肖雨倩 孫可心 萬俊 陳淑穎 陳麗敏 王巖 白艷杰
摘要:卒中后認知障礙(PSCI)主要表現為學習、記憶等方面的障礙。哺乳動物大腦中高度富集的RNA m6A甲基化修飾,參與神經膠質細胞介導的神經炎癥。鑒于神經炎癥是PSCI神經損傷以及空間和記憶能力下降的主要機制,推測RNA m6A甲基化修飾可調節(jié)腦卒中后神經膠質細胞炎癥反應,進而改善PSCI。該文就RNA m6A甲基化修飾在PSCI發(fā)展中的作用及其調控神經膠質細胞介導的炎癥的詳細機制進行總結分析,為該領域的研究者提供參考。
關鍵詞:卒中;認知障礙;炎癥;小神經膠質細胞;星形細胞;m6A甲基化
中圖分類號:R743.3文獻標志碼:ADOI:10.11958/20230780
Research progress of RNA m6A methylation in post-stroke cognitive impairment
XIAO Yuqian1, SUN Kexin1, WAN Jun1, CHEN Shuying1, CHEN Limin1, WANG Yan1, BAI Yanjie2△
1 Henan University of Chinese Medicine, Zhengzhou 450000, China; 2 the First Affiliated Hospital of Henan University of Chinese Medicine
△Correspongding Author E-mail: baiyj66@126.com
Abstract: Post-stroke cognitive impairment (PSCI) is mainly manifested as learning and memory disorders. Highly enriched RNA m6A methylation modification in mammalian brain is involved in glial cell-mediated neuroinflammation. Given that neuroinflammation is the main mechanism for neural damage and spatial and memory impairment of PSCI, it is speculated that RNA m6A methylation modification can regulate the inflammatory response of glial cells after stroke to improve PSCI. This review summarizes and analyzes the role of RNA m6A methylation modification in the development of PSCI and analyzes its detailed mechanism of regulating glial cell-mediated inflammation, which will provide reference for researchers in this field.
Key words: stroke; cognition disorders; inflammation; microglia; astrocytes; m6A methylation
腦卒中是全球第二大常見死因,通常會導致運動、認知、語言和心理障礙。卒中后認知障礙(post stroke cognitive impairment,PSCI)主要表現為學習、記憶力、執(zhí)行力等方面功能下降,包括運動和言語功能障礙等一系列癥狀。缺血缺氧引起的氧化應激、炎癥反應、細胞凋亡、突觸損傷、血管破壞等是PSCI的主要誘因[1]。神經膠質細胞在缺血性腦損傷的預后中起著至關重要的作用,其抗炎表型有助于減輕炎癥反應。有研究報道,許多藥物通過調節(jié)缺血或灌注不足模型中的小膠質細胞極化和炎癥反應來減輕腦損傷[2]。RNA修飾是神經膠質細胞響應細胞外刺激而激活的一個關鍵細胞內機制,N6-甲基腺苷(N6-methyladenosine,m6A)甲基化修飾是研究最廣泛的一種[3]。m6A于1974年首次在病毒RNA的內部修飾中被報道,是指在腺嘌呤堿基的第6號氮處選擇性地添加甲基,通過調節(jié)RNA剪接、定位和翻譯,影響各種生物進程[4]。最近研究發(fā)現,m6A修飾可以調節(jié)神經膠質細胞的促炎和抗炎反應[5]。鑒于神經膠質細胞在神經炎癥過程中的關鍵調節(jié)作用,推測m6A修飾可以調節(jié)PSCI中神經膠質細胞炎癥反應。本文旨在闡明RNA m6A甲基化修飾調控PSCI的詳細機制及此修飾調控神經膠質細胞炎癥反應參與PSCI的研究現狀和未來方向。
1 RNA m6A甲基化修飾及其調控蛋白
1.1 RNA m6A甲基轉移酶 RNA m6A甲基化修飾相關的酶和蛋白質可分為3類:m6A甲基轉移酶、m6A去甲基轉移酶和m6A結合蛋白。甲基轉移酶和去甲基轉移酶以高度動態(tài)的方式平衡m6A甲基化修飾水平。甲基轉移酶負責在靶RNA上安裝甲基,典型的甲基添加由多功能亞基組成的編碼復合物催化。甲基轉移酶樣(METTL)3和METTL14形成異二聚體作為編碼復合物核心,前者具有催化能力,而METTL14變構可激活METTL3并促進RNA結合[6]。最近的一項研究提出,METTL16也是一種獨立的m6A甲基轉移酶,并且在RNA剪接調節(jié)中起著關鍵作用[7]。研究還發(fā)現了一些與m6A甲基化相關的其他成分,例如Wilms腫瘤蛋白1相關蛋白(WTAP)、腎母細胞瘤1相關蛋白(VIRMA)、RNA結合蛋白15(RBM15)及其旁系蛋白RBM15B和一種含有CCCH序列的鋅指蛋白13(ZC3H13)等[8]。
1.2 RNA m6A去甲基轉移酶 目前,去甲基轉移酶僅占m6A調節(jié)器的一小部分,也被稱為“橡皮擦”。兩種公認的去甲基轉移酶是肥胖相關蛋白(fat mass and obesity associated,FTO)和ALKB同系物5(ALKB homologue 5,ALKBH5)。FTO在神經元中廣泛表達和高度富集,其通過改變選擇性剪接和翻譯的模式來調節(jié)基因表達。FTO的缺失會導致海馬體內神經元分化受損和腦源性神經營養(yǎng)因子(brain-derived neurotrophic factor,BDNF)的表達減少,從而增加焦慮并損害工作記憶[9]。ALKBH5是一種定位在核斑點的核蛋白,其介導的去甲基化活性影響核RNA輸出和RNA代謝,從而調節(jié)基因表達。ALKBH5主要在神經元中表達,并在神經發(fā)育過程中動態(tài)增加,導致神經干細胞的增殖和分化[10]。ALKBH5、FTO和其他未定義的去甲基化酶很可能在去甲基化活性上重疊,在正常情況下可以部分替代彼此的功能。
1.3 RNA m6A結合蛋白 RNA m6A結合蛋白也稱為“閱讀器”,在上述兩種酶修飾后,通過識別和翻譯不同轉錄物上的m6A位點來影響靶mRNA的剪接、核轉運、穩(wěn)定性、翻譯和RNA衰變。根據其與m6A特異性結合的能力分為直接和間接結合蛋白。直接結合蛋白包括5種含YTH結構域的蛋白質:YTHDF1/2/3和YTHDC1/2。YTHDF1主要影響修飾基因的翻譯,YTHDF2主要負責降解,YTHDF3可與前兩者合作,加速靶轉錄物的翻譯或降解[11]。間接結合蛋白主要是異質核糖核蛋白(heterogeneous nuclear ribonucleoprotein,HNRNPs),包括HNRNPC、HNRNPG和HNRNPA2/B1。此外,胰島素樣生長因子2 mRNA結合蛋白(insulin-like growth factor 2 mRNA-binding proteins,IGF2BPs)通過識別共有GGC序列靶向數千個mRNA轉錄物,在正常和應激條件下以m6A依賴的方式參與轉錄后RNA修飾[12]。在胞質中METTL3也可作為閱讀器,通過與真核翻譯起始因子3(eukaryotic initiation factor 3,eIF3)相互作用增強mRNA翻譯[13]。RNA m6A甲基化修飾分子機制如圖1所示。
2 RNA m6A甲基化修飾在PSCI中的作用
2.1 調控細胞凋亡 m6A修飾在人類、小鼠和大鼠的大腦皮質中廣泛存在,與其他組織相比,m6A修飾對腦的組織特異性最強。磷酸酯酶與張力蛋白同源物(phosphatase and tension homologous protein,PTEN)是一種常見的腫瘤抑制因子,敲低YTHDF1可通過降低PTEN穩(wěn)定性阻止PTEN/蛋白激酶B(Akt)/雷帕霉素靶蛋白(mTOR)信號傳導,抑制細胞凋亡,減輕腦缺血/再灌注(ischemia/reperfusion,I/R)損傷誘導的腦梗死和神經功能障礙,而YTHDF1過表達的結果相反[14]。
應激顆粒是由RNA結合蛋白和mRNA組成的無膜細胞器,可以立即且短暫地阻止mRNA翻譯,以保護有價值的mRNA和蛋白質免受有害環(huán)境的傷害,從而提高早期急性缺血性腦卒中患者腦細胞的存活率。Si等[15]證明在糖氧剝奪/復氧(oxygen-glucose deprivation/reoxygenation,OGD/R)處理后,METTL3介導的m6A甲基化含量在原代培養(yǎng)的大鼠海馬神經元中明顯增多,通過增加產生成熟的miR-335促進卒中早期的應激顆粒生成,緩解神經元損傷和細胞的凋亡。B淋巴細胞瘤因子2(B-cell lymphoma-2,Bcl-2)作為抗凋亡蛋白在調節(jié)細胞凋亡中起重要作用,上調Bcl-2的蛋白和mRNA表達可以減少雙側頸總動脈閉塞誘導的大鼠海馬細胞凋亡,改善其認知障礙[16]。敲低ALKBH5顯著降低了原代神經元中Bcl-2的表達,導致神經元凋亡增強;相反,FTO表達增多時刺激Bcl-2水平上升,對神經元起到保護作用,m6A去甲基化可能通過升高Bcl-2緩解PSCI[17]。在體外,OGD/R誘導的SH-SY5Y細胞中,添加FTO后SH-SY5Y細胞ROS產生和超氧化物歧化酶活性降低;在體內,對大腦中動脈閉塞(MCAO)大鼠靜脈注射FTO,FTO過表達通過介導核因子-E2相關因子2(nuclearfactor erythroidderived 2-like 2,Nrf2)mRNA的去甲基化,可降低YTHDF2依賴性mRNA降解并增加Nrf2表達,從而抑制氧化應激反應和減少細胞凋亡,最終緩解腦I/R損傷[18]。進一步研究發(fā)現,骨髓間充質干細胞來源的外泌體Krüppel樣因子4通過靶向長鏈非編碼RNA(lncRNA)-ZFAS1增加FTO水平,從而降低動力相關蛋白1的m6A修飾,對I/R誘導的線粒體損傷和細胞凋亡產生抑制作用[19]。
2.2 參與神經元和軸突的生長發(fā)育 PSCI是一個不可逆的過程,可直接對大腦感覺、運動和自主神經功能產生破壞,損害突觸形態(tài)及生存環(huán)境。m6A甲基化調節(jié)神經發(fā)育過程中參與軸突引導和伸長的mRNA的翻譯。FTO mRNA和蛋白水平在包括海馬體在內的多個大腦區(qū)域中都非常豐富,敲除FTO會顯著降低BDNF在小鼠海馬體中的表達,降低學習和記憶表現[20]。維持軸突的正確導向是大腦中神經回路形成的關鍵一環(huán),YTHDF1可促進小鼠背側脊髓中軸突導向相關蛋白Robo3.1 mRNA的甲基化,增加Robo3.1蛋白水平,從而在控制軸突導向中起重要作用[21]。Shi等[22]研究發(fā)現,在海馬神經元中,YTHDF1以神經元刺激依賴的方式促進目標轉錄物的翻譯,增強蛋白質合成,從而改善小鼠的學習和記憶能力,YTHDF1的耗竭會損害海馬突觸的基礎傳遞和長時程增強(LTP)。METTL3耗竭將抑制神經元增殖和分化,通過組蛋白甲基轉移酶Ezh2干擾神經干細胞向神經膠質譜系分化,抑制METTL3介導的m6A甲基化可以保護神經元免受I/R損傷[23]。miR-422a是大腦中富含的miRNA家族成員之一,在急性缺血性卒中患者腦組織中顯著上調,介導神經元細胞死亡和凋亡。OGD/R刺激下,METTL3介導的Lnc-D63785 m6A甲基化是誘導miR-422a積累和神經元細胞凋亡的關鍵,對METTL3的抑制可以逆轉Lnc-D63785造成的損傷[24]。
2.3 參與血管修復與生成 腦卒中后可迅速觸發(fā)參與血管生成過程中重要血管生成因子的誘導和激活,促進腦血管生成是改善PSCI的有潛力的治療策略[25]。m6A甲基化在包括血管生成在內的多種發(fā)育決策中起著重要作用[26]。研究表明,缺氧應激后內皮細胞中的m6A甲基化水平顯著上調,并對血管修復和血管生成產生積極影響[27]。circSCMH1通過促進FTO泛素化增加了FTO的核易位,導致磷脂磷酸酶3 mRNA的m6A去甲基化,從而誘導內皮細胞中脂質磷酸磷酸酶3水平增加,隨后增強血管修復,加快了小鼠卒中后功能恢復[28]。血腦屏障主要由腦微血管內皮細胞和緊密連接構成,是維持中樞神經系統穩(wěn)態(tài)的重要物理屏障,通過對m6A修飾的抑制可減少基質金屬蛋白酶(matrix metallopeptidase,MMP)3的表達,進而改善小鼠腦I/R損傷后血管內皮細胞的修復[29]。此外,腦內皮細胞中發(fā)現了一種新型m6A結合蛋白PRRC2B(proline rich coiled-coil 2B),可調節(jié)MMP14和解整合素金屬蛋白酶19,促進缺氧誘導的內皮細胞遷移,PRRC2B敲除會加劇腦血管重塑,進而重新分配腦血流,改善缺氧誘導的小鼠認知能力[30]。
2.4 調控神經炎癥 抑制炎癥反應可以改善PSCI大鼠的認知功能[31]。異常的m6A修飾與神經炎癥密切相關,腦卒中患者外周血的m6A甲基化水平均升高[32]。RNA甲基化免疫共沉淀表明,卒中后小鼠炎癥相關基因m6A甲基化增加[33]。神經膠質細胞在缺血性腦卒中后的神經炎癥起雙向調節(jié)作用,研究發(fā)現,m6A甲基化修飾可以調控神經膠質細胞介導的炎癥反應[3]。
2.4.1 調控小膠質細胞介導的神經炎癥 小膠質細胞是主要的腦駐留細胞,幾乎參與所有中樞神經系統病理過程。當被Toll樣受體(Toll-like receptor,TLR)和其他刺激誘導時,穩(wěn)態(tài)小膠質細胞(M0)被激活并極化為M1促炎表型和M2抗炎表型。促炎小膠質細胞會引發(fā)腦損傷,阻礙神經發(fā)生,干擾卒中后神經功能的恢復和修復。目前公認LTP是學習和記憶的基礎,海馬CA1中的LTP可被小膠質細胞釋放的白細胞介素-1β(IL-1β)侵襲所損傷[34]。干擾素調節(jié)因子(interferon regulatory factor,IRF)5/IRF4調節(jié)軸是小膠質細胞促炎和抗炎激活的關鍵,小鼠IRF5敲除可導致M2表型激活增強并改善PSCI[35]。
m6A甲基化修飾與調節(jié)小膠質細胞炎癥反應的基因表達具有動態(tài)和復雜的關系。有研究揭示了M0、M1和M2型小膠質細胞中mRNA和lncRNA中的m6A甲基化譜,發(fā)現87個lncRNA在M1型和M2型小膠質細胞中甲基化修飾有所差異,差異甲基化修飾的lncRNA通過改變多種信號轉導途徑來調節(jié)小膠質細胞介導的炎癥反應[3]。Wen等[36]發(fā)現小膠質細胞中METTL3的水平與TNF受體相關因子6(TNF receptor associated factor 6,TRAF6)呈正相關,TRAF6/NF-κB通路可能在METTL3過表達條件下以m6A甲基化依賴性方式被激活,最終導致小膠質細胞炎癥。m6A結合蛋白IGF2BP1通過增強Gbp11和Cp mRNAs的穩(wěn)定性增強了小膠質細胞的炎癥反應[37]。沉默信息調節(jié)因子(silence information regulator,SIRT)1是一種NAD依賴性脫乙酰酶,YTHDC1的沉默下調了SIRT1的表達,抑制M1小膠質細胞向M2表型的轉化,誘導M1小膠質細胞活化并加劇炎癥反應[38]。
RNA m6A甲基化修飾相關的酶和蛋白可能通過增強小膠質細胞炎癥反應參與PSCI。在MCAO小鼠和OGD誘導的小膠質細胞模型中,由于miR-421-3p表達的下調,導致YTHDF1表達增加,YTHDF1隨后識別m6A甲基化修飾的p65 mRNA并促進其翻譯和核轉運,最終激活NF-κB信號通路并促進炎癥反應[39]。此外,急性缺血性腦卒中時血清脂多糖(LPS)升高,LPS暴露會導致大腦中炎癥介質急劇增加,認知能力下降[40-41]。研究發(fā)現,LPS刺激顯著改變小膠質細胞的m6A修飾,TLR4被LPS激活,隨后METTL3介導的m6A修飾上調了TLR4 mRNA的表達,通過TLR4/TLR相關的干擾素活化子(TRIF)-TLR相關分子(TRAM)/NF-κB途徑介導M1小膠質細胞活化[42]。在老年小鼠模型中,海馬體中的METTL3敲除可誘導神經變性和小膠質細胞數量的減少,可能是m6A修飾通過程序性死亡受體1/程序性死亡受體-配體1途徑影響空間認知功能的基礎[43]。環(huán)鳥苷酸腺苷酸合酶(cyclic guanosine monophosphate-adenosine monophosphate synthetase,cGAS)-干擾素基因的刺激因子(stimulator of interferon genes,STING)信號通路在促進小膠質細胞M1極化以加重腦缺血性腦卒中神經炎癥方面起重要作用,FTO通過m6A修飾降低cGAS mRNA穩(wěn)定性,抑制cGAS表達,緩解小膠質細胞介導的炎癥反應,從而減輕腦I/R損傷中的神經炎癥[5]。此外,FTO過表達減少總體RNA m6A修飾,并通過下調pri-miR-155的m6A修飾來抑制其成熟過程,從而減少神經炎癥對腦I/R的損傷,發(fā)揮保護作用[44]。
2.4.2 調控星形膠質細胞介導的神經炎癥 星形膠質細胞是中樞神經系統中數量最多和最特殊的分支細胞類型,主要負責維持大腦穩(wěn)態(tài),通過釋放多種介質來影響中樞神經系統中各種細胞的功能。在不同條件下,星形膠質細胞可以被激活并分化為不同的亞型,包括A1神經毒性表型和A2神經保護表型。反應性星形膠質細胞中Na+/H+交換蛋白1型(Na+/H+ exchanger isoform 1,NHE1)的活化可導致星形膠質細胞肥大和腫脹,抑制NHE1表達可減少ROS產生和減輕炎癥反應,保留白質和海馬完整性,改善慢性腦灌注不足引起的認知功能障礙[45]。
在鏈脲佐菌素誘導的阿爾茨海默病(AD)模型中,當MO-I-500作為FTO抑制劑下調星形膠質細胞中FTO表達時,大腦中氧化應激和細胞凋亡明顯降低,線粒體功能障礙和能量代謝紊亂明顯改善,神經炎癥反應減弱[46]。另一種去甲基化酶ALKBH5對星形膠質細胞具有相似效果。circSTAG1可以與小鼠海馬中的ALKBH5結合,降低ALKBH5水平以改變星形膠質細胞中脂肪酸酰胺水解酶(fatty acid amide hydrolase,FAAH)的m6A甲基化水平,加速FAAH降解,最終導致星形膠質細胞功能障礙[47]。進一步研究發(fā)現,星形膠質細胞來源的IL-1β囊泡促進了m6A閱讀器HNRNPC與淀粉樣蛋白前體蛋白(APP)mRNA的結合,以增強APP翻譯和淀粉樣蛋白β(Aβ)的產生,從而加劇神經慢性炎癥[48]。而Aβ沉積是認知能力下降的重要原因之一,可能與PSCI密切相關[49]。
3 小結和展望
腦卒中會改變大腦表觀轉錄組,調節(jié)m6A甲基化修飾進而調控炎癥、細胞凋亡、血管修復與生成以及神經元與軸突的生長發(fā)育過程,有望成為改善PSCI的有效策略。同時,動態(tài)和可逆的RNA m6A甲基化可以調控神經膠質細胞的活化和極化,也可在腦卒中后神經膠質細胞誘導的炎癥反應中發(fā)揮作用,對神經膠質細胞甲基化的控制可能減少炎癥引起的繼發(fā)性腦損傷,進而改善認知障礙。
研究m6A甲基化與PSCI間的相互作用有助于更好地了解PSCI的發(fā)病機制,并發(fā)現PSCI治療的新靶點。然而,很少有學者在神經膠質細胞的背景下探索m6A甲基化修飾與PSCI的關系,故仍需深入研究m6A甲基化修飾在PSCI發(fā)生發(fā)展過程中如何參與神經膠質細胞的精確調控。
參考文獻
[1] LEE K P,CHANG A Y W,SUNG P S. Association between blood pressure,blood pressure variability,and post-stroke cognitive impairment[J]. Biomedicines,2021,9(7):773. doi:10.3390/biomedicines9070773.
[2] RAN Y,SU W,GAO F,et al. Curcumin ameliorates white matter injury after ischemic stroke by inhibiting microglia/macrophage pyroptosis through NF-κB suppression and NLRP3 inflammasome inhibition[J]. Oxid Med Cell Longev,2021,2021:1552127. doi:10.1155/2021/1552127.
[3] LI Q,WEN S,YE W,et al. The potential roles of m6A modification in regulating the inflammatory response in microglia[J]. J Neuroinflammation,2021,18(1):149. doi:10.1186/s12974-021-02205-z.
[4] ZACCARA S,RIES R J,JAFFREY S R. Reading,writing and erasing mRNA methylation[J]. Nat Rev Mol Cell Biol,2019,20(10):608-624. doi:10.1038/s41580-019-0168-5.
[5] YU Z,ZHENG L,GENG Y,et al. FTO alleviates cerebral ischemia/reperfusion-induced neuroinflammation by decreasing cGAS mRNA stability in an m6A-dependent manner[J]. Cell Signal,2023,109:110751. doi:10.1016/j.cellsig.2023.110751.
[6] SCH?LLER E,WEICHMANN F,TREIBER T,et al. Interactions,localization,and phosphorylation of the m6A generating METTL3-METTL14-WTAP complex[J]. RNA,2018,24(4):499-512. doi:10.1261/rna.064063.117.
[7] AOYAMA T,YAMASHITA S,TOMITA K. Mechanistic insights into m6A modification of U6 snRNA by human METTL16[J]. Nucleic Acids Res,2020,48(9):5157-5168. doi:10.1093/nar/gkaa227.
[8] ZOU J,LIU H,TAN W,et al. Dynamic regulation and key roles of ribonucleic acid methylation[J]. Front Cell Neurosci,2022,16:1058083. doi:10.3389/fncel.2022.1058083.
[9] SPYCHALA A,R?THER U. FTO affects hippocampal function by regulation of BDNF processing[J]. PloS One,2019,14(2):e0211937. doi:10.1371/journal.pone.0211937.
[10] DU T,LI G,YANG J,et al. RNA demethylase Alkbh5 is widely expressed in neurons and decreased during brain development[J]. Brain Res Bull,2020,163:150-159. doi:10.1016/j.brainresbull.
2020.07.018.
[11] SHI R,YING S,LI Y,et al. Linking the YTH domain to cancer:the importance of YTH family proteins in epigenetics[J]. Cell Death Dis,2021,12(4):346. doi:10.1038/s41419-021-03625-8.
[12] SUN C Y,CAO D,DU B B,et al. The role of insulin-like growth factor 2 mRNA-binding proteins(IGF2BPs)as m(6)A readers in cancer[J]. Int J Biol Sci,2022,18(7):2744-2758. doi:10.7150/ijbs.70458.
[13] CHOE J,LIN S,ZHANG W,et al. mRNA circularization by METTL3-eIF3h enhances translation and promotes oncogenesis[J]. Nature,2018,561(7724):556-560. doi:10.1038/s41586-018-0538-8.
[14] LI X,AN P,HAN F,et al. Silencing of YTHDF1 attenuates cerebral stroke by inducing PTEN degradation and activating the PTEN/AKT/mTOR pathway[J]. Mol Biotechnol,2022,65(5):822-832. doi:10.1007/s12033-022-00575-0.
[15] SI W,LI Y,YE S,et al. Methyltransferase 3 mediated miRNA m6A methylation promotes stress granule formation in the early stage of acute ischemic stroke[J]. Front Mol Neurosci,2020,13:103. doi:10.3389/fnmol.2020.00103.
[16] LIU Y,YAN Z,REN Y,et al. Electroacupuncture inhibits hippocampal neuronal apoptosis and improves cognitive dysfunction in mice with vascular dementia via the JNK signaling pathway[J]. Acupunct Med,2022:9645284221136878. doi:10.1177/09645284221136878.
[17] XU K,MO Y,LI D,et al. N(6)-methyladenosine demethylases Alkbh5/Fto regulate cerebral ischemia-reperfusion injury[J]. Ther Adv Chronic Dis,2020,11:2040622320916024. doi:10.1177/2040622320916024.
[18] HOU L,LI S,LI S,et al. FTO inhibits oxidative stress by mediating m6A demethylation of Nrf2 to alleviate cerebral ischemia/reperfusion injury[J]. J Physiol Biochem,2023,79(1):133-146. doi:10.1007/s13105-022-00929-x.
[19] WANG Q S,XIAO R J,PENG J,et al. Bone marrow mesenchymal stem cell-derived exosomal KLF4 alleviated ischemic stroke through inhibiting N6-Methyladenosine modification level of Drp1 by targeting lncRNA-ZFAS1[J]. Mol Neurobiol,2023,60(7):3945-3962. doi:10.1007/s12035-023-03301-2.
[20] LI L,ZANG L,ZHANG F,et al. Fat mass and obesity-associated(FTO)protein regulates adult neurogenesis[J]. Hum Mol Genet,2017,26(13):2398-2411. doi:10.1093/hmg/ddx128.
[21] ZHUANG M,LI X,ZHU J,et al. The m6A reader YTHDF1 regulates axon guidance through translational control of Robo3.1 expression[J]. Nucleic Acids Res,2019,47(9):4765-4777. doi:10.1093/nar/gkz157.
[22] SHI H,ZHANG X,WENG Y L,et al. m(6)A facilitates hippocampus-dependent learning and memory through YTHDF1[J]. Nature,2018,563(7730):249-253. doi:10.1038/s41586-018-0666-1.
[23] CHEN J,ZHANG Y C,HUANG C,et al. m(6)A regulates neurogenesis and neuronal development by modulating histone methyltransferase Ezh2[J]. Genomics Proteomics Bioinformatics,2019,17(2):154-168. doi:10.1016/j.gpb.2018.12.007.
[24] XU S,LI Y,CHEN J P,et al. Oxygen glucose deprivation/re-oxygenation-induced neuronal cell death is associated with Lnc-D63785 m6A methylation and miR-422a accumulation[J]. Cell Death Dis,2020,11(9):816. doi:10.1038/s41419-020-03021-8.
[25] SUN P,MA F,XU Y,et al. Genetic deletion of endothelial microRNA-15a/16-1 promotes cerebral angiogenesis and neurological recovery in ischemic stroke through Src signaling pathway[J]. J Cereb Blood Flow Metab,2021,41(10):2725-2742. doi:10.1177/0271678x211010351.
[26] MATHIYALAGAN P,ADAMIAK M,MAYOURIAN J,et al. FTO-dependent N(6)-methyladenosine regulates cardiac function during remodeling and repair[J]. Circulation,2019,139(4):518-532. doi:10.1161/circulationaha.118.033794.
[27] YAO M D,JIANG Q,MA Y,et al. Role of METTL3-dependent N(6)-methyladenosine mRNA modification in the promotion of angiogenesis[J]. Mol Ther,2020,28(10):2191-2202. doi:10.1016/j.ymthe.2020.07.022.
[28] LI B,XI W,BAI Y,et al. FTO-dependent m(6)A modification of Plpp3 in circSCMH1-regulated vascular repair and functional recovery following stroke[J]. Nat Commun,2023,14(1):489. doi:10.1038/s41467-023-36008-y.
[29] LIANG E,XIAO S,ZHAO C,et al. M6A modification promotes blood-brain barrier breakdown during cerebral ischemia/reperfusion injury through increasing matrix metalloproteinase 3 expression[J]. Heliyon,2023,9(6):e16905. doi:10.1016/j.heliyon.2023.e16905.
[30] LI S,HU W,GONG S,et al. The role of PRRC2B in cerebral vascular remodeling under acute hypoxia in mice[J]. Adv Sci(Weinh),2023:e2300892. doi:10.1002/advs.202300892.
[31] ZHANG X,YUAN M,YANG S,et al. Enriched environment improves post-stroke cognitive impairment and inhibits neuroinflammation and oxidative stress by activating Nrf2-ARE pathway[J]. Int J Neurosci,2021,131(7):641-649. doi:10.1080/00207454.2020.1797722.
[32] ZHU L,LIU S,LIAO F,et al. Comprehensive analysis of blood-based m6A methylation in human ischemic stroke[J]. Mol Neurobiol,2023,60(2):431-446. doi:10.1007/s12035-022-03064-2.
[33] CHOKKALLA A K,MEHTA S L,KIM T,et al. Transient focal ischemia significantly alters the m(6)A epitranscriptomic tagging of RNAs in the brain[J]. Stroke,2019,50(10):2912-2921. doi:10.1161/strokeaha.119.026433.
[34] HOSHINO K,HASEGAWA K,KAMIYA H,et al. Synapse-specific effects of IL-1β on long-term potentiation in the mouse hippocampus[J]. Biomed Res,2017,38(3):183-188. doi:10.2220/biomedres.38.183.
[35] AL MAMUN A,CHAUHAN A,QI S, et al. Microglial IRF5-IRF4 regulatory axis regulates neuroinflammation after cerebral ischemia and impacts stroke outcomes[J]. Proc Natl Acad Sci U S A,2020,117(3):1742-1752. doi:10.1073/pnas.1914742117.
[36] WEN L,SUN W,XIA D,et al. The m6A methyltransferase METTL3 promotes LPS-induced microglia inflammation through TRAF6/NF-κB pathway[J]. Neuroreport,2022,33(6):243-251. doi:10.1097/wnr.0000000000001550.
[37] DING L,WU H,WANG Y,et al. m6A reader Igf2bp1 regulates the inflammatory responses of microglia by stabilizing Gbp11 and Cp mRNAs[J]. Front Immunol,2022,13:872252. doi:10.3389/fimmu.2022.872252.
[38] ZHOU H,XU Z,LIAO X,et al. Low expression of YTH domain-containing 1 promotes microglial M1 polarization by reducing the stability of sirtuin 1 mRNA[J]. Front Cell Neurosci,2021,15:774305. doi:10.3389/fncel.2021.774305.
[39] ZHENG L,TANG X,LU M,et al. microRNA-421-3p prevents inflammatory response in cerebral ischemia/reperfusion injury through targeting m6A reader YTHDF1 to inhibit p65 mRNA translation[J]. Int Immunopharmacol,2020,88:106937. doi:10.1016/j.intimp.2020.106937.
[40] TAN C,WU Q,WANG H,et al. Dysbiosis of gut microbiota and short-chain fatty acids in acute ischemic stroke and the subsequent risk for poor functional outcomes[J]. JPEN J Parenter Enteral Nutr,2021,45(3):518-529. doi:10.1002/jpen.1861.
[41] LIAO S,WU J,LIU R,et al. A novel compound DBZ ameliorates neuroinflammation in LPS-stimulated microglia and ischemic stroke rats: role of Akt(Ser473)/GSK3β(Ser9)-mediated Nrf2 activation[J]. Redox Biol,2020,36:101644. doi:10.1016/j.redox.2020.101644.
[42] QI L,HU H,WANG Y,et al. New insights into the central sympathetic hyperactivity post-myocardial infarction: roles of METTL3-mediated m(6)A methylation[J]. J Cell Mol Med,2022,26(4):1264-1280. doi:10.1111/jcmm.17183.
[43] HU W,XIE H,ZENG Y,et al. N6-methyladenosine participates in mouse hippocampus neurodegeneration via PD-1/PD-L1 pathway[J]. Front Neurosci,2023,17:1145092. doi:10.3389/fnins.2023.1145092.
[44] JIANG Z,SHI L,HUANG H,et al. Downregulated FTO promotes microRNA-155-mediated inflammatory response in cerebral ischemia/reperfusion injury[J]. Neuroscience,2023:526:305-313. doi:10.1016/j.neuroscience.2023.07.012.
[45] LIU Q,BHUIYAN M I H,LIU R,et al. Attenuating vascular stenosis-induced astrogliosis preserves white matter integrity and cognitive function[J]. J Neuroinflammation,2021,18(1):187. doi:10.1186/s12974-021-02234-8.
[46] COCKOVA Z,HONC O,TELENSKY P,et al. Streptozotocin-induced astrocyte mitochondrial dysfunction is ameliorated by FTO inhibitor MO-I-500[J]. ACS Chem Neurosci,2021,12(20):3818-3828. doi:10.1021/acschemneuro.1c00063.
[47] HUANG R,ZHANG Y,BAI Y,et al. N(6)-methyladenosine modification of fatty acid amide hydrolase messenger RNA in circular RNA STAG1-regulated astrocyte dysfunction and depressive-like behaviors[J]. Biol Psychiatry,2020,88(5):392-404. doi:10.1016/j.biopsych.2020.02.018.
[48] LI Z,MONIRUZZAMAN M,DASTGHEYB R M,et al. Astrocytes deliver CK1 to neurons via extracellular vesicles in response to inflammation promoting the translation and amyloidogenic processing of APP[J]. J Extracell Vesicles,2020,10(2):e12035. doi:10.1002/jev2.12035.
[49] OUYANG F,JIANG Z,CHEN X,et al. Is cerebral amyloid-β deposition related to post-stroke cognitive impairment?[J]. Transl Stroke Res,2021,12(6):946-957. doi:10.1007/s12975-021-00921-5.
(2023-05-23收稿 2023-08-01修回)
(本文編輯 李志蕓)