• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Radical cascade cyclization for the green and simple synthesis of silylated indolo[2,1-a]isoquinoline derivatives via visible light-mediated Si–H bonds activation

    2024-04-06 06:20:50ZhenkiLeiFeiXueBinWngShijieWngYuXiYonghongZhngWeiweiJinChenjingLiu
    Chinese Chemical Letters 2024年1期

    Zhenki Lei ,Fei Xue ,Bin Wng ,Shijie Wng ,Yu Xi ,Yonghong Zhng ,Weiwei Jin,Chenjing Liu,b,?

    a State Key Laboratory of Chemistry and Utilization of Carbon Based Energy Resources,Key Laboratory of Oil and Gas Fine Chemicals,Ministry of Education&Xinjiang Uygur Autonomous Region,Urumqi Key Laboratory of Green Catalysis and Synthesis Technology,College of Chemistry,Xinjiang University,Urumqi 830017,China

    b College of Future Technology,Institute of Materia Medica,Xinjiang University,Urumqi 830017,China

    c Xinjiang Uygur Autonomous Region Product Quality Supervision and Inspection Institute,Urumqi 830011,China

    Keywords: Indolo[2,1-a]isoquinolines Silyl radicals Green photocatalytic Simple photoinduced Silylated Hydrogen atom transfer EDA complex

    ABSTRACT Photocatalytic and photoinduced silyl radicals cascade cyclization procedures for the green and simple preparation of fused tetracyclic skeleton silylated indolo[2,1-a]isoquinoline-6(5H)-ones from 2-aryl-N-acryloyl indoles with hydrosilanes are developed.The photocatalytic reaction is carried out with 9,10-dicyanoanthracene (DCA) as an organophotocatalyst and 3-acetoxyquinuclidine as hydrogen atom transfer(HAT) catalyst at room temperature under metal-and oxidant-free conditions.The keys to the success of photoredox-catalytic conversion include (1) the reductive quenching of DCA?[E1/2(?P/P–)=+1.97 V vs. SCE in MeCN] by 3-acetoxyquinuclidine (Ep=+1.22 V vs. SCE in MeCN),and (2) the thermodynamic feasibility of hydrogen atom abstraction from hydridic Si–H bond by electrophilic N+?.Particularly,the simple photoinduced cascade cyclization using (TMS)3SiH with 2-aryl-N-acryloyl indoles was exploited via an electron-donor-acceptor (EDA) complex under visible light irradiation.

    Organosilicon molecules are evoked remarkable interests and explored deeply by synthetic chemists,pharmacologists and material scientists because of their conspicuous chemical,physical,and biological properties (I-V,Fig.1) [1–7].Especially,silicon as isostere of carbon in biomolecules have become new drug-like candidates in drug discovery [8].Classically,organosilicon derivatives were prepared by nucleophilic reactions of organometallic reagents with halosilanes [9–10],and transition-metal catalyzed cross-coupling of hydrocarbons or halogenated hydrocarbons with silylating reagents [11–20].Recently,there were two effective methods for the synthesis of organosilicon compounds from hydrosilanes [21] or Si–X (X=Si [22],B [23],COOH [24]) reagents with alkenes,alkynes and arenes [25].Among them,it was an atom-economical silylated approachviahomolytic cleavage of Si–H bonds in hydrosilanes to generate silyl radicals.The archetypical way was thermo-promoted peroxide decomposition to trigger silyl radicals [26].The second protocol was electron induced peroxide to initiate silyl radicals,the electron donors including transition-metal[27–29],TBAI [30] and photocatalyst [31].The third way was that alkali initiated silyl radicals [32].Although there have been significant advances,some methods suffered from harsh conditions or poor group compatibility,which would drive to find new strategies of triggering silyl radicals.

    Fig.1.Special examples of silicon-containing active molecules (I-V) and indolo[2,1-a]isoquinoline derivatives (VI-VIII).

    Photoredox catalysis [33–44] has appeared as a attractive protocol for silyl radicals generation via hydrogen atom transfer (HAT)of Si–H bonds [45–48].Fagnoniet al.pioneered the tetrabutylammonium decatungstate (TBADT) as HAT photo-catalyst for trisubstituted silanes activation under phosphor-coated lamps irradiated by 310 nm [49].Unfortunately,due to the comparably high bond dissociation energies (BDEs) of Si–H andα–Si–C–H bonds in alkyl-substituted silanes (e.g.,triethylsilane) [50],the HAT process initiated simultaneously the cleavage of Si–H andα–Si–C–H bonds.So the selectivity of HAT catalyst for Si-H bonds was poor.For achieving the desired HAT of Si–H bonds,it is necessary that using “aggressive” radicals to break the BDEs of Si–H bonds [51],hence the process is thermodynamically favorable.For instance,an electrophotocatalytic HAT process was developed for silyl radicals generation using MeOH as HAT reagent [52].This work confirmed that hydrogen atom abstraction could be achieved by “aggressive” MeO?(BDEO–H=105 kcal/mol).Wuet al.developed an effective method for silyl radicals formation employing 3-acetoxyquinuclidine or triisopropyl-silanethiol as HAT reagent [53].This also showed the feasibility of hydrogen atom abstraction by“aggressive” N+?(BDEN+–H=100 kcal/mol) or S?(BDES–H=88.2 kcal/mol).What is more,because hydrogen is more electronegative than silicon in hydrosilanes,according to the polarity-matched effect [54],the electrophilic radical (e.g.,O?,N+?,S?) could be used to selectively abstract hydrogen of Si–H bonds in hydrosilanes rather thanα–Si–C–H bonds.

    (TMS)3SiH was an ideal reagent in radical chemistry,which was used in many tris(trimethylsilyl)silylation or conversion processes.Because (TMS)3SiH has noα–Si–C–H bond and BDESi–His relatively low,(TMS)3Si?radical could be initiatedviahydrogen atom abstraction by HAT reagent,single electron oxidation of (TMS)3SiH by PC?and then deprotonation [55],phosphor coating fluorescent lamp and UV light irradiation [49,56-58],etc.[59,60].However,only two examples were reported that (TMS)3Si?radical was producedviaformation an electron-donor-acceptor (EDA) complex with alkyl or aryl halide to abstract halogen under visible light irradiation [61,62].

    Indolo[2,1-a]isoquinolines containing the tetracyclic skeleton are widely found in bioactive and pharmaceutical molecules(VI-VIII,Fig.1) [63–69].Due to the potential of silicon incorporation in drug discovery,it is of great significance for the synthesis of silylated indolo[2,1-a]isoquinoline compounds.So far,few cases of synthesis have been reported,including Cu(acac)2/TBPB-initiated triethylsilyl radical cascade cyclization(Scheme 1a) [70],cerium-electrophotocatalyzed methoxyl radicalmediated triethylsilyl radical cascade cyclization (Scheme 1b) [52],and palladium-catalyzed cascade cyclization with hexamethyldisilane [71] or Me3SiSiMe2(OnBu) (Scheme 1c) [72].Despite significant advances,the fly in the ointment was that these examples were heating conditions,besides,there were one or more shortcomings,such as stoichiometric oxidant,poor atom economy,preactivation of substrates and expensive transition-metal catalysts.

    Scheme 1.Different protocols for the synthesis of silylated indolo[2,1-a]isoquinoline-6(5H)-ones.

    Taking into account the above aspects and our continuing interest in the preparation of heterocyclic molecules under visible light conditions [73–79],herein we report photocatalytic HAT selectively initiated silyl radicals cascade cyclization for the synthesis of silylated indolo[2,1-a]isoquinoline compounds.In addition,the simpler and greener cascade cyclization using (TMS)3SiH was exploitedvianovel EDA complex,the tris(trimethylsilyl)silylated indolo[2,1-a]isoquinolines can be obtained successfully under visible light irradiation even in the absence of photocatalyst and HAT catalyst (Scheme 1d).

    Preliminary research was investigated by 1-(2,3-diphenyl-1Hindol-1-yl)-2-methylprop-2-en-1-one (1a) and triethyl-silane (2a)as model reaction substrates,and the outcomes were summarized in Table 1 and Tables S1-S5 (Supporting information).After screening these detailed conditions,it was found that the optimal choice including 0.1 mmol of1a,10 equiv.of2a,10 mol% of PC1,and 12.5 mol% of HAT cat.1in 2 mL dry MeCN under 10 W blue LEDs irradiation at room temperature for 30 h.And the target product3awas isolated with a yield of 70% under the optimal conditions.

    Table 1 Optimization of reaction conditions.a

    Having confirmed the optimal reaction conditions,we next evaluated the scope of 2-aryl-N-acryloyl indoles (Scheme 2).For example,substrates containing electron-withdrawing groups (F-,Cl-,CN-,and CF3O-) at C5-position of indole ring could yield the desired products3b-3ein 42%-53% yields.Electron-donating groups (Me-,Et-,andiPr-) were also good compatibility,giving the expected products3f-3hwith yields of 53%-65%.

    Scheme 2.Scope of 2-aryl-N-acryloyl indoles.Reaction conditions: 1 (0.1 mmol), 2a (1 mmol),PC 1 (10 mol%),HAT cat. 1 (12.5 mol%),dry MeCN (2 mL),10 W blue LEDs,N2,r.t.,30 h.Isolated yields.

    We next inspected the scope of hydrosilanes (Scheme 3).Under optimal conditions,arylsubstituted silanes such as triphenylsilane,diphenylmethylsilane and phenyldimethylsilane could be gave the desired products3k(proved by X-ray crystallography),3land3min 42%-55% yields.Trialkylsilanes showed good selectivity to afford the desired products3n-3qin 54%-66% yields,whereas the competing reaction of the C–H adjacent to silicon was not observed.Moreover,2-aryl-N-acryloyl indoles and hydrosilanes could also combine freely to make new products,such as substrates1cand triphenylsilane worked smoothly.But the synthesis of triethoxysilylated product3swas failed,presumably because the BDE of Si-H bond in triethoxysilane is high.

    Scheme 3.Scope of hydrosilanes.Reaction conditions: 1a or 1c (0.1 mmol), 2 (1 mmol),PC (DCA,10 mol%),HAT cat. 1 (12.5 mol%),dry MeCN (2 mL),10 W blue LEDs,N2,r.t.,30 h.Isolated yields.

    We further found that 2-aryl-N-acryloyl indoles could successfully react with (TMS)3SiH under 10 W blue LEDs irradiation(Scheme 4).The reaction conditions were optimized and displayed in Tables S6-S9 (Supporting information).Under the optimized reaction conditions,expected products3t(confirmed by X-ray crystallography),3u-3w,3yfrom F-,Cl-,Br-,and CF3O-groups located at C4-or C5-position of indole ring could be gained with moderate yields of 50%-66%.The 6,7-dichloro substituted product was also obtained,although the product3xwith a low yield.Electrondonating groups (5-methyl,5-isopropyl,4,6-dimethyl) were tolerated,giving the desired products (3aa,3ab,3ac) in 58%-69% yields.

    Scheme 4.Scope of reaction between 2-aryl-N-acryloyl indoles and (TMS)3SiH.Reaction conditions: 1 (0.1 mmol), 2 (1 mmol),dry EtOHb or MeCNc (1 mL),10 W blue LEDs,N2,r.t.,30 h.Isolated yields.

    The synthetic application of compound3twas presentedviafurther transformations (Scheme 5).Reduction of3twas investigated,the carbonyl group could be reduced to obtain compound5in 60% yield.Desilylation of the tri(trimethylsilyl)silyl group in3twas performed with Bu4NF (TBAF) to give a disilane product6in 38% yield under microwave irradiation.

    Scheme 5.Synthetic transformations of 3t.

    To explore the reaction mechanism,control experiments were implemented.The photocatalytic reaction was completely restrained while adding 2 equiv.of TEMPO under the standard conditions.Similarly,the reaction was conducted in the presence of BHT or 1,1-diphenylethane,the yield of3awas significantly reduced(Fig.2a),which demonstrated that a radical process might be involved.Furthermore,the BHT-trapped product7was detected by HRMS.Besides,no reaction happened while employing deuterated diphenylmethyl silane (Ph2MeSiD) (Fig.2b).Such a significant kinetic isotope effect (KIE) suggested that the rate-determining step involved the cleavage of the Si–H bonds.The H2was monitored by H2detector and GC under standard conditions (Fig.S4 in Supporting information).“On/off” experiments indicated that visible light played an important role (Fig.2c).In addition,Stern-Volmer fluorescence quenching experiments demonstrated that the excitedstate DCA?was quenched by HAT cat.1(Figs.2d and e) through single electron transfer (SET) process.

    Fig.2.Mechanistic investigations.(a) Radical trapping experiment;(b) Investigation of the KIE;(c) ON/off experiments;(d) Fluorescence quenching experiment (DCA (1 μmol/L in MeCN) with different concentration of HAT cat. 1 were irradiated by 365 nm);(e) Stern-Volmer plot of HAT cat. 1.

    On the basis of the above mechanistic investigations,a plausible mechanism was proposed,as depicted in Fig.3a.Initially,DCA was excited to produce the long-life photoexcited-state DCA?(t=14.9 ns) [80].The reductive quenching of DCA?=+1.97 Vvs.SCE in MeCN] [81] by 3-acetoxyquinuclidine (Ep=+1.22 Vvs.SCE in MeCN) [82] leaded to the radical anionAand a radical cation intermediateB.Due to its high electrophilicity,quinuclidinium radical cationBselectively abstracted the hydrogen atom from the more hydridic Si-H bonds of hydrosilanes to produce the corresponding silyl radicalC,as well as quinuclidinium cationD.This abstraction event should be thermosdynamically favorable because the BDESi–Hof hydrosilanes was up to 94.6 kcal/mol and the BDEN+–Hin quinuclidinium cationDwas 100 kcal/mol.Subsequently,a carbon-centered radical intermediateEwas generated by the addition of the silylic radicalCto the C=C bond of the indole substrate1a,then the radical intermediateEwas cyclizedvia6-exo-trigpathway to afford the radical intermediateF.Afterwards,the single-electron oxidation process ofFandA[E1/2(P/P–)=–0.97 Vvs.SCE in MeCN] [81] occurred simultaneously to give the cationGand regenerate the DCA.In this process,there was sufficient driving forces to yield H2through the reduction of two protons[83,84].Finally,the deprotonation of the cationGgave the silylated product3.

    Fig.3.Proposed reaction mechanism for the formation of silylated indolo[2,1-a]isoquinoline-6(5H)-ones.

    Fig.4.1H NMR experiments between 1c and 4.

    Particularly,controlled experiments were performed to study the mechanism of the reaction that1creact with (TMS)3SiH (4)under the photoinduced conditions in Scheme 4.The product3twas fully inhibited when 2 equiv.of TEMPO was added.Meanwhile,the BHT or 1,1-diphenylethane was added,the yield of3twas decreased (Section 4.1 in Supporting information),which demonstrated a radical pathway might also be involved.With the reaction proceeded,the color of the solution became yellow gradually,the H2was observed clearly and the concentration increased gradually (Fig.S5 in Supporting information).Subsequently,“on/off” LED irradiation experiments also showed that visible light played a key role in the reaction (Fig.S6b in Supporting information).We tested optical absorption of the EtOH solution of1cand4,it was not observed the red-shift or new absorption peak in the UV-vis absorption spectra (Fig.S8 in Supporting information).Next,we conducted1H NMR experiments,and the chemical shift of4shifted downfield with increasing amounts of1c(Fig.4).These experimental results showed the formation of EDA complexes from 2-aryl-N-acryloyl indoles1with4.So the (TMS)3Si?radical could be formed by excited EDA complexes and an energy transfer under blue LEDs irradiation (Fig.3b).The remaining mechanism including (TMS)3Si?radical addition and cascade cyclization was the same as described in Fig.3a.It was worth noting that the single electron oxidation ofF’was accompanied by the reduction of protons.

    In summary,we developed green and simple photocatalytic and photoinduced silyl radicals cascade cyclization protocols for the synthesis of silylated indolo[2,1-a]-isoquinoline-6(5H)-ones.The photocatalytic procedure was conducted in the presence of DCA as photocatalyst and 3-acetoxyquinuclidine as HAT catalyst.To implement the desired silylation,the reductive quenching of DCA?by HAT catalyst,the abstraction hydrogen using “aggressive” radical were necessary,and the polaritymatched effect was also the key factor in success.The simple photoinduced method achieved the straightforward preparation of tris(trimethylsilyl)silylated indolo[2,1-a]-isoquinoline-6(5H)-onesviaEDA complex.These two facile and greener procedures have the advantages including high atomic economy,H2as by-product,metal-free,oxidant-free,easy operation,and mild reaction conditions.

    Declaration of competing interest

    The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

    Acknowledgments

    This research was supported by the Tianshan Talents Program for Leading Talents in Science and Technology Innovation (No.2022TSYCLJ0016),the National Natural Science Foundation of China(Nos.21961037 and 22201241),the Program for Tianshan Innovative Research Team of Xinjiang Uygur Autonomous Region (No.2021D14011),the Graduate Innovation Project of Xinjiang Uygur Autonomous Region (No.XJ2021G036),the Key Program of Natural Science Foundation of Xinjiang Uygur Autonomous Region(No.2022D01D06),and the Natural Science Foundation of Xinjiang Uygur Autonomous Region (Nos.2021D01E10 and 2022E01042).

    Supplementary materials

    Supplementary material associated with this article can be found,in the online version,at doi:10.1016/j.cclet.2023.108633.

    国产精品久久久久久久电影| 亚洲国产色片| 天堂影院成人在线观看| 国产一区二区三区综合在线观看 | 精品少妇黑人巨大在线播放| 男人舔奶头视频| 五月玫瑰六月丁香| 在现免费观看毛片| 日本一本二区三区精品| 欧美最新免费一区二区三区| 亚洲综合色惰| 成人无遮挡网站| 女的被弄到高潮叫床怎么办| 人妻制服诱惑在线中文字幕| 在线观看一区二区三区| 免费观看性生交大片5| 日韩 亚洲 欧美在线| 亚洲在线自拍视频| 免费观看在线日韩| 丰满人妻一区二区三区视频av| 久久6这里有精品| 成人鲁丝片一二三区免费| 国产成人午夜福利电影在线观看| 蜜臀久久99精品久久宅男| 国产黄a三级三级三级人| 99久久精品国产国产毛片| 国产单亲对白刺激| 国产成人精品福利久久| 亚洲怡红院男人天堂| 一区二区三区四区激情视频| 久久精品久久久久久久性| 看黄色毛片网站| 成人毛片a级毛片在线播放| 97超视频在线观看视频| 精品一区二区三区视频在线| 亚洲人成网站在线观看播放| av在线观看视频网站免费| 色综合站精品国产| 久久精品久久久久久久性| 国产精品不卡视频一区二区| 国产 一区精品| 人体艺术视频欧美日本| 国产不卡一卡二| 午夜亚洲福利在线播放| 熟妇人妻不卡中文字幕| 日韩,欧美,国产一区二区三区| 亚洲av在线观看美女高潮| 人妻制服诱惑在线中文字幕| 亚洲av男天堂| 日韩欧美精品免费久久| 中文字幕久久专区| 精品一区二区三区人妻视频| 久久精品综合一区二区三区| 国产成人aa在线观看| 免费人成在线观看视频色| 亚洲av日韩在线播放| 国产一区亚洲一区在线观看| 国产精品久久久久久精品电影小说 | 色哟哟·www| 成年人午夜在线观看视频 | 草草在线视频免费看| 亚洲国产精品成人综合色| 亚洲av电影不卡..在线观看| 精品不卡国产一区二区三区| 国产成人精品婷婷| 天堂俺去俺来也www色官网 | 乱人视频在线观看| 秋霞在线观看毛片| 久久鲁丝午夜福利片| 免费观看a级毛片全部| 欧美日韩视频高清一区二区三区二| 亚洲成人久久爱视频| 精品久久久噜噜| 日本黄大片高清| 国产男人的电影天堂91| 一级黄片播放器| 免费看不卡的av| 国产黄色免费在线视频| 搡老妇女老女人老熟妇| 日韩欧美国产在线观看| 国产爱豆传媒在线观看| 听说在线观看完整版免费高清| 少妇熟女欧美另类| 欧美激情久久久久久爽电影| 国产精品一及| 美女cb高潮喷水在线观看| 男女那种视频在线观看| 日本黄大片高清| 麻豆国产97在线/欧美| 成人性生交大片免费视频hd| 亚洲国产日韩欧美精品在线观看| 精品久久久久久久久亚洲| 女人十人毛片免费观看3o分钟| 成人亚洲精品av一区二区| 女人久久www免费人成看片| 搡女人真爽免费视频火全软件| av卡一久久| 国产在线一区二区三区精| 国产精品1区2区在线观看.| 精品一区二区免费观看| 久久久久精品性色| 国产精品人妻久久久久久| 亚洲自拍偷在线| 国产黄片视频在线免费观看| 免费黄网站久久成人精品| 成人亚洲精品一区在线观看 | av天堂中文字幕网| 国产 亚洲一区二区三区 | 丰满少妇做爰视频| 国产伦精品一区二区三区四那| 亚洲精品日韩在线中文字幕| 91久久精品国产一区二区成人| 精品久久久久久成人av| 国产精品一区二区性色av| 有码 亚洲区| 青春草国产在线视频| 欧美激情国产日韩精品一区| 亚洲欧洲国产日韩| 能在线免费看毛片的网站| 国产成人精品一,二区| 边亲边吃奶的免费视频| 亚洲精品久久午夜乱码| 真实男女啪啪啪动态图| 久久久午夜欧美精品| 在线观看美女被高潮喷水网站| 18禁动态无遮挡网站| 亚洲av二区三区四区| 最近最新中文字幕免费大全7| 春色校园在线视频观看| 久久亚洲国产成人精品v| 免费观看a级毛片全部| 久久午夜福利片| 久久久a久久爽久久v久久| 国产精品一区二区性色av| or卡值多少钱| 尤物成人国产欧美一区二区三区| 国产乱人视频| 色播亚洲综合网| 国产在视频线在精品| 午夜福利在线观看免费完整高清在| 国产亚洲午夜精品一区二区久久 | 99re6热这里在线精品视频| 国产不卡一卡二| 春色校园在线视频观看| 看黄色毛片网站| 五月伊人婷婷丁香| 男人和女人高潮做爰伦理| 欧美变态另类bdsm刘玥| 又大又黄又爽视频免费| 久久久久精品性色| 少妇高潮的动态图| 男女边吃奶边做爰视频| 免费黄网站久久成人精品| 欧美xxⅹ黑人| 国产高清有码在线观看视频| 日日啪夜夜爽| 亚洲精品久久久久久婷婷小说| 日韩成人av中文字幕在线观看| 精品亚洲乱码少妇综合久久| 午夜日本视频在线| 69av精品久久久久久| 亚洲天堂国产精品一区在线| 国产永久视频网站| 国产精品久久久久久av不卡| 人人妻人人看人人澡| 97人妻精品一区二区三区麻豆| 最后的刺客免费高清国语| 亚洲av中文字字幕乱码综合| 久久久久久伊人网av| 国产精品美女特级片免费视频播放器| 三级经典国产精品| 亚洲精品国产成人久久av| 亚洲精品国产av蜜桃| 精品熟女少妇av免费看| 校园人妻丝袜中文字幕| 青春草视频在线免费观看| 亚洲真实伦在线观看| 色播亚洲综合网| 啦啦啦韩国在线观看视频| 人人妻人人澡欧美一区二区| 禁无遮挡网站| 高清视频免费观看一区二区 | 日韩一区二区视频免费看| 欧美日韩精品成人综合77777| 免费观看的影片在线观看| 日韩一区二区视频免费看| 欧美日韩在线观看h| 亚洲精品国产av成人精品| 亚洲精华国产精华液的使用体验| av免费在线看不卡| 又爽又黄无遮挡网站| 国产av码专区亚洲av| 精品一区在线观看国产| 国产亚洲av片在线观看秒播厂 | 大香蕉97超碰在线| 伦理电影大哥的女人| av又黄又爽大尺度在线免费看| 久久精品国产亚洲网站| 老司机影院毛片| 精品久久国产蜜桃| 女的被弄到高潮叫床怎么办| 亚洲av中文av极速乱| 性插视频无遮挡在线免费观看| 日韩电影二区| 国产伦精品一区二区三区视频9| 成年人午夜在线观看视频 | 狂野欧美激情性xxxx在线观看| 亚洲精品乱码久久久v下载方式| 国产精品一区二区性色av| 亚洲精品久久午夜乱码| 久久久久久久久中文| 免费播放大片免费观看视频在线观看| 一级黄片播放器| 在线a可以看的网站| 一级毛片电影观看| 日本三级黄在线观看| 91午夜精品亚洲一区二区三区| 久久97久久精品| 成人美女网站在线观看视频| 欧美bdsm另类| 午夜爱爱视频在线播放| 国产精品一区二区三区四区免费观看| 综合色av麻豆| 99热这里只有是精品50| 久久久久精品久久久久真实原创| 人妻少妇偷人精品九色| 精品国产一区二区三区久久久樱花 | 熟妇人妻久久中文字幕3abv| 国产成人福利小说| 中文在线观看免费www的网站| freevideosex欧美| 久久久久网色| 你懂的网址亚洲精品在线观看| 五月玫瑰六月丁香| 直男gayav资源| 国产极品天堂在线| 成年人午夜在线观看视频 | 亚洲av一区综合| 欧美一级a爱片免费观看看| 国产一区二区在线观看日韩| 麻豆av噜噜一区二区三区| 一级毛片黄色毛片免费观看视频| 男女视频在线观看网站免费| 亚洲,欧美,日韩| 国产不卡一卡二| 色播亚洲综合网| 高清欧美精品videossex| 18禁裸乳无遮挡免费网站照片| 亚洲婷婷狠狠爱综合网| 极品少妇高潮喷水抽搐| 亚洲成人av在线免费| 国产不卡一卡二| 亚洲av.av天堂| 高清欧美精品videossex| 久久精品熟女亚洲av麻豆精品 | 久久精品久久久久久噜噜老黄| 久久久久九九精品影院| 国产乱人偷精品视频| 九九在线视频观看精品| 免费av毛片视频| 插阴视频在线观看视频| 精品人妻一区二区三区麻豆| 国产有黄有色有爽视频| 亚洲18禁久久av| 亚洲欧美中文字幕日韩二区| 午夜免费男女啪啪视频观看| 亚洲激情五月婷婷啪啪| 欧美一区二区亚洲| 欧美成人精品欧美一级黄| 国产伦一二天堂av在线观看| 深夜a级毛片| 欧美zozozo另类| 亚洲av在线观看美女高潮| 欧美区成人在线视频| 亚洲自偷自拍三级| 精品人妻熟女av久视频| 天堂av国产一区二区熟女人妻| 午夜福利在线在线| 久久精品久久精品一区二区三区| 亚洲久久久久久中文字幕| 精品不卡国产一区二区三区| 国产精品一区二区三区四区久久| 熟女人妻精品中文字幕| 99久久精品一区二区三区| 国产av在哪里看| 国精品久久久久久国模美| 狠狠精品人妻久久久久久综合| 你懂的网址亚洲精品在线观看| 国产精品三级大全| 午夜激情福利司机影院| 欧美高清成人免费视频www| 日日啪夜夜撸| 国产精品爽爽va在线观看网站| 啦啦啦啦在线视频资源| 一个人看的www免费观看视频| 日日撸夜夜添| 男人和女人高潮做爰伦理| 成人一区二区视频在线观看| 亚洲精品视频女| 男女国产视频网站| 天堂俺去俺来也www色官网 | 午夜福利在线在线| 在线观看美女被高潮喷水网站| 成年av动漫网址| av福利片在线观看| 免费不卡的大黄色大毛片视频在线观看 | 成人亚洲精品av一区二区| 九九在线视频观看精品| 97超视频在线观看视频| 少妇人妻精品综合一区二区| 久久亚洲国产成人精品v| 免费观看a级毛片全部| 久久6这里有精品| 又爽又黄a免费视频| 精品熟女少妇av免费看| 午夜激情久久久久久久| 亚洲国产精品成人久久小说| 免费观看精品视频网站| 少妇熟女欧美另类| 尤物成人国产欧美一区二区三区| 日本-黄色视频高清免费观看| 日韩欧美三级三区| 国产中年淑女户外野战色| 精品久久久久久成人av| 黄色配什么色好看| 亚洲欧美日韩无卡精品| 久久午夜福利片| 国产色爽女视频免费观看| 国产精品一区二区性色av| 久久久久久国产a免费观看| 国产乱来视频区| 中文资源天堂在线| 日韩伦理黄色片| 国产亚洲av嫩草精品影院| 国产淫语在线视频| 日韩人妻高清精品专区| 精品一区在线观看国产| 欧美 日韩 精品 国产| 成人亚洲精品一区在线观看 | 亚洲精品第二区| 不卡视频在线观看欧美| 美女主播在线视频| 国精品久久久久久国模美| 老女人水多毛片| 精品人妻偷拍中文字幕| 亚洲av一区综合| 日本三级黄在线观看| 22中文网久久字幕| 超碰av人人做人人爽久久| 亚洲不卡免费看| 午夜福利在线观看免费完整高清在| a级毛片免费高清观看在线播放| 国产一级毛片在线| 黄色一级大片看看| 一级毛片 在线播放| 亚洲欧美清纯卡通| 日韩在线高清观看一区二区三区| av国产免费在线观看| 精品久久久精品久久久| 小蜜桃在线观看免费完整版高清| 免费播放大片免费观看视频在线观看| 日韩亚洲欧美综合| 国产精品人妻久久久久久| 国内揄拍国产精品人妻在线| 亚洲欧美清纯卡通| 久久久欧美国产精品| 又大又黄又爽视频免费| 五月天丁香电影| 特级一级黄色大片| av免费在线看不卡| 免费在线观看成人毛片| 女人久久www免费人成看片| 床上黄色一级片| 久热久热在线精品观看| 欧美xxⅹ黑人| 久久6这里有精品| 欧美97在线视频| 精品一区二区三区人妻视频| 99九九线精品视频在线观看视频| 亚洲精品一区蜜桃| 夜夜看夜夜爽夜夜摸| 听说在线观看完整版免费高清| 高清在线视频一区二区三区| 亚洲av国产av综合av卡| 久久午夜福利片| 免费av观看视频| 日日撸夜夜添| 青春草国产在线视频| 国产av码专区亚洲av| 亚洲av电影在线观看一区二区三区 | 搡女人真爽免费视频火全软件| av女优亚洲男人天堂| 少妇熟女aⅴ在线视频| 五月玫瑰六月丁香| 国产单亲对白刺激| 亚洲av日韩在线播放| 久久97久久精品| 国产成人a区在线观看| 亚洲国产精品sss在线观看| 好男人在线观看高清免费视频| 十八禁网站网址无遮挡 | 啦啦啦中文免费视频观看日本| 欧美97在线视频| 在线观看一区二区三区| 最近2019中文字幕mv第一页| 国产男女超爽视频在线观看| 激情 狠狠 欧美| 十八禁国产超污无遮挡网站| 亚洲国产精品sss在线观看| 好男人在线观看高清免费视频| 国产一区二区三区综合在线观看 | 亚洲成人一二三区av| 国产免费一级a男人的天堂| 久久韩国三级中文字幕| 波多野结衣巨乳人妻| 久久久久精品久久久久真实原创| 久久久久九九精品影院| 国产午夜精品论理片| 国产成人91sexporn| 美女高潮的动态| 天天一区二区日本电影三级| 免费看a级黄色片| 亚洲欧美清纯卡通| 国产色爽女视频免费观看| 国产爱豆传媒在线观看| 亚洲综合精品二区| 十八禁网站网址无遮挡 | 国产亚洲精品久久久com| 欧美不卡视频在线免费观看| 日韩av免费高清视频| 国产精品久久久久久久久免| 日韩欧美 国产精品| 亚洲精品影视一区二区三区av| 中文资源天堂在线| 亚洲av免费在线观看| 极品教师在线视频| 久久精品人妻少妇| 欧美成人a在线观看| 久久精品国产亚洲av涩爱| 97在线视频观看| 十八禁国产超污无遮挡网站| 国产一区二区在线观看日韩| 97精品久久久久久久久久精品| 久久99热6这里只有精品| 丝瓜视频免费看黄片| ponron亚洲| av国产久精品久网站免费入址| 国产伦一二天堂av在线观看| 高清av免费在线| 别揉我奶头 嗯啊视频| 亚洲成人精品中文字幕电影| 亚洲国产色片| 国产男女超爽视频在线观看| 久久6这里有精品| 欧美日本视频| 九色成人免费人妻av| 国产精品蜜桃在线观看| 国产爱豆传媒在线观看| 亚洲欧美清纯卡通| h日本视频在线播放| 观看美女的网站| 天堂av国产一区二区熟女人妻| 久久99热这里只有精品18| 久热久热在线精品观看| 亚洲精品久久久久久婷婷小说| 久久国内精品自在自线图片| 看十八女毛片水多多多| 91久久精品国产一区二区三区| 青春草视频在线免费观看| 精品久久久久久电影网| 嘟嘟电影网在线观看| 自拍偷自拍亚洲精品老妇| 五月天丁香电影| 99视频精品全部免费 在线| 久久韩国三级中文字幕| 十八禁网站网址无遮挡 | 大香蕉97超碰在线| 亚洲成色77777| 欧美激情在线99| av在线亚洲专区| 国产视频首页在线观看| 精品久久久噜噜| 黑人高潮一二区| 真实男女啪啪啪动态图| 亚洲av.av天堂| 精品久久久久久久久久久久久| 精品国产三级普通话版| 欧美极品一区二区三区四区| 五月伊人婷婷丁香| 亚洲人成网站在线播| 亚洲自拍偷在线| 日韩一区二区三区影片| 国产乱人视频| 亚洲欧美中文字幕日韩二区| 国产一级毛片七仙女欲春2| 日本一二三区视频观看| 三级男女做爰猛烈吃奶摸视频| 两个人视频免费观看高清| 赤兔流量卡办理| 久久久久久久久久黄片| 别揉我奶头 嗯啊视频| 免费观看a级毛片全部| 一级av片app| 亚洲精品日韩av片在线观看| 韩国av在线不卡| 男的添女的下面高潮视频| 亚洲综合精品二区| 精品国产露脸久久av麻豆 | 久久久久久久大尺度免费视频| 日产精品乱码卡一卡2卡三| 少妇人妻精品综合一区二区| 日本黄大片高清| 精品久久久精品久久久| 久久久久久久久久人人人人人人| 亚洲欧美日韩卡通动漫| 熟妇人妻久久中文字幕3abv| 偷拍熟女少妇极品色| 国产在线男女| 亚洲av免费在线观看| 亚洲在线观看片| 一本—道久久a久久精品蜜桃钙片 精品乱码久久久久久99久播 | 男女视频在线观看网站免费| 精品酒店卫生间| 91久久精品国产一区二区成人| 黄色配什么色好看| 日日干狠狠操夜夜爽| 欧美不卡视频在线免费观看| 一二三四中文在线观看免费高清| 不卡视频在线观看欧美| av在线播放精品| 黄色一级大片看看| 成人午夜高清在线视频| 成人高潮视频无遮挡免费网站| 欧美日韩视频高清一区二区三区二| av在线亚洲专区| 超碰av人人做人人爽久久| 91狼人影院| 天美传媒精品一区二区| 日韩国内少妇激情av| 国精品久久久久久国模美| 白带黄色成豆腐渣| 亚洲精品影视一区二区三区av| 成人亚洲欧美一区二区av| 一级毛片我不卡| 精品国产露脸久久av麻豆 | 尤物成人国产欧美一区二区三区| 99久久精品热视频| 尤物成人国产欧美一区二区三区| 亚洲伊人久久精品综合| 精品久久久久久久久久久久久| 亚洲国产精品专区欧美| 久久精品国产鲁丝片午夜精品| 久久久久久久久大av| 在线观看人妻少妇| 日韩欧美三级三区| 国产免费又黄又爽又色| 国产成年人精品一区二区| 免费人成在线观看视频色| 国产亚洲午夜精品一区二区久久 | a级一级毛片免费在线观看| 精品久久国产蜜桃| 精品久久久久久久人妻蜜臀av| 国产一区二区亚洲精品在线观看| 久久久久久久久中文| 我要看日韩黄色一级片| 国产伦一二天堂av在线观看| 一区二区三区四区激情视频| 黄色一级大片看看| 国产精品久久视频播放| 精品熟女少妇av免费看| 国产精品久久久久久精品电影小说 | 青青草视频在线视频观看| 伊人久久精品亚洲午夜| 卡戴珊不雅视频在线播放| 99视频精品全部免费 在线| 日韩亚洲欧美综合| 亚洲精品aⅴ在线观看| 国产黄色视频一区二区在线观看| 国产黄色免费在线视频| 韩国高清视频一区二区三区| av播播在线观看一区| 亚洲av电影不卡..在线观看| 亚洲欧洲国产日韩| 老师上课跳d突然被开到最大视频| 久久久成人免费电影| 国产大屁股一区二区在线视频| 亚洲18禁久久av| 精品久久久久久久人妻蜜臀av| 18禁在线播放成人免费| 看免费成人av毛片| 日日干狠狠操夜夜爽| 国产精品一区二区在线观看99 | 精品久久久久久久久久久久久| 免费不卡的大黄色大毛片视频在线观看 | 日本免费在线观看一区| 老司机影院成人| 91午夜精品亚洲一区二区三区| 超碰97精品在线观看| 成人国产麻豆网| 国产大屁股一区二区在线视频| 精品久久久久久久久av| 日日摸夜夜添夜夜添av毛片| 嫩草影院新地址| 免费av不卡在线播放| 美女cb高潮喷水在线观看| 中文字幕av成人在线电影| 婷婷色av中文字幕| 久久99热这里只有精品18| 丝袜喷水一区| 一级a做视频免费观看| 国产成人一区二区在线| 男女视频在线观看网站免费| 欧美区成人在线视频| 久久久久网色| 亚洲欧美精品专区久久|