免费视频| 捣出白浆h1v1| 99国产精品99久久久久| 香蕉丝袜av| 岛国在线观看网站| 久久亚洲真实| 9热在线视频观看99| 国产精品久久久久久人妻精品电影 | 伦理电影免费视频| 欧美黑人欧美精品刺激| 国产成人免费无遮挡视频| 天天添夜夜摸| 老司机亚洲免费影院| 麻豆国产av国片精品| 国产高清激情床上av| 黑人操中国人逼视频| 成年人黄色毛片网站| av在线播放免费不卡| 午夜日韩欧美国产| 久久性视频一级片| 日韩 欧美 亚洲 中文字幕| 男男h啪啪无遮挡| 国产成人影院久久av| 丁香欧美五月| 午夜福利视频精品| 免费人妻精品一区二区三区视频| 啦啦啦免费观看视频1| 热re99久久国产66热| 大香蕉久久成人网| 国产在线观看jvid| 黑人欧美特级aaaaaa片| 免费高清在线观看日韩| 曰老女人黄片| 欧美日韩视频精品一区| 在线亚洲精品国产二区图片欧美| 精品久久久久久电影网| 国产亚洲精品第一综合不卡| 国产精品免费大片| 国产精品国产av在线观看| 国产高清国产精品国产三级| 亚洲精品美女久久久久99蜜臀| 免费一级毛片在线播放高清视频 | videosex国产| 久久精品国产综合久久久|