• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    From oxygenated monomers to well-defined low-carbon polymers

    2024-04-06 06:20:32YnniXiChengjinZhngYongWngShunjieLiuXinghongZhng
    Chinese Chemical Letters 2024年1期

    Ynni Xi ,Chengjin Zhng,? ,Yong Wng ,Shunjie Liu ,Xinghong Zhng,d,?

    a National Key Laboratory of Biobased Transportation Fuel Technology,International Research Center for X Polymers,Department of Polymer Science and Engineering,Zhejiang University,Hangzhou 310027,China

    b School of Chemistry and Chemical Engineering,Huazhong University of Science and Technology,Wuhan 430074,China

    c Key Laboratory of Polymer Ecomaterial,Changchun Institute of Applied Chemistry,Chinese Academy of Sciences,Changchun 130022,China

    d Shanxi-Zheda Institute of Advanced Materials and Chemical Engineering,Hangzhou 310027,China

    Keywords: Polymer synthesis Degradable polymer Low-carbon polymer Catalysis Ring-opening polymerization

    ABSTRACT The synthesis of degradable polymers with easy-to-break in-chain carbon-oxygen bonds has attracted much attention.This minireview introduces the synthesis of a variety of degradable polymers from the(co)polymerizations of several typical oxygenated monomers such as epoxides,cyclic carbonates,cyclic esters,carbon dioxide (CO2),carbonyl sulfide (COS),and cyclic anhydrides.We highlight the catalysts and mechanisms for these (co)polymerizations.The ring-opening copolymerization of five-membered carbonate with cyclic anhydride or COS has been introduced.We also highlight the synthesis of block copolymers and cyclic copolymers with well-defined sequences by the method of growing center switching.We hope that these new polymerization systems can provide new ideas for the development of degradable low-carbon polymers in the future.

    1.Introduction

    Plastics,with an annual global production of approximately 368 million tons,have demonstrated desirable properties and affected all aspects of our social society [1].However,more than 80%of plastic products end up in the natural environment as waste that is difficult to degrade naturally,causing serious impacts on the ocean,ecological environment,and human health [1,2].As an important class of environmentally friendly and degradable polymer materials,polymers containing easy-to-break carbon-oxygen bonds in the main chain,such as polyesters,poly(thio)esters,poly(thio)carbonates [3],have received extensive attention from academia and industry in recent years [4–9].

    The composition and structure of a polymer have a great impact on its properties.Cellulose is the main component of plants,in which the ratio of oxygen to carbon is 5/6 and the content of oxygen and hydrogen in cellulose accounts for 55.5% of the total weight.The synthesis of polymers with a ratio of oxygen,carbon,and hydrogen close to that of cellulose,that is,oxygenrich polymers (or "low-carbon" polymers),should be an interesting synthetic route worth trying.However,it remains a longterm challenge to synthesize low-carbon polymers with comparable properties to traditional carbon chain polymers.Selecting a suitable catalytic system is an effective method for the synthesis of high-molecular-weight low-carbon polymers with different structures.Wanget al.developed a “two-in-one” porphyrin photothermal catalyst with both photothermal effect and catalytic ability,and realized the copolymerization of carbon dioxide (CO2) and epoxides [10].Li and co-workers used organophosphazenes combined with triethylborane (TEB) as binary organocatalysts for the copolymerization of CO2and cyclohexene oxide(CHO) under ambient conditions,resulting in high-molecularweight polycarbonates [11].Zhao and co-workers reported the synthesis of polyester–polyether block copolymers by one-pot copolymerization of phthalic anhydride (PA) and epoxides [12].However,there is still a big gap between the performance of the above-mentioned polymers and traditional polyolefin.And it might be a good way to introduce other chain segments by copolymerization.Meng and co-workers synthesized diblock and triblock copolymers with a high ultimate tensile strength (σB) of 54.8 MPa by one-pot selective copolymerization of CHO/propylene oxide (PO)/PA/CO2[13].Tanget al.toughened a biodegradable isotactic poly(3-hydroxyburtyrate)-based copolyester by selective copolymerization of octa-membered dimethyldimethylglycol ester withε-caprolactone andγ-butyrolactone [14].It is also a good idea to develop new monomers.Liet al.reported the living ring-opening polymerization (ROP) of 1,4-oxathiepan-7-one catalyzed by diphenyl phosphate to obtain poly(ε-caprolactone) (PCL)analogues containing thioether groups in the main chain [15].Zhuet al.developed a class of 1,4-dithian-2-one (DTO) with thioether and thioester functionalities to prepare chemically recyclable polymers by ROP,which exhibited polyolefin-like mechanical properties [16].In addition to the chain polymerization approach,Zhanget al.synthesized chemically recyclable polyethylene-like sulfurcontaining plastics from sustainable feedstocks by stepwise polymerization [17].

    This paper reviews the recent works by three young scientists just entering their careers.Dr.Chengjian Zhang had paid attention to the development of sustainable polymers in recent years,developed the organocatalytic synthesis of high-molecular-weight polyester and polythiocarbonate,and introduced sulfur atoms into the polymer main chain with carbonyl sulfide (COS) as a monomer.Dr.Yong Wang focused on the precise synthesis of biodegradable polymers,used living polymerization methods to accurately synthesize biodegradable polymers such as carbon dioxide-based polycarbonate,and developed a "one-pot" efficient synthesis method for various topological polymers,especially cyclic polymers.And Dr.Shunjie Liu focused on the controllable ring-opening copolymerization of five-membered cyclic carbonates with low ring tension,and developed a new polymerization method to realize its high-value utilization.These works present a bright future of polymer design and new polymerization methods,as well as the authors’concerns on the topic.This review paper summarizes the synthesis of polyesters,poly(thio)esters,and poly(thio)carbonates developed by the authors’groups in very recent years (Fig.1).

    Fig.1.Selected monomers and low-carbon polymers in this minireview.

    2.Polyester synthesis by ring-opening copolymerization

    Polyesters are considered as a potentially sustainable alternative to petroleum-based plastics.The copolymerization of epoxides and cyclic anhydrides is one of the most attractive techniques for the synthesis of polyesters,owing to the atom-economical approach and a wide range of raw material sources including biomass [18–22].In Zhang and co-workers’recently published work,the synthesis of polyesters by the ring-opening copolymerization (ROCOP) of PO and various cyclic anhydrides,affording polyesters withMns up to 35.8 kDa and dispersity (?=Mw/Mn) of 1.06.The triethylamine(TEA)/TEB pair exhibited relatively high activity in the copolymerization of PO and maleic anhydride (MA);while 7-methyl-1,5,7-triazabicyclo[4.4.0]dec–5-ene (MTBD)/TEB exhibited the relatively high activity in the copolymerization of PO and PA.The content of head-to-tail (H-T) linkages of the resultant polyesters was up to 98% [21,23].Meanwhile,the copolymerization of isobutylene oxide (IBO) and various anhydrides into semi-crystalline polyesters was disclosed for providing copolymers with>99% alternating degree,>90% head-to-tail linkages,andMnup to 42.3 kDa (Fig.2).These semi-crystalline polyesters have melting temperatures (Tms)of 67°C to 141°C due to their high regioregularity.The heterogeneous catalyst,a zinc-cobalt(III) double metal cyanide complex(Zn-Co DMCC),was used to suppress the isomerization of IBO,and had productivity up to 680 g polyester/g catalyst.By the addition of water as the chain transfer agent,telechelic polyesters(3.9–7.1 kDa) with two hydroxyl ends were obtained.Interestingly,the degree ofcis-transisomerization of the C–C double bonds in the poly(IBO-alt-MA) backbone can be regulated by diethylamine in solution,resulting in the transition from one semi-crystalline state (Tm=72°C) to amorphous state and then to another semicrystalline state (Tm=153°C) [24].

    Fig.2.Controlled alternating copolymerization of epoxides and cyclic anhydrides.(A) High-Mn polyesters obtained from copolymerization of PO and cyclic anhydrides catalyzed by organic Lewis pairs;(B) semi-crystalline polyesters with high melting temperatures from copolymerization of IBO and cyclic anhydrides catalyzed by Zn-Co DMCC.

    Cyclic carbonate is an ideal cyclic monomer for the synthesis of polymers due to its low toxicity,high solubility in a variety of solvents,high boiling point,etc.[25].With the application of CO2and the mass production of cyclic carbonate,there has been increasingly more attention to the use of cyclic carbonate to make polymers for economic and ecological considerations.However,the most common cyclic carbonates,five-member cyclic carbonates,such as ethylene carbonate (EC) and propylene carbonate (PC),are hardly homopolymerized on account of thermodynamic stability.The ROP of cyclic monomers is based primarily on both thermodynamic and kinetic factors.The Gibbs free energy (ΔGp) should be negative in thermodynamics,whereas the enthalpy changes (ΔHp)of polymerization of a five-membered cyclic carbonate are positive.Along with the decarboxylation during polymerization,the entropy changes (ΔSp) could be positive resulting inΔGp<0,thus making high-temperature polymerization thermodynamically feasible.It has been reported that the polymerization does not take place for EC at below 110°C and no polymer was observed for PC at 140°C within several days [26,27].The pioneering work of Ikeda and co-workers indicated that 170°C and 180°C are the most suitable polymerization temperatures for EC and PC,respectively [27].Heitzet al.employed a variety of catalysts for the ROP of EC,ranging from dibutyl(ethylenedioxy)tin to butyllithium,finding that the carbonate unit content is not more than 50% under any conditions and the retention of CO2decreased as the relative basicity of the catalyst increased [28].Using KOH as an initiator,Leeet al.studied the ROP of EC,assuming a ring-opening mechanism in which alkyl and carbonyl attacks occur in parallel [29].Zsugaet al.analyzed the position of carbonate groups in oligomers by MALDI-TOF and “post-source” decay technique PSD techniques,and once again proved that alkoxide anion attacks both the carbonyl carbon and the alkylene carbon [30].Although many efforts on homopolymerization of five-membered carbonates have analyzed the structure of the polymer,the hydrolysates and the key intermediates of the polymerization,the small molecular by-products generated by ROP have been ignored,which is of great significance for understanding the potential mechanism of five-membered ROP [28,31–33].

    In Liu and co-workers’recently published work (Fig.3),they have meticulously analyzed the composition and structure of oligomers and the small molecule by-products produced by ROP of PC,demonstrating for the first time that PO generatedin situby PC decarboxylation is a key intermediate for polymerization [34].The PO generatedin-situcould participate in PC copolymerization as monomers and eventually generate to give oligo(propylene oxideco-propylene carbonate).On the other hand,PO can be converted into some small molecular by-products by proton elimination reaction or hydrolysis reaction,which can participate in polymerization as a chain transfer agent.Based primarily on the mechanism ofinsitugeneration of PO,they proposed a novel strategy of the ROCOP of PC/cyclic anhydrides,realizing the quantitative transformation of PC into polyesters.The catalyst of PPNCl converted a mixture of PC and PA into an alternating poly(PO-alt-PA) (Mn=13.0 kDa)within one hour at 180°C.Furthermore,the polymerization could be carried out efficiently at 140–220 °C.Noticeably,the CO2released by the polymerization,through the phenomenon that the CO2pressure increases as the reaction proceeds,provided a convenient means to visualize the polymerization process in real time.Further investigation of ROCOP of various cyclic carbonates/cyclic anhydrides revealed the universality of our synthetic methodology.

    Fig.3.Copolymerization of PC with cyclic anhydrides or COS.

    Similarly,the copolymerization of PC with carbonyl sulfide(COS) to prepare polythioethers was reported by Zhanget al.in a one-pot protocol (Fig.3) [35].The polymerization involves several sequential steps includingin-situdecarboxylation of PC to generate PO,coupling of COS/PO to cyclic thiocarbonate (CTC),decarboxylation of CTC to generate propylene sulfide (PS),and the ROP of PS.The resulting polymer contained mainly thioether units (65–100 mol%) and some thiocarbonate units.By adjusting the polymerization temperature,time,and catalyst,copolymers with different thioether/thiocarbonate unit contents could be obtained,which helped to adjust the degradation performance of the polymer.

    3.Polythioester synthesis by ring-opening polymerization

    Polythioesters possess attractive properties such as metal coordination ability and high refractive index due to the introduction of sulfur atoms.The ROP of thiolactones is an effective method for the synthesis of polythioesters [36,37].However,some challenges remain,including the minimal functional diversity of available thiolactone monomers and the side reaction of transthioesterification.Tao and co-workers recently reported the ROP of amino acid-derivedS-carboxylic acid anhydrides (SCA) to synthesize polythioesters within 2 min in air [38].Compared with thiolactones,the ROP of SCA showed significantly high reactivity and fast reaction rate,which was the key to achieve controllable polymerization and suppress various side reactions (transthioesterification and epimerization).Hong and co-workers replaced the carbonbased oxygen atoms of lactones with sulfur atoms and synthesized high-molecular-weight polythioesters through isomerizationdriven irreversible ROP of five-membered thiolactones [39,40].

    4.Polycarbonate synthesis by ring-opening copolymerization of CO2 and epoxide

    CO2,regarded as the main gas causing the greenhouse effect,has a wide range of sources and is nontoxic.The copolymerization of CO2and epoxides,with 100% atomic utilization,can not only obtain degradable polycarbonate,but also turn CO2waste into treasure,effectively reducing carbon emissions.Owing to the precisely designed ligands bound to transition metals,metal organic catalysts simultaneously exhibit high activity and high selectivity for the alternating insertion of CO2and epoxides.Zhang and coworkers reported the copolymerization of CO2and IBO into crystalline polycarbonate,catalyzed by a heterogeneous Zn-Co DMCC,providing alternating copolymer with>95% alternating degree andMnof 19.6 kDa [41].Especially,poly(isobutylene carbonate) (PIBC)hadTmof 94°C owing to high regioregularity,aσBof 4.4 MPa,and an elongation at break (εB) of 350%.

    However,the copolymerization of CO2with epoxidesviaorganocatalysis remains a great challenge [42,43].For the first time,Feng and co-workers successfully realized the highly active anionic copolymerization of CO2and epoxides under metal-free conditions,providing polycarbonates with highMn[44].Recently,Zhang and co-workers reported a zwitterionic method for the selective copolymerization of CO2and PO,providing poly(propylene carbonate) (PPC) with>99% alternating degree,around 80% headto-tail linkages,Mnup to 56.0 kDa,and narrow dispersity (below 1.2) [45].The trialkylboron/tertiary amine catalytic system has extremely high catalytic efficiency and regioregularity.The sequential insertion of PO and CO2into the Lewis pair formed an endto-end zwitterion featuring a TEB-masked anion and an onium cation,making it highly selective for alternating copolymerization.The organocatalytic system composed of TEA and TEB had productivity up to 171 g PPC/g while the double-site tertiary amines,N,N,N′,N′-tetraethyl ethylenediamine (TEED),paired with TEB exhibited higher activity and productivity (up to 216 g PPC/g catalyst).It should note that bifunctional organoboron catalysts having B-N (P) centers is an effective and selective catalyst system for the copolymerizations of epoxides and CO2[46].

    5.Block polymer synthesis from switchable polymerization

    As elegantly exemplified by biopolymers such as DNA,proteins,and polysaccharides,the property and functionality of polymers are closely related to their composition,sequence,and topology.Whereas nature exhibits exceptional sophistication and efficiency in synthesizing biopolymers with an extremely high degree of structure complexity,polymer chemistry is still in its infancy.The synthesis of polymers with a high degree of structural complexity typically involves multiple-step procedures,orthogonal catalysis,and painstaking purification processes.Toward this end,Williams and co-workers pioneered the switchable polymerization from ROCOP of epoxide/cyclic anhydride to ROP of lactones,which enables the straightforward synthesis of polyester-b-polyesters from mixtures of monomers [47].Since then,the self-switchable polymerization has emerged as the most powerful tool to achieve block copolymers in a single efficient procedure.

    Zhang and co-workers reported the one-pot synthesis of polyester-b-polythiocarbonate block copolymers by the copolymerization of commercially available lactones,epoxides,and COS (Fig.4) [48].1,5,7-Triazabicyclo[4.4.0]dec–5-ene (TBD) can activate the cyclic ester through hydrogen bonds and deprotonate alcohol protons to initiate polymerization,forming an alkoxy anion chain growth center.After the introduction of COS,due to the coordination of TEB with the chain anion,the active center switched to the active center bound by TEB [49,50].And then the alternating copolymerization of COS with epoxides was selectively catalyzed to yield polythiocarbonate blocks.By sequential addition of monomers,nine-block copolymers were synthesized.However,the switching of the growth chain center was irreversible,that is,it was necessary to synthesize the polyester block first,and then synthesize the polythiocarbonate block.Tao and co-workers recently reported the one-pot synthesis of poly(ester-b-carbonate) by the switchable polymerization ofO-carbonyl anhydrides (OCAs) and epoxides catalyzed by TEB/onium salt Lewis acid-base pair [51].

    Fig.4.Illustration of the “dual active sites” for the synthesis of polyester-polythiocarbonate block copolymers (color online).

    The limitation of self-switchable polymerization is that only AB and ABA block copolymers with linear architecture and oxygenated composition are typically accessible.Toward this end,Wang and co-workers developed the switchable polymerization between the ROCOP of epoxide/cyclic anhydride/CO2,and organometallic mediated radical polymerization (OMRP) of vinyl monomers based on the quantitative transformation of Co-O and Co-C bondsviagas-switching carbon monoxide (Fig.5).This new switchable catalytic system allows the facile synthesis of block copolymers connecting polyacrylate,poly(vinyl acetate) with oxygenated blocks,which permits significant potential in constructing highvalue-added nanomaterials based on the ideal phase separation behavior [52].Inspired by various radical organic transformations mediated by organocobalt complexes,they successfully synthesized cyclic polyesters and cyclic CO2-based polycarbonatesviavisible light regulated switchable catalytic from ROCOP of epoxide/cyclic anhydride/CO2to highly regioselective radical cyclization process [53].They used a double Schiff base cobalt complex (complex3) with an axial group of pentenoate as a catalyst for the ring-opening copolymerization.Through the quantitative insertion of carbon monoxide,the active species of ROCOP are quantitatively transformed into linear precursors with double bonds and cobalt carbonyl bonds as end groups.Under the action of visible light,the carbonyl cobalt bond of the linear precursor is homogenously cleaved to generate carbonyl radicals,and undergoes a highly regioselective radical addition reaction with the double bond (the Markov addition product is greater than 99%),resulting in cyclic polyester and cyclic polycarbonate.Compared with linear polyesters and polycarbonates,cyclic polyesters and polycarbonates without end groups have better stability,less chain entanglement,and higher glass transition temperatures.

    Fig.5.Cobalt-mediated switchable catalysis for one-pot synthesis of biodegradable and renewable polymers with different topologies: (A) From OMRP to ROCOP for synthesizing polyacrylate-b-polycarbonates;(B) from ROCOP to OMRP for obtaining polyacrylate-b-polyesters;(C) from ROCOP to radical cyclization reaction for constructing cyclic polymers.

    6.Conclusion and perspective

    The synthesis of degradable polymers with easy-to-break carbon-oxygen bonds in the main chain is the requirement of social green and sustainable development.It is an effective method to synthesize poly(thio)ester and poly(thio)carbonate through the(co)polymerization of monomers such as epoxides,cyclic carbonate,cyclic esters,carboxyanhydride,CO2,COS,and cyclic anhydrides.However,there are still many challenges to moving this aggregation technology toward large-scale applications.First,the control of sequence,regioselectivity,and stereoselectivity in the current system is still insufficient.Second,compared with the traditional polyolefin,the polymer obtained by the current method has a lower molecular weight,resulting the gaps in thermal and mechanical properties.Last,although the polymers can be degraded,they are difficult to depolymerize into monomers or other cyclic small molecules that can be polymerized again,which cannot achieve the purpose of chemical recycling.Further research efforts shall be directed to the development of new catalytic methodologies that enable the one-pot/one-step construction of renewable and biodegradable copolymers with diverse compositions (new monomers) and topology (linearly multi-block,brush,branched,and star).The synthesis of chemically recyclable polymers with practical application prospects by developing novel catalytic systems is also an important development direction.

    Declaration of competing interest

    The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

    Acknowledgments

    We acknowledge the financial support of the National Science Foundation of China (Nos.52203129,51973190) and Zhejiang Provincial Department of Science and Technology (No.2020R52006).

    女人精品久久久久毛片| 国产精品久久久久成人av| 麻豆精品久久久久久蜜桃| 国产亚洲精品第一综合不卡 | 91精品三级在线观看| 欧美精品人与动牲交sv欧美| 国产欧美另类精品又又久久亚洲欧美| 最近手机中文字幕大全| 少妇精品久久久久久久| 最近中文字幕2019免费版| 日本色播在线视频| 一级二级三级毛片免费看| 美女国产高潮福利片在线看| 国产免费又黄又爽又色| 成人毛片a级毛片在线播放| 成人国语在线视频| 精品久久久精品久久久| 国产亚洲精品第一综合不卡 | 人人妻人人澡人人看| 精品少妇久久久久久888优播| 国产视频内射| 99re6热这里在线精品视频| freevideosex欧美| 中国国产av一级| 精品人妻熟女av久视频| 国产精品人妻久久久久久| av网站免费在线观看视频| 精品午夜福利在线看| 亚洲精品国产av成人精品| 久久精品国产a三级三级三级| 黄色一级大片看看| 精品一区二区免费观看| 国产精品久久久久久av不卡| 伊人久久国产一区二区| 国产在线免费精品| 久久久久久伊人网av| 好男人视频免费观看在线| 自线自在国产av| 免费看av在线观看网站| 国产一区有黄有色的免费视频| 免费看光身美女| 免费观看在线日韩| 国产精品 国内视频| 久久精品久久久久久噜噜老黄| 国产国拍精品亚洲av在线观看| 精品少妇久久久久久888优播| 免费日韩欧美在线观看| 另类精品久久| 欧美97在线视频| 国产av一区二区精品久久| 午夜免费观看性视频| 国产精品一区二区在线观看99| 69精品国产乱码久久久| 在线观看免费高清a一片| 久热久热在线精品观看| 精品少妇黑人巨大在线播放| 免费观看a级毛片全部| 99九九线精品视频在线观看视频| 免费看av在线观看网站| 岛国毛片在线播放| 亚洲美女视频黄频| 亚洲综合精品二区| 夜夜爽夜夜爽视频| 一级,二级,三级黄色视频| 久久人人爽人人爽人人片va| 99热6这里只有精品| 日韩一区二区视频免费看| 天堂中文最新版在线下载| 女人精品久久久久毛片| 国产精品熟女久久久久浪| 亚洲少妇的诱惑av| 亚洲欧美一区二区三区黑人 | 97在线人人人人妻| 亚洲av不卡在线观看| 国产视频内射| 国产乱来视频区| 中文字幕免费在线视频6| 在线观看人妻少妇| 80岁老熟妇乱子伦牲交| 国产精品国产av在线观看| 国产精品人妻久久久久久| 午夜福利在线观看免费完整高清在| 免费av不卡在线播放| 三级国产精品欧美在线观看| 欧美xxⅹ黑人| 新久久久久国产一级毛片| av在线老鸭窝| 亚洲性久久影院| 国产精品一国产av| 亚洲婷婷狠狠爱综合网| 成人综合一区亚洲| 久久99精品国语久久久| 美女内射精品一级片tv| 亚洲丝袜综合中文字幕| 日本av免费视频播放| 日本爱情动作片www.在线观看| 国产欧美日韩一区二区三区在线 | 成人18禁高潮啪啪吃奶动态图 | 高清黄色对白视频在线免费看| 自拍欧美九色日韩亚洲蝌蚪91| 老司机影院成人| 日韩一区二区视频免费看| 汤姆久久久久久久影院中文字幕| 精品少妇久久久久久888优播| a级毛片黄视频| 国产不卡av网站在线观看| 午夜免费男女啪啪视频观看| 欧美xxⅹ黑人| 草草在线视频免费看| 国产精品一区二区在线不卡| 最近2019中文字幕mv第一页| 乱人伦中国视频| 久久狼人影院| 不卡视频在线观看欧美| 免费播放大片免费观看视频在线观看| 在现免费观看毛片| 一级毛片aaaaaa免费看小| 男女啪啪激烈高潮av片| a级毛片免费高清观看在线播放| 国产乱来视频区| 欧美日本中文国产一区发布| 亚洲欧美成人综合另类久久久| 能在线免费看毛片的网站| 亚洲第一av免费看| 欧美日韩在线观看h| 久久97久久精品| 亚洲少妇的诱惑av| 边亲边吃奶的免费视频| 久久精品久久精品一区二区三区| 亚洲欧美色中文字幕在线| 人成视频在线观看免费观看| av天堂久久9| 欧美日韩亚洲高清精品| 制服丝袜香蕉在线| 色视频在线一区二区三区| 亚洲图色成人| 亚洲精品自拍成人| 国产成人a∨麻豆精品| 日本91视频免费播放| 亚洲精品aⅴ在线观看| 国产高清国产精品国产三级| 美女视频免费永久观看网站| 人妻一区二区av| 蜜桃久久精品国产亚洲av| 中文字幕精品免费在线观看视频 | 一区二区三区乱码不卡18| a级毛片黄视频| 自线自在国产av| 日韩成人伦理影院| 亚洲av中文av极速乱| 日日撸夜夜添| av卡一久久| 香蕉精品网在线| 色5月婷婷丁香| 午夜日本视频在线| 夫妻午夜视频| 成年人午夜在线观看视频| 欧美xxⅹ黑人| 成人国产麻豆网| 日本爱情动作片www.在线观看| 久久久久国产精品人妻一区二区| 国产亚洲av片在线观看秒播厂| kizo精华| 大陆偷拍与自拍| 国产精品成人在线| 国产成人免费无遮挡视频| av在线老鸭窝| 亚洲色图 男人天堂 中文字幕 | 久久久久网色| 少妇高潮的动态图| av又黄又爽大尺度在线免费看| 久久人人爽人人片av| 看免费成人av毛片| 18禁裸乳无遮挡动漫免费视频| 午夜激情av网站| 国产伦理片在线播放av一区| 亚州av有码| 99热6这里只有精品| 精品酒店卫生间| 爱豆传媒免费全集在线观看| 亚洲成人一二三区av| 色94色欧美一区二区| 精品久久蜜臀av无| 飞空精品影院首页| 高清黄色对白视频在线免费看| 中国国产av一级| 黑人巨大精品欧美一区二区蜜桃 | 日韩av免费高清视频| 国产精品国产三级国产专区5o| 九草在线视频观看| 在线观看三级黄色| 欧美成人午夜免费资源| av网站免费在线观看视频| 久久久久久久精品精品| 又黄又爽又刺激的免费视频.| 亚洲精品亚洲一区二区| 99九九在线精品视频| 精品一品国产午夜福利视频| 欧美精品一区二区免费开放| av女优亚洲男人天堂| 亚洲久久久国产精品| 我的女老师完整版在线观看| 麻豆精品久久久久久蜜桃| 亚洲经典国产精华液单| 男女国产视频网站| 在线观看人妻少妇| 美女主播在线视频| 免费日韩欧美在线观看| 伦理电影大哥的女人| 各种免费的搞黄视频| 国产乱来视频区| 久久女婷五月综合色啪小说| 少妇的逼好多水| 国产亚洲一区二区精品| 人人妻人人爽人人添夜夜欢视频| 国产男女超爽视频在线观看| 中文字幕久久专区| 免费高清在线观看日韩| 日韩精品免费视频一区二区三区 | 久久久久久人妻| 天天操日日干夜夜撸| 国产片内射在线| 久久久久久久久久久丰满| 插逼视频在线观看| 永久免费av网站大全| www.av在线官网国产| 观看av在线不卡| 免费大片18禁| 日韩 亚洲 欧美在线| 亚洲精华国产精华液的使用体验| 欧美亚洲 丝袜 人妻 在线| 中文精品一卡2卡3卡4更新| 一级毛片我不卡| 国产精品人妻久久久久久| av免费在线看不卡| 久久久久久久国产电影| 国产午夜精品久久久久久一区二区三区| 人妻人人澡人人爽人人| 性高湖久久久久久久久免费观看| 国产成人av激情在线播放 | 成人毛片a级毛片在线播放| 国产免费视频播放在线视频| 久热这里只有精品99| 亚洲av成人精品一二三区| 一边摸一边做爽爽视频免费| 人妻夜夜爽99麻豆av| 啦啦啦视频在线资源免费观看| 99久久精品一区二区三区| 亚洲av成人精品一二三区| 久久精品国产亚洲网站| 欧美日韩一区二区视频在线观看视频在线| 男男h啪啪无遮挡| 午夜免费男女啪啪视频观看| 免费久久久久久久精品成人欧美视频 | www.色视频.com| 欧美丝袜亚洲另类| 亚洲一区二区三区欧美精品| 简卡轻食公司| 三级国产精品欧美在线观看| 美女内射精品一级片tv| 少妇高潮的动态图| 久久青草综合色| 精品人妻在线不人妻| 日日撸夜夜添| 久久久久久久久久久丰满| 黄片无遮挡物在线观看| 欧美xxxx性猛交bbbb| 日本免费在线观看一区| 99九九在线精品视频| 国产精品99久久久久久久久| 亚洲内射少妇av| 国产日韩欧美亚洲二区| 日韩伦理黄色片| a级毛色黄片| 永久网站在线| 中文字幕精品免费在线观看视频 | 日韩精品有码人妻一区| 91精品国产九色| 男女边摸边吃奶| 国产亚洲精品久久久com| 性高湖久久久久久久久免费观看| 亚洲色图综合在线观看| 伊人久久精品亚洲午夜| 一级二级三级毛片免费看| 成年女人在线观看亚洲视频| 国产男人的电影天堂91| 在线观看一区二区三区激情| av福利片在线| 日本欧美国产在线视频| 国产高清有码在线观看视频| 欧美日韩av久久| 日韩电影二区| 天天操日日干夜夜撸| 国产片内射在线| 亚洲国产欧美日韩在线播放| 欧美激情极品国产一区二区三区 | 大陆偷拍与自拍| 日本黄大片高清| 精品久久国产蜜桃| 国产色爽女视频免费观看| 午夜影院在线不卡| 一本—道久久a久久精品蜜桃钙片| 纯流量卡能插随身wifi吗| 18在线观看网站| 亚洲国产精品成人久久小说| 全区人妻精品视频| 人妻人人澡人人爽人人| 在线天堂最新版资源| 丝袜美足系列| 日韩熟女老妇一区二区性免费视频| 亚洲情色 制服丝袜| 国产淫语在线视频| 国产国拍精品亚洲av在线观看| 国产亚洲av片在线观看秒播厂| 视频区图区小说| 亚洲精品中文字幕在线视频| 亚洲精品,欧美精品| 国产黄色视频一区二区在线观看| 日韩人妻高清精品专区| 在线免费观看不下载黄p国产| 午夜福利网站1000一区二区三区| 亚洲国产色片| 永久网站在线| 亚洲精品日本国产第一区| 国产精品久久久久久久电影| 中文字幕精品免费在线观看视频 | 桃花免费在线播放| 在线观看人妻少妇| 亚洲精品色激情综合| av黄色大香蕉| av免费在线看不卡| 又黄又爽又刺激的免费视频.| 亚洲伊人久久精品综合| 伊人久久国产一区二区| 亚洲欧美成人综合另类久久久| 女的被弄到高潮叫床怎么办| 婷婷色综合大香蕉| 狠狠精品人妻久久久久久综合| 欧美日韩在线观看h| 国产视频内射| 午夜av观看不卡| 国产精品国产三级国产专区5o| 91午夜精品亚洲一区二区三区| 男人爽女人下面视频在线观看| 夜夜看夜夜爽夜夜摸| 国产日韩一区二区三区精品不卡 | 国产 一区精品| 欧美 亚洲 国产 日韩一| 少妇被粗大的猛进出69影院 | 久久久久久久精品精品| 国产欧美亚洲国产| 啦啦啦中文免费视频观看日本| 亚洲久久久国产精品| 9色porny在线观看| 久久久久久久久久成人| 国产黄片视频在线免费观看| 国产在线免费精品| 国产成人免费无遮挡视频| 国产成人精品福利久久| 国产精品久久久久久av不卡| 99国产综合亚洲精品| 日韩欧美精品免费久久| 欧美三级亚洲精品| 国产片特级美女逼逼视频| 大话2 男鬼变身卡| 久久精品熟女亚洲av麻豆精品| 最黄视频免费看| av国产久精品久网站免费入址| 一区二区三区乱码不卡18| 最后的刺客免费高清国语| 青春草视频在线免费观看| 少妇人妻 视频| 免费黄网站久久成人精品| 免费播放大片免费观看视频在线观看| 亚洲图色成人| 黑人高潮一二区| 在线观看一区二区三区激情| 有码 亚洲区| 一区二区日韩欧美中文字幕 | av免费观看日本| av在线播放精品| 亚洲综合色网址| 亚洲欧美中文字幕日韩二区| 人人妻人人爽人人添夜夜欢视频| 九色成人免费人妻av| 中文字幕免费在线视频6| 亚洲欧美一区二区三区黑人 | 99精国产麻豆久久婷婷| 国产精品熟女久久久久浪| 人妻夜夜爽99麻豆av| 久久久久精品性色| 超色免费av| 国产无遮挡羞羞视频在线观看| 国产 一区精品| 中文字幕亚洲精品专区| 亚洲国产av新网站| 一个人免费看片子| 国产精品三级大全| 麻豆成人av视频| 一区二区三区四区激情视频| 老司机影院毛片| 婷婷色综合www| 国产成人精品久久久久久| a级毛片黄视频| 亚洲激情五月婷婷啪啪| 欧美丝袜亚洲另类| 搡女人真爽免费视频火全软件| 亚洲精品一区蜜桃| 国产成人精品婷婷| 91精品一卡2卡3卡4卡| 亚洲情色 制服丝袜| 亚洲国产日韩一区二区| 好男人视频免费观看在线| 日本免费在线观看一区| 国产黄色视频一区二区在线观看| 亚洲美女黄色视频免费看| 国产精品久久久久久久久免| 精品一区二区免费观看| 国产色婷婷99| 久久午夜综合久久蜜桃| 人妻制服诱惑在线中文字幕| 一本久久精品| 日韩一本色道免费dvd| 国产精品一二三区在线看| 五月伊人婷婷丁香| 乱码一卡2卡4卡精品| 国产欧美另类精品又又久久亚洲欧美| 少妇被粗大的猛进出69影院 | 午夜福利影视在线免费观看| 日本黄大片高清| 日韩 亚洲 欧美在线| 亚洲精品,欧美精品| 特大巨黑吊av在线直播| 十分钟在线观看高清视频www| 精品一区二区三卡| 99九九线精品视频在线观看视频| 国产白丝娇喘喷水9色精品| 午夜福利影视在线免费观看| 久久久亚洲精品成人影院| 国产精品国产三级国产专区5o| av免费观看日本| 亚洲国产精品国产精品| 国产亚洲欧美精品永久| 亚洲精品一二三| 久久97久久精品| 美女脱内裤让男人舔精品视频| 女性被躁到高潮视频| 婷婷色麻豆天堂久久| 欧美成人精品欧美一级黄| 日韩制服骚丝袜av| 夜夜爽夜夜爽视频| 黄片播放在线免费| 色网站视频免费| av女优亚洲男人天堂| 超色免费av| 国产爽快片一区二区三区| 亚洲av.av天堂| 美女内射精品一级片tv| 免费高清在线观看日韩| 欧美日韩av久久| 亚洲美女黄色视频免费看| 欧美成人午夜免费资源| 一边亲一边摸免费视频| 在线精品无人区一区二区三| 午夜91福利影院| 午夜福利网站1000一区二区三区| 超碰97精品在线观看| 精品一区二区免费观看| 一区二区日韩欧美中文字幕 | 午夜老司机福利剧场| 成人毛片60女人毛片免费| 国产乱来视频区| 成人国产麻豆网| 日韩视频在线欧美| 一级二级三级毛片免费看| 成人亚洲精品一区在线观看| 成年人午夜在线观看视频| 久久99蜜桃精品久久| 丝瓜视频免费看黄片| 久久久国产一区二区| 人人妻人人爽人人添夜夜欢视频| 丰满少妇做爰视频| 亚洲精品亚洲一区二区| 免费黄网站久久成人精品| 欧美精品国产亚洲| 亚洲在久久综合| av电影中文网址| 视频在线观看一区二区三区| 成年av动漫网址| 97超视频在线观看视频| 久久毛片免费看一区二区三区| 多毛熟女@视频| 18+在线观看网站| 国产综合精华液| av有码第一页| 国产老妇伦熟女老妇高清| 久久99精品国语久久久| av在线app专区| 免费av中文字幕在线| 久久鲁丝午夜福利片| av不卡在线播放| 91国产中文字幕| 中文字幕人妻熟人妻熟丝袜美| 97在线视频观看| 国产成人精品福利久久| 亚洲国产精品成人久久小说| 欧美日韩精品成人综合77777| 久久久a久久爽久久v久久| av一本久久久久| 国产免费现黄频在线看| 狂野欧美激情性bbbbbb| 日韩精品有码人妻一区| 精品人妻在线不人妻| 免费观看无遮挡的男女| 中文天堂在线官网| 飞空精品影院首页| 大片电影免费在线观看免费| 久久精品国产亚洲av涩爱| 免费观看的影片在线观看| 超色免费av| 新久久久久国产一级毛片| 国产视频首页在线观看| 色网站视频免费| 韩国av在线不卡| 国产精品秋霞免费鲁丝片| 日韩电影二区| 久久国产亚洲av麻豆专区| 人妻夜夜爽99麻豆av| 欧美成人精品欧美一级黄| 国产男人的电影天堂91| 看免费成人av毛片| 欧美日韩av久久| 国产极品粉嫩免费观看在线 | 亚洲国产精品专区欧美| 亚洲人成网站在线观看播放| 好男人视频免费观看在线| 亚洲精品乱码久久久久久按摩| 久久精品国产亚洲av天美| 精品一区在线观看国产| 久久久久久久久久人人人人人人| 国产精品国产三级国产专区5o| 美女国产视频在线观看| 国产不卡av网站在线观看| 成人无遮挡网站| 最新的欧美精品一区二区| av在线app专区| 亚洲国产精品一区三区| 九九在线视频观看精品| 国产视频内射| 国产一区亚洲一区在线观看| 久久狼人影院| 国产高清国产精品国产三级| 91成人精品电影| 黄色配什么色好看| 一区二区三区四区激情视频| 日本黄色日本黄色录像| 美女福利国产在线| 亚洲一区二区三区欧美精品| 丁香六月天网| 校园人妻丝袜中文字幕| 人成视频在线观看免费观看| 高清毛片免费看| 亚洲欧洲精品一区二区精品久久久 | 日韩一区二区视频免费看| 高清不卡的av网站| 色94色欧美一区二区| 日韩免费高清中文字幕av| 亚洲人与动物交配视频| 91久久精品电影网| 亚洲精品日本国产第一区| 两个人的视频大全免费| 蜜桃国产av成人99| 九色成人免费人妻av| 久久精品人人爽人人爽视色| 三级国产精品片| 国产欧美另类精品又又久久亚洲欧美| 日韩,欧美,国产一区二区三区| 国产 精品1| 草草在线视频免费看| 尾随美女入室| 国产老妇伦熟女老妇高清| 亚洲欧美成人综合另类久久久| 亚洲欧美成人精品一区二区| 亚洲av免费高清在线观看| 久久精品久久久久久噜噜老黄| av视频免费观看在线观看| 国语对白做爰xxxⅹ性视频网站| 国产 一区精品| 一区二区日韩欧美中文字幕 | 91精品国产国语对白视频| 日韩av不卡免费在线播放| videos熟女内射| 天美传媒精品一区二区| 91久久精品电影网| 97在线人人人人妻| 久久久久久久精品精品| 母亲3免费完整高清在线观看 | 午夜福利影视在线免费观看| 成人黄色视频免费在线看| 涩涩av久久男人的天堂| 国产片内射在线| 亚洲欧美一区二区三区黑人 | 欧美亚洲日本最大视频资源| 男女边吃奶边做爰视频| 高清午夜精品一区二区三区| 中文字幕亚洲精品专区| 久久久久人妻精品一区果冻| 亚洲欧美一区二区三区黑人 | 超碰97精品在线观看| 亚洲欧洲日产国产| 一级毛片黄色毛片免费观看视频| 亚洲av不卡在线观看| 中国国产av一级| 边亲边吃奶的免费视频| 乱码一卡2卡4卡精品|